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Abstract | Squeeze film effects naturally occur in dynamic MEMS structures because most of

these structures employ parallel plates or beams that trap a very thin film of air or some other

gas between the structure and the fixed substrate. An accurate estimate of the effect of

squeeze film is important for predicting the dynamic performance of such devices. In design,

availability of very good models for squeeze film effects is indispensable. In this paper, we

discuss the development of squeeze film flow modelling, tracking its routes to the air damped

vibrating system studies in the early twentieth century. We try to capture the early

developments in gas lubrication theory and then discuss the current developments motivated

by the complexities in squeeze film flow analysis brought out by the geometries and flow

conditions prevalent in dynamic MEMS devices.

1. Introduction
1.1. Dynamic MEMS devices

Ever since the realization of a silicon micro
resonator1, the number of dynamic MEMS
structures and their applications have been steadily
growing. The impetus for this growth is provided
by the technological advances in microfabrication
that enable us to make very fine suspended
mechanical structures with varied topologies
for realizing various kinds of in-plane, out-of-
plane, and torsional oscillations. Typically, such
structures have fairly high resonant frequencies,
ranging from a few kHz to tens of MHz. Such
high frequency devices, coupled with the ease of
low-voltage electrostatic actuation and capacitive
or piezoelectric sensing, find applications in
inertial sensing, acoustic transduction, optical
signal manipulation, and RF (radio frequency)
components. Some important milestones in
these application areas are the development
of the Analog Devices integrated polysilicon
ADXL accelerometers2, flexural polysilicon micro
gyroscopes3, the 300-kHz micromechanical filters4,
MEMS torsional mirrors5,6, Texas Instruments
Digital Light Processing Chip (DLP)7, AKU2000
MEMS microphone8, ultrasonic motors9, etc. All

these devices employ one or the other type of
vibrating micromechanical structures.

The most significant characteristic of a vibrating
system is perhaps its resonant frequency response. A
special measure that captures the most prominent
feature of this response is called the quality factor,
generally referred to as the Q factor of a device. The
Q factor measures the sharpness of the resonant
peak — a higher value indicating a sharper peak.
It turns out that the Q factor is directly related to
the overall damping present in the system. Thus,
manipulation of the Q factor essentially involves
manipulation of damping in the structure. There are
several applications, especially in RF MEMS, where a
very high Q factor is desired. MEMS technology has
made it possible to build mechanical resonators with
very high Q factors, so much so that they can replace
some electronic components in RF applications
on this singular merit. It has been shown that the
quality factor of a polysilicon resonator can be as
high as 106 if it is operated in vacuum10. However,
not all devices can be vacuum packed. For example,
acoustic transducers must work in a fluid medium.
For other devices also, if the vacuum can be avoided
without degrading the performance, it may be
more cost effective to have the device operate in air
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Figure 1: SEM pictures of various dynamic MEMS devices.

Capacitive ultrasonic transducer array, cMUT:

(X. Jin et al., JMEMS 7(3) 1998);

Tuning fork gyroscope:   (Draper lab.

www.draper.com/publications/draper25);

Micro resonator for detecting mass of biomolwcules:

(N. Elejalde et al., MME 1999); 

z axis MEMS accelerometer:

(MOTOROLA MMA 1220D);

Micromirror,:

(Bin Mi et al., JMEMS 14 (1) 2005);

MEMS Microphone:

(J. W. Weigold et al., Analog Devices Inc.2006);

or some inert gas filled packaging. However, the

surrounding air or gas has significant effect on the

dynamics of the device. What is special about this

fluid interaction in MEMS devices is that the fluid

is usually trapped under or around the vibrating

micromechanical structures in extremely narrow

gaps that necessitate the consideration of the fluid

as a thin film, that is dynamically ‘squeezed’ by the

vibrating structure. The complex interaction results

in both damping and stiffening of the structure

due to the fluid film. Modelling of this interaction

and computation of the squeeze film effects under

various conditions are the main topics of discussion

in this paper.

