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Abstract: The origin of the squeal acoustic emissions when a chalk is rubbed on a

blackboard or better on a ceramic plate, and those when a wet finger is rubbed on a

smooth surface, such as a glass surface, is sought in the stick-slip effect between the

rubbing surfaces. The elastic agency is sought in a shear band between the two

surfaces characterized by very low shear modulus. In the case of the squealing chalk,

it can be argued that the shear band is a layer of chalk powder, about 0.3 mm thick,

forced to slide over the ceramic plate surface. In the case of the wet finger on a glass

surface, it can be argued that the shear band is the layer of soft tissue between the

epidermis and the finger bone, and that the water layer simply facilitates the

stick-slip effect.

PACS: 43.20.Ks, 43.35.Mr

1. Introduction

In a previous study of the acoustic emissions from a certain type of silica gel grains,

placed in a small container, it is shown that a light touch by a brass pestle rounded to

a 9 mm diameter sphere at the end, can produce a very pleasant sound with dominant

frequency, fd ≈ 250 Hz, Patitsas [1]. Such grains are used for humidity control purposes

and are characterized by; average size about 0.4 mm, large size distribution, extreme

angularity and the appearance of being more flat than rounded. With an estimated

impact velocity of about 10 cm/s, there was no visible evidence of grains bouncing

off other grains on the surface grain layer, implying that this is also the case in the

layers below the surface. Thus, it is safe to assume that the grain motion is mainly

characterized by grains sliding over one another. It is argued in [1] that a singing
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grain mass at rest, due to some yet unknown grain surface effect, is characterized by

a relatively high level of rigidity. Thus, when the pestle is driven into the grain mass,

singing sand or silica gel, the stress level between the rubbing grains builds up to the

level where the surface state at the contact areas is drastically altered (liquidized).

This results in a well defined shear band (boundary layer), comprising several grain

layers, around the leading front of the pestle, characterized by a very low modulus of

rigidity (shear modulus). The recent report by Braeck and Podladchikov [2] supports

such a hypothesis. The authors argue that a thermal runaway in viscoelastic materials

can lead to a highly localized shear band. Moreover, it is argued in [1] that the acoustic

and seismic emissions are due to shear modes of vibration in such a boundary layer.

Consequently, the question arises as to whether the chalk squeal emissions, or the wet

finger on glass musical emissions, could be due similarly to vibrations in a shear band

at the contact area. However, there has to be an agency that would result in the

excitation of such modes of vibration, and the only such agency appears to be that

of the stick-slip effect. Such an effect implies that the friction coefficient between the

shear band and the substrate decreases with increasing relative velocity between the

two surfaces. The example that follows, based on the spring-block system on a moving

platform, appears to best elucidate the stick-slip effect.

2. The stick-slip effect; The platform driven block

Figure 1a depicts block, B, with mass m sliding over the moving platform. It is

attached to a fixed wall through a weightless spring with spring constant k. Its position

is specified by the distance y from the equilibrium point O, where the spring force is

zero when the platform is at rest. The relative velocity, vr, between the platform and

the block is, vr = VP − ẏ, where VP is the constant velocity of the platform to the

right. The net force acting on the block can be written as, −ky − rẏ + µmg, and thus

the acceleration of the block can be written as, ẏ = −yk/m − r/mẏ + µg, where −rẏ

represents a dashpot damping effect according to McMillan [3]. It is assumed that the

relative velocity, vr, remains always greater than zero, i.e., the platform always pulls

the block to the right. Unlike the studies by Heckl and Abrahams [4], Heckl [5], for

example, there is no attempt here to examine the conditions that would or would not
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lead to squeal emissions. The condition that the relative velocity, vr = Vp − ẏ, remains

always positive, i.e., the block velocity amplitude never exceeds the platform velocity,

Vp, appears to be consistent with the plots in Fig. 8 in [4], where the disc velocity is

plotted versus time. The crabbing velocity of the disc is interpreted to be equivalent

to the platform velocity here.

