
Squashing Cubes: Automating Deformable Model Construction for Graphics

Doug L. James Jernej Barbič Christopher D. Twigg (Carnegie Mellon University)

Figure 1: Squashing Cubes models and simulations: (Left) a flexible plastic chair; (Right) a complex swaying bridge superstructure.

Introduction

The vast majority of geometric meshes used in computer graph-
ics are optimized for rendering, and not deformable object simula-
tion. Despite tools for volume (or surface) (re)meshing of geomet-
ric models to support physical simulation, in practice, the construc-
tion of physically based deformable models from arbitrary graphi-
cal models remains a tedious process for animators.

Squashing Cubes (SC) automates the construction of physically
based deformable objects from arbitrary geometric models. During
preprocess, the geometric model (typically a surface mesh) is vox-
elized into tiny elastic cubes, i.e., the squashing cubes model. Sec-
ond, a generic deformable object simulator is used to deform the
SC model. Finally, the resulting deformations are interpolated back
onto the original model, thus producing the final animation. Such
domain embedding schemes are familiar to graphics [Pentland and
Williams 1989; Faloutsos et al. 1997].

SC is simple to implement, practical for complex models, sup-
ports any geometric representation, and the SC deformable mod-
els are trivial to simulate. Although SC geometry is approximate,
reasonable approximations of deformation displacement fields can
be obtained for many animation purposes. One practical benefit
of voxelization is that geometric features and defects smaller than
the voxel scale are merged; consequently, intersecting and topo-
logically disconnected polygons (so common in graphical models)
are deformed appropriately. SC is especially appealing for com-
plex superstructures, such as the bridge, for which the geometric
mesh is not “structurally sound.” For example, the bridge model
contains numerous modeling shortcuts, such as improperly attached
cables, intersecting geometry, small “gaps,” badly shaped (skinny)
triangles, and isolated polygons. In short, Squashing Cubes allows
animators to focus on animation, and less on physically based mod-
eling details, such as the engineering of bridges using properly con-
nected beam, truss, and shell elements.

Squashing Cubes Model Construction

The resolution of the SC deformable model can be chosen inde-
pendent of model geometry, and is typically less complex (see
video). Given a fitted 3D voxel grid, the SC model contains all
voxels occupied by the geometric model (or the largest connected
component). These cubes can be found by scan conversion, or
via (hierarchically-optimized) polygon-cube intersection tests. For
simplicity, in this sketch we consider a point-based sampling ap-
proach that is trivial to implement, and suitable for any geometric
representation.

Consider a large number, N , of near uniform surface (or vol-
ume) point samples, where each sample consists of a position pj , a

tiny mass δmj (e.g., m/N ), and a list of local material properties,

e.g., (Ej , νj). For each sample hashed to a voxel, a squashing cube
object is either created or retrieved, and used to accumulate any ma-
terial properties. For example, an elastic cube’s mass is simply the
total point sample mass; this mass is evenly distributed to vertex
nodes in vertex-based simulation schemes. The bulk material pa-
rameters for each elastic cube are chosen as the weighted average
of material values for all contained samples.

Simulation

Given the list of squashing cubes, the list of adjacent vertices (or
nodes) can be obtained for numerical simulation. Discretization and
dynamics integration of the elastic cubes can be approximated us-
ing virtually any deformable object simulator, including approaches
based on finite differences, finite elements (brick elements), or
mass-spring particle lattices; a cloth or shell simulator could even
be used to simulate a SC model. At each time step, the deformation
of the SC model is interpolated back onto the original geometric
model; the displacement at any point within a squashing cube is de-
termined using trilinear interpolation of cube vertex displacements.
For modal analysis [Pentland and Williams 1989], e.g., chair model,
the SC model’s eigenmodes can be interpolated back onto the orig-
inal geometry during preprocessing, and the SC model discarded.

Collision detection can be approximated using the SC model, al-
though in our simulations we use the underlying geometry directly.
Contact forces applied to underlying geometry are (barycentrically)
distributed to the nodes of the corresponding cube, and the resulting
SC forces are used in dynamics integration.

Discussion

Limitations of coarse voxel resolutions are (a) close geometric com-
ponents may be undesirably joined, and (b) the bending of thin
surfaces can reflect voxel “stair-casing.” Although we considered
surface models, volumetric models can also be sampled, or com-
puted using flood-fill voxel operations. Finally, high cube counts
can occur for volumetric objects, but are very reasonable for thin
structures, e.g., bridge; nevertheless, the computing costs should be
weighed against increased animator productivity.

References

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
1997. Dynamic Free-Form Deformations for Animation Synthe-
sis. IEEE Trans. on Vis. Comp. Graph. 3, 3, 201–214.

PENTLAND, A., AND WILLIAMS, J. 1989. Good Vibrations:
Modal Dynamics for Graphics and Animation. In Computer
Graphics (Proceedings of SIGGRAPH 89), vol. 23, 215–222.