Figure 1 shows pictures of some dynamic MEMS

devices employing the principle of electrostatic

sensing/actuation using the out-of-plane motion

of a planar MEMS structure. Most of these devices

have a thin film of air or some inert gas between

the vibrating structure and the substrate. As the

structure vibrates, it pushes and pulls the fluid film

creating complex pressure patterns that depend

on the geometry of the structure, the boundary

conditions, perforations in the structure, frequency

of oscillations, and thickness of the fluid film. As

we show later, a reasonably accurate determination

of the fluid pressure is key to computing squeeze

film damping and stiffness. Although, there are
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Damping factor, ζ: is the ratio

of damping coefficient of a

system to its critical damping

coefficient.
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Figure 2: Schematic of a flexible structure under squeeze film damping.
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other damping mechanisms such as support loss,
thermoelastic damping, etc., the squeeze film
dominates when it is present, often by one or
two orders of magnitude over the other damping
mechanisms. Before we get into the modelling of
squeeze film damping, we briefly review the relevant
basic concepts of dynamic response and damping.

1.2. Dynamic characterization
As shown in Fig. 1, most dynamic MEMS devices
employ microfabricated beam and plate structures.
The squeeze film analysis in these structures is
generally performed using the 2D isothermal
compressible Reynolds equation coupled with
equations governing the plate deflection11,12. Let
us consider a microplate (Fig. 2) subjected to a
time varying pressure Pe(t) causing transverse
motion of the plate. A squeeze film pressure
Psq(x,y, t) develops underneath the plate due to its
transverse motion pushing and pulling on the fluid
film. Assuming small displacements and strains,
we obtain the following equation governing the
transverse motion of the plate

ρhp
∂2w

∂t2
+D▽4 w −T ▽2 w = Pe(t)+Psq (1)

Figure 3: Computation of Q-factor from the frequency response curve of

a resonator.
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where w(x,y, t) is the transverse deflection of a
point (x,y) on the plate at time t , ρ is the plate

material density, D = Eh3
p

12(1−ν2)
is the plate flexural

rigidity, hp is the plate thickness, E is the Young’s
modulus, ν is the Poisson’s ratio and T is the axial
force per unit length. The pressure distribution
Psq(x, y, t) in the squeeze film is governed by
the Reynolds equation. The pressure boundary
conditions for the air-gap in Fig. 2 are zero flux
at the clamped edges of the plate and ambient
pressure at the open edges. Thus, this analysis
involves a coupled solution of equation (1) and the
Reynolds equation (discussed later). Many MEMS
structures, however, are generally assumed to be
rigid, simplifying the coupled structural-fluid field
problem to a single degree of freedom spring-mass-
damper problem. This assumption also decouples
the Reynolds equation, which leads to analytical
solutions when linearized for small-amplitude
oscillations. To characterize the performance of
dynamic MEMS devices, an equivalent spring-
mass-damper system under harmonic excitation is
considered. The equation of motion is governed by

m
d2w

dt2
+ c

dw

dt
+ kw = F(t) (2)

where, k = ks + ka is the total stiffness—that of the
structure and the air spring—and c = cs + ca is the
damping due to intrinsic losses in the structure and
the viscous losses in the squeeze film. The structural
spring constant, ks, and damping constant, cs,
depend on the material and geometry and are,
therefore, constant for a given system. In contrast,
the air spring constant, ka, and the damping
constant, ca, due to the fluid flow depend on the
geometry, oscillation frequency and many factors
which we discuss later.

If m is the equivalent mass (for a single degree
of freedom model) of the oscillating structure and
ωn is its fundamental natural frequency, then the
damping factor ζ is given by

ζ = c

cc
= c

2mωn
(3)

Equivalently, the quality factor Q is 2π times the
ratio of the total energy supplied (Einput) divided by
the energy lost (1Elost) in a single cycle and is given
by13

Q = 2π
Einput

1Elost
= mωn

c
≃ 1

2ζ
. (4)

To calculate the quality factor directly from
experimental results, we apply the half-width
method (3 dB under the peak amplitude)14. The
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Figure 4: A schematic diagram of squeeze film flow (A) downward normal motion; (B) upward normal

motion.20

(A) (B)

expression for the experimentally measured quality
factor, Qexp, is given by

Qexp ≈ 1

2ξ
= fn

f2 − f1
(5)

where f1 and f2 are frequencies at which the
amplitude of the displacement is equal to 1/

√
2

times the maximum amplitude (equivalently, 3dB
down), and fn is the natural frequency in Hz. Figure
3 shows a typical frequency response curve of a
resonator and the computation of its Q-factor.