Fig. 1b depicts the kinetic coefficient of friction, µ, as a function of vr. Both diagrams

in Fig. 1 are based on those in the paper by Rabinowicz [6]. The relatively simple

dependence of µ on vr and the absence of any hysteresis effect considerations may be

justified on the basis of the relative softness of the shear band of the chalk powder

rubbed on a ceramic plate. Furthermore, according to McMillan [3], the Coulomb law

with Fp = mgµ ought to apply when vr is not too small. It is assumed that µ varies

linearly with vr in the interval vB − vF , i.e.,

µ = −avr + γ = −a(VP − ẏ) + γ = γ − aVP + aẏ (1)

Thus, the equation of motion becomes, ÿ − gaẏ + rẏ + yk/m = gγ − gaVP , having the

solution, y = yc + yp, where the complimentary and particular solutions are,

yc = Ge((ga−r)/2)tcos(ωt + θ), yp = (mg/k)(γ − aVP ) (2)

where

ω2 = k/m − ((ga − r)/2)2 (3)
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Fig. 1. (a) The platform moves to the right with constant velocity VP . The block B

is attached to the wall through the weightless spring, with spring constant k, and

oscillates between points D and A, equidistant from point C. At point O, the spring

force on the block is zero and the block position is specified by the coordinate y.

(b) Variation of the kinetic coefficient of friction, µ, between the block and the

moving platform as function of the relative velocity, vr = VP − ẏ. The extreme

relative velocities, when the block moves to the right and to the left, are labeled as,

vF and vB.

Platform

k
B

D O
y

C
A

ŷ
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In Fig. 1a, yp = OC and the amplitude of oscillation, Ge((ga−r)/2)t, is equal to CA.

The effect of the slope, a, in (1) is to reduce the elastic strength of the spring, i.e., the

spring constant k is replaced by the effective spring constant, ks = k−m((ga− r)/2)2.

It will be seen below that there can be no oscillatory motion when a=0, since all the

power transfered to the block by the platform is dissipated as heat. The stick stage

occurs when the block moves to the right in the neighborhood of the point C and the

slip stage occurs when the block moves to the left in the same neighborhood. More

exactly, if the left side of the block is at C and moves to the right at t = 0, then,

yc = Ge((ga−r)/2)tsin(ωt). Then,

ẏ = Ge((ga−r)/2)tω
√

1 + ((ga− r)/2ω)2cos(ωt − φ) (4)
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where cosφ = (1+((ga−r)/2ω)2)−1/2. Thus, the maximum value of ẏ, that corresponds

to the value vF in Fig. 1, occurs when the block has just passed the center point C

on its way towards the point A. Similarly, the maximum value of ẏ in the negative

direction, that corresponds to the value vB in Fig. 1a, occurs when the block has just

passed the point C. An estimate of the dependence of ω on the platform velocity VP

can be obtained as follows; From Fig. 1b, the slope a is equal to, (µF −µB)/(vB − vF ).

Since vF could be close to zero and vB could be close to 2VP , it is reasonable to write,

vB − vF ≈ VP . Therefore, ω increases weakly with increasing VP .

The force exerted by the platform on the block is, Fp = mgµ. Then, from (1, 4),

Fp can be written as,

Fp = mg(d − aVP ) + mgaGe((ga−r)/2)tω
√

1 + ((ga − r)/2ω)2cos(ωt − φ) (5)

The power delivered to the block by the platform is, PB = FpVP = mgµVP and the

power dissipated as heat is, PH = Fpvr = mgµVP −mgµẏ = PB−PO, where PO = mgµẏ

is the power delivered to the oscillatory motion. It follows that the average value of

PO is zero, implying no oscillatory motion if µ is constant, i.e., if the slope a = 0. The

second term in (5) implies the presence of a resonance effect where the block is driven

by a sinusoidal force with frequency equal to the natural frequency of oscillation of the

spring-mass system. In other words, the mode of vibration of the spring-mass system

anchors the stick-slip effect. In more complex systems, it could be argued that the

most stable mode anchors the same effect. Such a mode is usually the fundamental,

but in some cases, as can be seen at the end of Section 5, the first harmonic can play

such a role. In the literature, such an effect is described as ”self-excited vibration” [3].
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3. Squeal sounds

3.1. The squealing chalk

Squeal sounds can be produced fairly easily when an ordinary chalk, length Lc ≈80 mm,

diameter, Dc=9 mm, is forced to rub on a ceramic (clay) plate. For best results, the

chalk is held about 30o from the vertical direction when the plate lies on a horizontal

plane, Fig. 2. Invariably, the chalk has to be rubbed several times, until a faint coat of

chalk powder is visible on the plate surface, before the squeal sound can be produced.