1.3. Dissipation mechanisms
Different damping mechanisms are present in
MEMS devices such as thermoelastic damping15,
support losses16, and losses due to air flow10,17.
The relative dominance of different damping
mechanisms depends on the operating conditions
and dimensions of the MEMS structures. To capture
the cumulative effect of all type of loss mechanisms,
the net quality factor Qnet is given by18

1

Qmax
≤ 1

Qnet
= 1

Qted

+ 1

Qsupport
+ 1

Qvisc
+ ... ≤ 1

Qmin
. (6)

For most dynamic MEMS structures operating at
ambient conditions, squeeze film damping is the
most dominant damping mechanism10,17–19. This
damping, however, can vary widely depending on
the fluid pressure in the gap or the cavity. At very low
pressures other damping mechanisms can become
more dominant. Based on such considerations,
Newell19 has divided the pressure range into three
main regions: the intrinsic, the molecular, and the
viscous region. In the intrinsic region the ambient
pressure is very low, so that the air damping is
neglected compared to the intrinsic damping. In this
region, damping is largely dependent on the surface
to volume ratio, the surface quality and the material.
In the molecular regime, damping is caused by

independent collisions of non-interacting molecules.

In this case, there is little interaction between the

molecules. In viscous region, the pressure is high

such that the air molecules also interact among

themselves causing viscous effect.

Since the performance of any dynamic device is

limited by the dominant damping mechanism in

the system, we now discuss the theory of squeeze

film damping, which is the dominant damping

mechanism in most dynamic MEMS devices not

operating in vacuum.

2. Squeeze film damping mechanism
When a planar structure oscillates normal to the

substrate, the air-film between the structure and the

substrate is squeezed causing a lateral fluid motion

in the gap. Therefore, there is a change in pressure

in the gap due to the viscous flow of air as shown in

Fig. 4. The forces due to the built-up pressure are

always against the movement of the structure. The

work done in the viscous flow of air is transformed

into heat. Thus, the air-film acts as a damper and

the phenomenon is called squeeze film damping21.

The squeeze film damping is basically prevalent

in systems in which the air-gap (cavity) thickness is

sufficiently small compared to the lateral dimensions

of the structure. For smaller air-gap thickness,

damping is higher while for larger gap it is negligible

(viscous drag due to air flow on the surface becomes

dominant for larger gaps). For a given value of

air gap thickness, there are various factors that

affect squeeze-damping, for example, the operating

frequency of oscillations, surrounding pressure,

boundary conditions, etc22,20.

2.1. Squeeze film damping in lubrication theory

A large part of squeeze film flow analysis comes from

the literature on lubrication theory. Researchers

in this field were interested in understanding the

mechanics of very thin fluid films between rotating

or squeezing shafts and journal as well as thrust

bearings. This problem was intensively investigated

in sixties. While load bearing capacity of these
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ratio of mean free path l of

gas molecules to the

characteristic flow length. It is

a measure of gas rarefaction.
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Figure 5: Frequency response curves obtained by analytical (—-) and FEM

simulations (marked) for a 2D squeeze film damper of 80×80 µm square
plate separated by a 5µm air-gap (ha); the response curves without inertial
effects are also shown (– · –) T. Veijola.50
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films under dynamic conditions was of central

interest in these studies, the analysis naturally led

to damping calculations and the effect on the

dynamic response of the systems under investigation.

Good mathematical models were developed for

determining the squeeze film damping by many

researchers23–27. The following two decades saw

very little work or interest in this problem. However,

the arrival of dynamic MEMS devices in the late

eighties rekindled the interest in this subject. MEMS

devices presented a new application with some new

twists and turns in the problem. Naturally, there has

been a lot of work in this area ever since. Although

the central interest in the new studies is on damping

characteristics of the squeeze film flow because of its

direct bearing on the Q factor of a MEMS device, the

dynamic spring characteristics of the film occupy

center stage when the frequency of oscillation

becomes considerably high. Several mathematical

models exist today for the computation of both

damping and spring effects of the film for various

geometric and flow conditions. The applicability

and validity of these different models are under

continuous investigation because of continuous

changes in device geometries and differences in

experimentally observed results and predictions

of theoretical models. The governing fluid flow

equation used in most of these studies are either

the linearized Reynolds equation in continuum

region26,27 or the modified Reynolds equation

considering slip flow using Burgdorfer model28.