The contact area, when the squeal is produced, amounts to about 10 mm2 and its

shape appears to be irrelevant.

Fig. 2. The chalk, diameter 9 mm, is held at an angle of about 30o from the vertical

direction and is pushed to the right along ŷ with velocity VC against the ceramic

plate on the horizontal yz plane. The shear band, responsible for the acoustic

emission, has dimensions; Ly ≈ 3 mm, Lz ≈ 4 mm and estimated thickness b ≈ 0.3

mm. The end of the shear band oscillates between the lines O
′
A and O

′
D during the

acoustic emission in the same sense the block oscillates between points A and D in

Fig. 1. b � OO
′
and AD � b.
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One of the most sinusoidal microphone recorded squeal signals is shown in Fig. 3. It

was produced by rubbing a 56 mm long chalk on a relatively small irregularly shaped
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ceramic plate held lightly by the other hand on a soft foam. This plate, measuring

roughly 30×25 mm by 5 mm thick, resulted from the breaking up of the base of a flower

pot and it comprises part of the base rim with thickness close to 10 mm. Thus, it is

highly unlikely that the sharp peak at about 2050 Hz and its second faint harmonic

could be due to vibrations in such a plate. There is no explanation as to why the mode

corresponding to the first harmonic was not excited. When the plate was tapped with

a 12 mm glass bead, there was no sifnificant frequency content above 1500 Hz. An

ordinary pin microphone was utilized a few cm from the contact area. The signal was

processed using the NI USB-6210 analogue to digital converter and analyzed using the

Labview Signal Express of National Instruments. Furthermore, similar acoustic emis-

sions could be obtained by rubbing a chalk on larger ceramic plates. Such a geophone

recorded signal can be seen in Fig. 4 where an 80 mm chalk was rubbed on the inner

side of a relatively large flower pot. The microphone recorded signal, shown in Fig.

5, was produced when a full chalk was rubbed on a fairly flat area on an irregularly

shaped rock with average diameter equal to about 50 mm. These and other emissions

from various other plates provide sufficient evidence that the vibrations responsible

for such squeal emissions are not to be found in the objects on which the chalks were

rubbed. Consequently, there remains to establish whether such vibrations are to be

found in the sheared chalk.

No squeal emission could be produced when the chalk length was reduced to about

40 mm or less. This could be due to excessive damping by the skin when the chalk

piece was totally surrounded by the fingers. When chalk pieces shorter than 40 mm

were held by a pair of ordinary pliers, the squeal sound was readily produced (Fig. 6),

even when the short piece was obtained by splitting the chalk along its length (Fig.

7). It is noteworthy that fd is only 1100 Hz in Fig. 6, i.e., nearly half that in the

three previous figures. In Fig. 7, fd ≈ 1650 Hz and there is also low frequency content.

From what follows in Section 4, it can be argued that the lower values of fd are mainly

due to larger shear band thickness (Fig. 2) and also due to larger loading of the shear

band. The frequency spectra in both these figures support the hypothesis that the

acoustic emissions are not due to vibrations in the chalk but rather due to vibrations

in a chalk layer, the shear band, as depicted in Fig. 2. Such a conclusion is contrary
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to the established convention found in the literature. For example, in the case of a

train wheel rounding a curved track, the squeal emission is sought in the modes of

vibration of the wheel [4]. Most likely, the very intense acoustic emission is due to the

excitation of one or more modes of vibration in the wheel. However, the excitation of

such a mode could originate with the excitation of a mode of vibration in a very thin

shear band on the sheared surface of the track. A bronze bowl, diameter about 20 cm

at the rim, has to be rubbed with a special brush along its exterior top surface in order

for intense vibrations to be induced in the bowl. Most likely, the special brush best

facilitates the stick-slip effect that leads directly to the excitation of a given mode in

the bowl, without the intermediary excitation of a shear mode in the brush.

Fig. 3. Frequency spectrum and the microphone recorded squeal signal when a 56

mm long chalk was rubbed on a small irregularly shaped ceramic plate, roughly

30×25 mm by 5 mm thick. fd ≈2050 Hz.
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Fig. 4. Frequency spectrum and the geophone recorded signal when an 80 mm chalk

was rubbed on the inner upper wall of a large flower ceramic pot, upper diameter 22

cm and depth 9 cm.
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Fig. 5. Frequency spectrum and the microphone recorded signal when an 80 mm

chalk was rubbed on the surface of an irregularly shaped rock with an overall

diameter about 50 mm. The squeal sound was emitted after the chalk was rubbed

several times and a thick coat of chalk powder had formed on the rock surface. fd ≈

1900 Hz. There is the presence of the harmonic at 3fd and the small side peak at

about 2100 Hz.
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Fig. 6. Frequency spectrum and the microphone recorded signal when a 30 mm

chalk, held by a relatively small pair of pliers, was rubbed on a ceramic plate

obtained by breaking a medium size pot, 15 cm rim diameter by 3 cm depth, into

three pieces. Dominant frequency, fd ≈ 1100 Hz.
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Fig. 7. Same as in Fig. 6 but the 30 mm chalk was replaced by a 20 mm piece

splintered from a 20 mm chalk along its length. fd ≈1650 Hz.
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3.2. The squealing pencil

Fig. 8. Frequency spectrum and the geophone recorded signal when the back-end

(no eraser) of an ordinary wood pencil, length = 80 mm, diameter = 7 mm, was

rubbed on a ceramic plate with a thin coat of chalk powder on it. The squeal occured

after the pencil was rubbed several times, i.e., after a layer (shear band) of chalk

powder had accumulated on the rubbing edge of the pencil. fd ≈1320 Hz.
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Fig. 9. Same as in Fig. 8, but 1 to 2 sec later. fd ≈2050 Hz.
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The contents in Figs. 8, 9, and the process used to obtain these Figures establish

nearly conclusively the validity of the above hypothesis. When the bare-back-end (no

eraser) of an ordinary pencil, 80 mm in length and 7 mm in diameter, was rubbed

on the clean surface of a plate, there was no squeal sound. However, when the same

pencil, held at an angle of about 30o from the vertical, was rubbed several times on the

same plate covered with a thin coat of chalk powder, the squeal sound was produced.

It was observed that a chalk powder layer had accumulated on the rubbing edge of the

pencil with dimensions of about 4 mm along the edge and 2mm along the direction of

motion. The layer thickness was estimated at about 0.3 mm. In the plot shown in Fig.

8, the signal is not well developed and there is strong low frequency content at around

500 Hz. The signal shown in Fig. 9 was recorded about 1 second after that in Fig.

8. Seemingly, after two or three rubs the shear band was well formed, resulting in the

usual strong peak at about 2050 Hz.

Fig. 10. Same as in Fig. 8, but in absence of any chalk powder on the plate.
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Fig. 11. Same as in Fig. 3, i.e., the 56 mm chalk was rubbed on the small ceramic

plate. Evidently, in this 200 ms interval the shear band was not developed sufficiently

to result in the stick-slip resonance effect.
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The results of rubbing the bare-back-end of the same pencil on the bottom of a

15 cm ceramic pot, in absence of any chalk powder, are shown in Fig. 10. Only the

low frequency content is present at around 250 Hz with some relatively high frequency

content at around 2300 Hz, likely due to vibrations in the pot. Roughly, the same

spectrum was observed when the same pencil-end was rubbed on a regular dinner dish.

It could be argued that, without a chalk powder layer at the pencil edge, the slope, a,

in (1) was not sufficiently large to allow for the stick-slip resonance effect to become

coupled to one of the shear modes in the shear band at the pencil edge. Furthermore,

the relatively high stiffness at the pencil edge could result in very high natural frequen-

cies of vibration in the shear band, and in particle velocity amplitudes well above the

velocity of the pencil over the plate surface, preventing the onset of the stick-slip effect.