One of the most significant effects present

in squeeze film flow in MEMS structures is that

of rarefaction. This effect arises because of the

extremely small gaps in which the air or gas is

forced to flow. Knudsen number, Kn, defined as the

ratio of the mean free path of the gas molecules to

the characteristic flow length, provides a very good

measure of rarefaction. A very small value of Kn

(≪ 1) usually results from large flow lengths and

hence a situation where no molecular attention is

required; continuum flow theory does very well. On

the other hand, a large value of Kn (> 1) necessitates

the consideration of molecular motion and attention

on molecular interactions. In such rarefied flows, the

classical assumption of zero relative velocity between

the fluid molecules and the structural walls breaks

down and consideration of slip flow at the wall

becomes necessary. Slip flow conditions, however,

are not unique to MEMS devices. These conditions

were also observed and analysed by the researchers

interested in gas lubrication theory.

Burgdorfer28, who first introduced the concept

of kinetic theory of gases to the field of gas-

film lubrication, proposed a slip flow boundary

condition at the walls by expanding the velocity

near the wall in Taylor series. He retained the zeroth

and first order terms to be used in the existing

Reynolds equation for very small values of Knudsen

number, Kn ≪ 1. Hisa and Domoto29 proposed a

higher order approximation for Knudsen numbers

larger than the range of Burgdorfer’s equation by

considering both the first and second order slip

velocities together. Mitsuya30 proposed a fractional

(one and a half) order slip flow model. These

models are based on the assumption of low Knudsen

number, i.e., Kn ≪ 1. Therefore, there was a need

for a more general model to cover a wide range of

Knudsen number that could account for ultra thin

gaps. Gans31, was the first to modify the existing

Reynolds equation by describing the flows (i.e.,

Poiseuille flow, Couette flow, etc.) in terms of

the linearized Boltzmann equation. To establish

the validity of Gans’s approximation for arbitrary

Knudsen number, Fukui and Kaneko32, analyzed

it numerically and examined the lubrication

characteristics. They found that Burgdorfer’s

modification overestimated the load carrying

capacity with the first order velocity slip boundary

condition in the Reynolds equation, and that

underestimated it with one-and-a-half and second-

order velocity slip boundary condition. After

validating the Gans’s approximation, Fukui and

Kaneko33 proposed the use of a Poiseuille flow rate

database that they created by numerical calculation

based on the linearized Boltzmann equation. They

used the database effectively to reduce enormous

calculations required to solve Boltzmann equation

with the same accuracy (±1%) for a very small

range of Knudsen number.

Another complication that arises because of the

ultra thin fluid films is the effect of surface roughness
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Figure 6: Variation of non-dimensional damping force (fd/ǫ) and spring

force (fs/ǫ) with squeeze number σ; the point of intersection of the two
curves (i.e., fd=fs) corresponds to the cut-off squeeze number (σc ).
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on the flow characteristics. To model this effect,

Patir and Cheng34, derived the average Reynolds

equation by averaging the flow. The average flow

rate is expressed as the rate of flow passing through

averaged spacing, multiplied by an appropriate

flow factor. The flow factor adjusts the Reynolds

equation to give the correct average pressure and

flow condition. These flow factors are obtained by

numerical calculations using a small control area

with a given surface roughness. The average flow

model can be easily applied to distributed roughness

problems. Elrod35 tried to generalize the flow factors

analytically. Tripp36 outlined the mathematical

method using perturbation approach with Greens

function technique. Tonder37 has shown analytically

that the flow factors found to express roughness

effects for incompressible lubrication are also valid

for compressible lubrication, at least approximately.

Mitsuya et al.38 have extended the average flow

concept to incorporate slip flow conditions.

Almost concurrently, Bhushan and Tonder39,40 have

considered the surface roughness and gas rarefaction

by using the flow factors derived for incompressible

lubrication34 and modified local flow rates derived

from the first order slip flow model28.

Since the effects of roughness and rarefaction

are coupled, some additional corrections are needed.