If the shear band thickness, b, in Fig. 2, is about 0.3 mm, the particle displacement

amplitude has to be considerably lower, say 0.003 mm. Then, for frequency, f=2000

Hz, the particle velocity amplitude is 2πf times the displacement amplitude, i.e., 3.8

cm/s, a value lower than 10 cm/s, which is deemed to be the approximate velocity of

the chalk over the plate. If the spring constant in Fig. 1, or equivalently the shear

band stiffness in Fig. 2, becomes too large, then the velocity amplitude could exceed
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the platform velocity, VP , resulting, possibly, in no squeal emission. In the report by

Heslot et al. [7], it is recognized that for stick-slip to take place as opposed to steady

sliding, the loading system has to be soft enough.

Similar results to those in Fig. 10, except for the low frequency content occuring

at around 400 Hz, were obtained when the led-end of the same pencil was rubbed on

the same pot. The results of rubbing the 56 mm chalk on the same plate as in Fig. 3,

without any squeal emission, are shown in Fig. 11. Evidently, the shear band was not

developed sufficiently to result in the stick-slip resonance effect. In the next section, an

attempt will be made to account for the presence of the various peaks in this frequency

spectrum with an average frequency about 4 times lower than the usual fd ≈ 2000 Hz.

In order to further establish that the thin chalk powder layer at the edge of the

pencil is the vibrating shear band anchoring the stick-slip effect, as opposed to sim-

ply facilitating such an effect, the following experiments were effected; Two irregularly

shaped pieces were broken from a regular chalk. One, with approximate dimensions

(10 × 8 × 5 mm) was glued to the tip of a nail with length, L=9 cm, and diameter,

D=3.6 mm, while the other with nearly similar dimensions was glued to the tip of a nail

with dimensions, L=9 cm and D=4.4 mm. Squeals were readily produced, more read-

ily than when using the full chalk, by holding a given nail and rubbing the chalk piece

on the small irregularly shaped ceramic plate with approximate dimensions 30 × 25

mm. In the former case, the dominant peak occured at fd=3240 Hz and in the latter

at fd=3160 Hz. The proximity of the values of these frequencies tends to rule out the

possibility that the modes of vibration that anchor the stick-slip effect are to be found

in the nails. The corresponding frequency using the full chalk was at fd= 2600 Hz,

ruling out the possibility that the modes of vibration are to be found in the broken

chalk pieces.

Furthermore, a small piece, 12 mm in length, was cut from the end of an ordinary

pencil, split in half along its length, and one such piece was glued to the tip of a smaller

nail, L=6 cm, D=2.7 mm. A rub on the same ceramic plate produced a fairly wide

frequency peak, with several side peaks, centered at fd=2250 Hz and a second wide

peak at 3700 Hz. It may be noted that 3700 is less than 2 × 2250. Such inequality is

consistent with the transcendental equation (9) with roots, r1, r2, r3.. where r3 < 2r2.
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In Fig. 9, fd= 2050 Hz, leading to the conclusion that the modes of vibration are not

to be found in the pencil.

4. A theoretical treatment

The shear band, shown in Fig. 2, is characterized by shear modulus, µe, and mass

density, ρ, and thus by shear phase velocity, cs =
√

µe/ρ. The particle displacement,

ξs, is written as, ξs = ∇× A, where A satisfies the vector wave equation with phase

velocity cs. As in the report by Patitsas [1], A is chosen to lie along ẑ resulting in,

Az = [A1cosαx + B1sinαx][A2cosβy + B2sinβy]ejωt (6)

and this in turn results in, ξx = [A1cosαx + B1sinαx]β[−A2sinβy + B2cosβy] and,

ξy = α[A1sinαx−B1cosαx][A2cosβy+B2sinβy], where the factor ejωt is understood to

be included and α, β are in the neighborhood of π/b and π/Ly respectively, as will be

seen below. The wave number, ks = ω/cs, is given as, k2
s = α2 +β2 ≈ α2 since b << Ly

resulting in β << α. It is mathematically convenient, but not necessary, to assume

that ξy = 0 at y = 0. The inclined position of the chalk or pencil in Fig. 2 is not in

contradiction with such an assumption. Then, A2=0 and since the end at y = Ly is

free, βLy = mπ/2, m = 1, 3, 5.. Thus,

ξx = β[A1cosαx + B1sinαx]cos(
mπy

2Ly
) (7)

and,

ξy = α[A1sinαx − B1cosαx]sin(
mπy

2Ly

) (8)