Li et al.41 derived the modified Reynolds equation

for arbitrary roughness orientation. Their model

includes the coupled effects of surface roughness and

gas rarefaction. For ultra thin layer, the modified

Reynolds equation was extended42 to include higher

order slip flow models43 and was simplified by

dropping the Couette flow term which considers the

effect of cross flow. Hwang et al.43 also proposed

the use of Modified Molecular Gas film Lubrication
(MMGL) equation along with the coupled effects
of surface roughness and gas rarefaction. The
inertial effects which become dominant at higher
frequencies are also discussed in the lubrication
problem44,45.

Blech27 and Griffin26 developed formulae for
calculating squeeze film force for rectangular and
circular plates. They linearized the governing
equation (the Reynolds equation) of the squeeze
film flow and then calculated the squeeze film force
formula. Their models are applicable to only small
amplitude oscillation devices. They also showed that
the viscous damping effect of the air film dominates
at low frequencies while spring effect dominates at
higher frequencies. Their models have been justified
experimentally by Turner et al.17. However, large
amplitude oscillations are also common in several
devices such as deformable mirror devices (DMD),
pull-in pressure sensors, etc. These devices require
a solution of nonlinear Reynolds equation for the
calculation of squeeze film force46. Some of the
issues of nonlinearity in the squeeze film dynamics
have been studied by Antunes and Piteau47, but
their work is limited to one-dimensional flows.

Veijola et al.48 have developed an expression
for Poiseuille flow rate based on the data made
available by Fukui and Kaneko33. Li49 linearized the
MMGL equation to find out squeeze film damping
in MEMS structures but under the same slip model
used by Wang and Cheng43.

It is clear from the developments discussed
above that the Reynolds equation forms the basis
of almost all models. Therefore, we begin our
discussion on mathematical modelling by discussing
different variants of Reynolds equation derived
from the Navier-Stokes equations under different
assumptions.

2.2. Different models derived from Navier-Stokes

equations
The fluid flow in continuum regime is governed
by the continuity equation and the Navier Stokes
momentum equations which are valid for unsteady,
compressible and viscous flow. The equations in
terms of 3-D spatial co-ordinates and 1-D temporal
co-ordinate are written in concise vector form as
continuity equation:

∂ρ

∂t
+∇ · (ρu) = 0; (7)

the Navier-Stokes equation:

ρ

{
∂u

∂t
+ (∇u)u

}

= F −∇p+ (µ∗ +µ)∇(∇ ·u)

+ µ∇ · (∇u); (8)
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where, F represents the body forces and u = iu+
jv + kw the velocity, ρ the density of fluid, µ∗

the coefficient of dilatational viscosity, and µ the
coefficient of shear viscosity or dynamic viscosity.

Let us consider a flow problem illustrated in
Fig. 4, where a rectangular plate oscillates normal to
the substrate. For small air-gap separating the two
plates the squeeze film flow is predominantly two
dimensional (i.e., in the x-y plane). Generally, we
can make the following assumptions:

• No external forces act on the film, thus F = 0

• The structure oscillates with a small
amplitude and the main flow is driven by
pressure gradients in the x and y directions.
So all the terms with w are small and therefore
neglected

• No slip flow occurs at the planar boundaries

• No variation of pressure across the fluid film

• The flow is laminar; no vortex flow and no
turbulence occur anywhere in the film

• Fully developed flow is considered within the
gap

• Flow is assumed to be isothermal, i.e., p ∝ ρ.

The Navier-Stokes equations (8) then reduce to:

ρ

(
∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y

)

= − ∂p

∂x
+ ∂

∂z

(

µ
∂u

∂z

)

and (9)

ρ

(
∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y

)

= − ∂p

∂y
+ ∂

∂z

(

µ
∂v

∂z

)

.

Furthermore, when the gap is much smaller than
the surface dimensions, and velocities u and v are
relatively small, the convective inertial terms u ∂v

∂x ,

v ∂v
∂y , u ∂u

∂x and v ∂u
∂y can be ignored50. Dropping these

terms, we rewrite eq. (8) as

ρ

(
∂u

∂t

)

= − ∂p

∂x
+ ∂

∂z

(

µ
∂u

∂z

)

and (10)

ρ

(
∂v

∂t

)

= − ∂p

∂y
+ ∂

∂z

(

µ
∂v

∂z

)

If we also neglect the unsteady inertial terms, eq. (10)
reduce to

∂p

∂x
= ∂

∂z

(

µ
∂u

∂z

)

and (11)

∂p

∂y
= ∂

∂z

(

µ
∂v

∂z

)

Using these equations, along with the continuity
equation, the generalized Reynolds equation is
derived as follows. Equations (10) are first solved
for u and v under no slip (i.e., u|±h/2 = 0 and
v|±h/2 = 0) boundary conditions.

u = 1

2µ

∂p

∂x

(

z2 − h2

4

)

and (12)

v = 1

2µ

∂p

∂y

(

z2 − h2

4

)

.

The average radial velocities ũ and ṽ are then
obtained by integrating equation (12) over the
air-gap height as

ũ = − h2

12µ

∂p

∂x
and ṽ = − h2

12µ

∂p

∂y
. (13)

We now integrate the continuity equation (7) across
the gap from −h/2 to +h/2 as

h
∂ρ

∂t
+ ∂

∂x

[

ρ

∫ h/2

−h/2

udz

]

+ ∂

∂y

[

ρ

∫ h/2

−h/2

vdz

]

+ρ
∂h

∂t
= 0. (14)

Note that we have made a substitution for the
velocity in z direction, w = ∂h

∂t . The integrals above
represent average velocities multiplied by h and
can be replaced with ũh and ṽh. Furthermore, we
assume the flow to be isothermal, i.e., p ∝ ρ and get
the nonlinear compressible Reynolds equation:

∂

∂x

(
ph3

µ

∂p

∂x

)

+ ∂

∂y

(
ph3

µ

∂p

∂y

)

= 12
∂(ph)

∂t
. (15)

In the next subsections, we discuss two important
modifications to this equation, viz., to account for
the rarefaction effects and the inertial effects.

2.2.1. Rarefaction considerations

For very small values of Knudsen number
Kn, the first order slip boundary conditions
u|±h/2 =∓l

∂u
∂z and v|±h/2 =∓l

∂v
∂z are applied and

the slip-corrected velocity distributions can be
obtained from equations (9) as

u = 1

2µ

∂p

∂x

(

z2 − h2

4
−Knh2

)

and (16)

v = 1

2µ

∂p

∂x

(

z2 − h2

4
−Knh2

)

.
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Figure 7: Perforation geometries: (A) Condenser microphone: close-up of a thin perforated back-plate, the

underlying membrane and the air-gap in between (A. Kovacs et al., JMM, 5, 1995) suitably modelled as a
2-D flow case, (B) Tuning fork gyroscope: close up of a high aspect ratio perforated proof mass, the
underlying substrate and the air-gap in between; (Kwok et al. JMEMS, 14(4) 2005) best modelled as a 3-D
flow case.
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Cross section  XX 
 Cross section  XX

We obtain the average radial velocity ũ and ṽ as

ũ = − h2(1+6Kn)

12µ

∂p

∂x

and (17)

ṽ = − h2(1+6Kn)

12µ

∂p

∂y
;

and substituting these in the continuity equation

we obtain the nonlinear compressible Reynolds

equation with slip correction:

∂

∂x

(
ph3(1+6Kn)

12µ

∂p

∂x

)

+ ∂

∂y

(
ph3(1+6Kn)

12µ

∂p

∂y

)

= ∂(ph)

∂t
. (18)

The factor (1 + 6Kn) in the above equation

is referred to as the relative flow rate coefficient

Qpr = (1+6Kn). The relative flow rate coefficient

is generally included in the fluid viscosity and the

combined term is called the effective viscosity, µeff =
µ

Qpr
. Veijola et al.51 present a simple approximation

for the effective viscosity by fitting the respective

flow rate coefficients to the experimental values

tabulated by Fukui and Kaneko32. This relationship

is given as µeff = µ

1+9.638Kn1.159 . There are also many

other analytical models to consider rarefaction

which are compared with the experimental results

later in subsection 4.2.1.