Since β << α, ξy is overall much greater than ξx. The boundary condition, ξx=0

at x = b, results in , B1 = −A1cotαb and this implies that ∂ξy/∂x=0 at x = b,

i.e., ξy has an antinode at x = b. The normal stress along x̂ can be written as,

σxx = (λe + 2µe)∂ξx/∂x ≈ λe∂ξx/∂x, since µe � λe, where, λe is the Lame’ constant

that determines the compression phase velocity, i.e., cp =
√

(λe + 2µe)/ρ. At x=0, the

equation of motion can be written as, σxxS = M∂2ξx/∂t2 = −Mω2ξx and this results

in the transcendental equation,

cot(αb) =
M

ρSb
(
cs

cp
)2(αb) = Lf (αb) (9)
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where, M is the equivalent load mass on the shear band, S = LyLz is the contact area

and Lf is the overall load factor. The familiar procedure in determining the roots of (9)

consists in plotting cot(αb) as function of αb, draw the straight line Lf (αb) and look

for the intersection points. The first root, r1, lies in the interval, 0 < αb < π/2, the

second in the interval, π < αb < 3π/2 etc. For a given root rn, the angular frequency

is given as, ωon = kscs = αncs = (rn/b)cs.

If the load factor, Lf , is sufficiently large, then r2 = π + ε, where ε is a small

number. Therefore, r2 is rather insensitive to variations in Lf . It is highly likely that

such variations occur as the hand pushes the chalk or the pencil. It is also very likely

that the mass of the hand renders the load factor relatively large.

The relatively large values of ξx and ξy when αb = r2 ≈ π, the presence of the

antinode of ξy at the rubbing interface and the insensitivity of the root r2 to changes

in the load factor lead to the conclusion that the corresponding mode is responsible

for the sharp peak at about 2000 Hz seen in the above plots. Then, the low frequency

content in the above plots must correspond to the root, r1, which is fairly sensitive

to changes in the load factor. Thus, the various peaks in Fig. 11 could be, in part,

due to such changes during a given rub. Furthermore, the several peaks could be

due to several shear bands developing simultaneously. If r1 = π/4, then r2/r1 ≈4,

corresponding to the ratio of 2000/500 between the dominant squeal frequency and

the low frequency content seen in Fig. 11. However, when the 30 × 25 mm ceramic

plate was tapped lightly by a 12 mm glass bead or the sharp edge of another small

ceramic plate, the frequency spectra of the resulting low intensity signals exhibited a

wide frequency content, with many peaks, centered at around 500 Hz. Therefore, the

low frequency content in Fig. 11, for example, could also be noise generated by the air

acceleration as the chalk or pencil is drawn over the plate.

The straight lines O
′
A, O

′
D in Fig. 2 correspond only to the mode with r1 = π/2.

Then, B1 << A1 and ξy = αA1sin(πx/2b)sin(mπy/2Ly). For the mode with r2 = π+ε,

A1 << B1 and thus, ξy = −αB1cos((π + ε)x/b)sin(mπy/2Ly), implying a node at

x ≈ b/2 and an antinode at x ≈ b.

As in the case of (3), the effect of the slope, a, in (1) is to reduce the natural frequencies
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of vibration, ωon. Towards this end, the equation of motion is written as,

ρ
∂2ξy

∂t2
− µe∇2ξy =

µMg

bS
(10)

where bS is the shear band volume. Thus, the equation analogous to (3) is,

ω2
n = ω2

on − (
Mga

2ρbS
)2, ωon =

rn

b
cs (11)

5. Wet skin on glass surface

Figure 12 depicts the microphone recorded signal and its frequency spectrum when

the small finger was rubbed, flat, on the surface of an irregularly shaped glass plate;

area about 60 cm2, thickness variable between 4 and 2 mm. The curvature suggests

that it originated from a jar with volume about 1 liter. There was an excess layer of

water on the concave surface when the finger was pushed-pulled with a speed of about

10 cm/s. The sound was rumbling-like, as suggested by the lack of signal smoothness,

that was likely due to water moving between the fingerprint pattern, i.e., the crevices in

the epidermis. However, after a few rubs the water layer thickness was reduced and the

sound became musical as seen in Fig. 13. It has been observed that when the contact

area is relatively large, a flat thumb for example, several major peaks can emerge pre-

sumably due to various sub-areas acting independently. A few minutes later, the outer

side of the same small finger was rubbed lightly on the same glass area and resulted in

a more musical sound and at a higher frequency seen in Fig. 14. The irregularity of the

geometry of the glass plate and the overall similarity of the signals from various other

glass or dish plates suggest that the origin of the emitted sound is not to be found

in vibrations in the glass plate. Therefore, such an origin has to lie in a shear band

comprising the skin and the water layer. The skin from other parts of the body can

also be used similarly to produce musical sounds. In order to confirm the assumption

that these signals could not originate with vibrations in the glass plate, the plate was

tapped by a 12 mm glass bead. It was determined that there was no frequency content

below 1000Hz in the emitted signal.
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Fig. 12. Frequency spectrum and the microphone recorded signal when the small

finger, flat, was rubbed on an irregularly shaped glass plate, area about 60 cm2,

variable thickness. At this early stage, there was a relatively thick layer of water on

the concave plate surface.
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Fig. 13. Same as in Fig. 12, except that after a few rubs the thickness of the water

layer had diminished. fd ≈ 450 Hz. The second large peak corresponds to f2 ≈ 2fd.

There is faint presence of harmonics at 3, 4, and 6 times fd.
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Fig. 14. Same as in Fig. 12, but a few minutes later and with a light rub by the

outer side of the same small finger.
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It can be argued that the water layer, under turbulent conditions, could aquire suffi-

cient viscosity to support a minute shear modulus. Furthermore, the friction coefficient

between the water layer and the glass surface must decrease with relative velocity as in

(1). A bundle of wet soft paper towel can produce the musical sounds, but with a bit

more difficulty, when rubbed on a glass surface. More recently, pleasant sounds could

be heard while washing a glass window, area approximately 1 m2, with a cotton cloth.

The water to dish washing liquid soap ratio was about 20 to 1. Similarly, squeal sounds

can be heard when the rubber edge of the washer is drawn over the windshield of a car

covered with washing fluid. Any smooth surface can serve in this capacity, that of a

regular dinner dish or a varnished wood for example. The shift in frequency between

Fig. 13 and Fig. 14 could be due to reduced shear band thickness and to reduced load.

More study is required in order to establish the exact role of the thin water layer on the

smooth surface, apart from facilitating the stick-slip effect. The elastic agency appears

to be the soft matter between the epidermis and the finger bone. If the thickness of

the soft tissue is about 5 mm, resulting in wave length, λ ≈ 5 mm, and if fd=1000Hz,

then the shear velocity, cs=5 m/s. If, on the other hand, the elastic agency is to be

found in the thin water layer, thickness about 0.1 mm, then, cs=0.1 m/s.

In order to examine the more probable scenario, i.e., that the modes of vibration

19



are to be found in the soft tissue between the epidermis and the finger bone, the fol-

lowing procedure was effected; A relatively soft cloth, mostly cotton, was cut into 12

pieces about 5× 5 cm in size. All pieces were dipped into a bath of water with a small

amount of dish washing fluid and then squeezed until there was no dripping. When

the middle finger was rubbed on the concave side of the irregularly shaped glass plate,

area about 60 cm2, the frequency spectrum comprised the strongest peak at 410 Hz,

that would correspond to the root r2 in (9), an almost equally strong peak at nearly

twice 410 Hz and also lesser peaks at 3 × 410 Hz etc. Evidently, the load factor Lf

was sufficiently large so as r3 ≈ 2 × r2 etc. The pressure exerted on the glass plate

by the finger exceeded by far the pressure exerted by the chalk on the ceramic plate.