2.2.2. Inertial effects

A modified Reynolds equation50 is derived from

equations (9) which include the unsteady inertial

terms. Thus, including inertial effects and slip

correction, the velocity profiles for small amplitude

harmonic excitation (i.e., ĥ = δejωt ) are obtained as

u = 1

jωρ

(
cos(qz)

cos(qh/2)−lqsin(qh/2)
−1

)
∂p

∂x
,

v = 1

jωρ

(
cos(qz)

cos(qh/2)−lqsin(qh/2)
−1

)
∂p

∂y
,

(19)

where q =
√

jωρ/µ. Following the same procedure

as before, i.e., substituting the average velocities

in the continuity equation we get compressible

Reynolds equation with inertia and slip correction:

∂

∂x

(
ph3

µ
Qpr

∂p

∂x

)

+ ∂

∂y

(
ph3

µ
Qpr

∂p

∂y

)

= ∂(ph)

∂t
.

(20)
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Reynolds number, Re: is the

ratio of inertial force to the

viscous force.

Squeeze number, σ: is the

measure of compressibility of

gas. Low squeeze numbers

mean gas escapes readily;

high values indicate gas is

trapped between the

structures due to its viscosity.
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Here, the value of Qpr with the inertial
effects and the gas rarefaction effects, based
on the first order slip, turns out to be Qpr =

12
−jRe

[(2−ljRe)tan(
√

−jRe/2)−
√

−jRe]
[
√

−jRe(1−l

√
−jRetan(

√
−jRe/2))]

where Re =
ρωh2

a
µ

(= qh) is the Reynolds number. Figure 5

shows the frequency response of a square plate
obtained by Veijola50using eq. (19). It is seen
that besides viscous forces that dominate at small
frequencies, gas compressibility and inertial forces
determine the amount of net force at higher
frequencies.

3. Squeeze film damping in MEMS devices
For many MEMS structures having small amplitude
oscillations, the assumption of a rigid structure
simplifies the model to a one degree of freedom
spring-mass-damper. This assumption leads to
analytical solutions when the linearization is applied
to the Reynolds equation.

3.1. Small amplitude approximations

For small amplitude displacement of the plate,
the compressible Reynolds equation (15) can be
linearized using the perturbation parameters p̂

(in pressure) and ĥ (in gap), which were first
introduced by Griffin26. We substitute p = Pa + p̂

and h = (ha + ĥ) and neglect the higher order
terms to get the following linearized compressible

Reynolds equation:

[
∂2 p̂

∂x2
+ ∂2 p̂

∂y2

]

= 12µ

Pah3
a

[

ha
∂p̂

∂t
+Pa

∂ĥ

∂t

]

. (21)

For convenience, we will drop the hat in p̂ and ĥ

from here onwards with an implicit understanding
that we are working with perturbation variables
p and h about the reference pressure Pa and
equilibrium gap ha, respectively. Further, if air

is assumed to be incompressible (i.e.,
∂p
∂t = 0),

eq. (21) can be reduced to the form known as the
incompressible Reynolds equation:

∂2p

∂x2
+ ∂2p

∂y2
= 12µ

h3

∂h

∂t
. (22)

3.2. Analytical solution

Equation (21) can be non-dimensionalized using

new variables 8 = p̂
Pa

, ǫ = ĥ
ha

, τ = ωt , X = x/L ,
Y = y/L, where ω = the circular frequency and L =
the side of a square plate. In terms of these variables,
eq. (21) can be written as

[
∂28

∂X2
+ ∂28

∂Y 2

]

= σ

[
∂8

∂τ
+ ∂ǫ

∂τ

]

(23)

where σ = 12µL2ω

Pa h2
a

, is called the squeeze number

which measures the compressibility of the
fluid. Its significance is discussed in details in
subsection 4.2.2.

Analytical solutions for squeeze film damping
are reported for transverse and tilting motions
in case of simple geometries such as rectangular
plates, circular plates and annular plates, etc26. As
early as 1917, analytical expressions for estimating
the stiffness and the damping offered by the air
film between two circular plates for condenser
transmitters were given by Crandall52. For rigidly
oscillating rectangular plate, Blech27 solved the
linearized Reynolds equation with ambient pressure
at the boundaries and presented a closed form
solution for the damping and spring coefficients as:

ca = 64σPaχW 2

π6ωha

×
∑

m,n,odd

m2χ2 +n2

(mn)2{[m2χ2 +n2]2 +σ2/π4} (24)

ka = 64σ2PaχW 2

π8ha

×
∑

m,n,odd

1

(mn)2{[m2χ2 +n2]2 +σ2/π4} (25)