When 4 cloth pieces were interposed between the same finger and the glass plate, the

strongest frequency peak was at 280 Hz and a lesser one at nearly 2× 280 Hz. When 8

cloth pieces were interposed the first peak occured at 170 Hz, but it was considerably

weaker than that at 2× 170 Hz. Thus, in this case, it was the third mode of vibration,

corresponding to the root r3, that anchored the stick-slip effect. When 12 pieces were

interposed, there was no appreciable change. The apparent reduction in the frequency

of vibration with increased thickness tends to confirm the assumption that the modes

of vibration are to be found in the soft tissue between the epidermis and the finger

bone. Thus, the water layer facilitates the stick-slip effect by allowing for an easy

slide and by providing for a friction coefficient that decreases with increasing relative

velocity between the surfaces.

The side peak at 770 Hz in Fig. 14 could be due to a minor shear band along the

contact area with slightly lower shear modulus and or slightly higher thickness. In

the case of the rubbing chalk or pencil, where the shear band is limited to a relatively

narrow contact area, there are no side peaks, Fig. 9 for example. However, in Fig. 5,

where the rock surface is relatively rough, there is a small side peak at 2100 Hz. In

Figs. 4 and 5 in [1], where the silica gel grains were impacted (sheared) lightly by a

brass pestle, there are several side peaks, more so in Fig. 5 where the impact was more

forceful. Pronounced side peaks have been observed more recently when the singing

sand from Lake Michigan, USA, was impacted by a 16 mm diameter wood rod. Fur-

thermore, the frequency spectra of the signals emitted, when the so-called frog sand
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was shaken back and forth, comprise very pronounced side peaks, as can be seen in

Figs. 8 and 9 in [8]. Such a sand consists of about 100 cm3 of quartz sand and water, in

equal parts, sealed inside a plastic cylindrical cell 6 cm in diameter by 12 cm in length,

and can be obtained from the Sand Museum in Nima, Japan. The role of the stick-slip

effect in the generation of acoustic and seismic emissions from sheared granular media

is the subject of a forthcoming paper.

6. Conclusions

The analysis of the oscillatory motion of a block on a moving platform shows that

the decrease of the friction coefficient, between the block and the platform, results in

a stick-slip resonance effect that drives the block oscillation. The period of the stick-

slip cycle depends principally on the elastic properties of the spring-block system and

somewhat on the rate of decrease of the friction coefficient with relative velocity. It

is fairly well established that the squeal sound, dominant frequency, fd ≈ 2000 Hz,

emitted when a chalk is rubbed on a ceramic plate, and occasionally when rubbed on

a blackboard, is due to vibrations in a thin shear band at the contact area. The band

thickness amounts to about 0.3 mm and the geometry of its surface area appears to

be irrelevant. The band thickness can differ from time to time resulting in appreciable

difference in the dominant frequencies fd. Regarding the nature of the vibrations, the

only viable option appears to be that of shear modes in the shear band characterized

by very low modulus of rigidity, resulting in shear phase velocity of about 1 m/s.

The more musical sound, fd ≈ 700 Hz, emitted when a wet finger is rubbed on

a smooth surface, is most likely due to a shear band comprising the tissue between

the epidermis and the finger bone, while the thin water layer facilitates the stick-slip

effect. The established convention that squeal emissions originate exclusively with

the excitation of modes of vibration in one or both bodies rubbing one on another

needs re-evaluation. Whereas, in many cases such modes are responsible for the squeal

emissions, their excitation could originate with the excitation of modes, with similar

frequencies, in a thin shear band at the rubbing interface. In the cases of the chalk

on a small ceramic plate and the wet finger on a small glass plate, the squeals are due
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solely to vibrations in the shear bands. Finally, it ought to be argued that seismic

tremors that occur when two plates slide over one another could also be due to shear

modes of vibration in a layer of rock powder interposed between the plates.

The first version of this manuscript was submitted to the Canadian Journal of

Physics on 9 March 2010.
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