where χ = L/W is the length to width ratio of
the rectangular plate, Pa is the ambient pressure,
ha is the air gap height and ω is the frequency of
oscillations of the plate. The central parameter
in these expressions is the squeeze number σ,

given by σ = 12µL2ω

Pa h2
a

which is a measure of the

compressibility. The compressibility is proportional
to the square of the lateral dimension to air-gap
ratio ( L

ha
) and the frequency of oscillation (ω),

and inversely proportional to the ambient pressure
(Pa). The variation of damping and spring forces
with squeeze number, plotted as a function of
frequency of oscillation σ(ω), is shown in Fig. 6.
Initially, the damping force increases steadily with
frequency, reaches a maximum value and thereafter
decreases monotonically. At low frequencies the
air can escape easily however, with increase in
frequency of oscillation the fluid compression begins
to dominate over the fluid flow and the spring force
gradually increases and reaches a maximum value.
The point of intersection of the two curves is known
as the cut-off frequency. Similar analysis is reported
for circular and annular plates and for the torsional
motion of plates as well26. Torsional motions are
encountered in MEMS torsional mirrors.

These formulae are found to be useful for
estimating squeeze film effects in simple MEMS
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Figure 8: Pressure contours around the perforations (for air gap = 1µm, frequency f = 10kHz) : (A)

staggered hole configuration; (B) non-staggered (matrix) hole configuration54.

(A) (B)

structures. However, many MEMS structures have
very intricate etch hole topography as shown in
Fig. 7 and the complexity in analysis increases
many folds when one considers associated fluid
flow calculations for damping. Moreover, many
other effects such as rarefaction, compressibility
and even inertia may come into play under different
operating frequencies. Different approaches have
been reported over a decade. In the next section, we
briefly review various models that deal with these
issues.

4. Complexities
The problem of squeeze film damping in MEMS
transducers becomes more involved because
of the complexities arising from inclusion of
perforations, shrinking length scales and relatively
high frequencies of operation. On one hand,
scaling down the dimensions makes the validity of
continuum assumption questionable and requires
careful modelling, on the other hand, conflicting
demands on damping arise while designing
for desired dynamic characteristics such as the
natural frequency and Q-factor along with the
electromechanical sensitivities.

At this stage it will be important to understand
the complex relationship of device geometry with
the squeeze film damping phenomenon and critical
performance parameters of the device. Let us
consider a simple device with two parallel plates,
one free to vibrate transversely and the other fixed
(as a substrate). If we consider this device to be a
capacitive sensor or actuator, the most common
case in dynamical MEMS devices, a reasonable
design goal will be to maximize the compliance
(Cm ∝ A

t3 ) for higher mechanical sensitivity and

have a high base capacitance (Cb ∝ A
ha

) for better

electrical sensitivity. This clearly requires sufficiently
high surface area (A) and small thickness (t) of the
vibrating structure, and a very small air-gap (ha)

separating the two structures. However, the air in the
small gap between the transversely moving planar
structure and the fixed substrate imparts damping,
spring and inertial forces to the structures17,50.
These forces have a complex dependence on the
air-gap height and the operating frequency. This
affects the frequency response of the structure and
hence the sensitivity, resolution and the bandwidth
of the device. The damping due to the squeeze film
is considerably high for large surface to air-gap ratio
(∝ A

h3
a
). At low frequencies, damping dominates

whereas at high frequencies spring and inertial
effects dominate.

The damping can be minimized if it is possible
to operate the device under vacuum condition
which, in turn, requires an expensive packaging.
However, in most cases, the Q-factor of a vibrating
system is still mainly determined by the energy
losses to the surrounding air as the vacuum in the
encapsulated device can hardly be high enough53.
The amount of the squeeze film damping can be
controlled by providing perforations to one of the
planar structures, namely, the back plate or the
oscillating proof mass. These perforations also
facilitate the etch release of the sacrificial layer
in surface micromachining but reduce the device
capacitance which is undesirable. Adequate value
of the base capacitance can be obtained by having
smaller air-gap spacing. While reducing the air
gap, the perforations need to be designed such
that a constant damping is maintained without
sacrificing the capacitance. A feasible range of
perforation geometry depends on the chosen
micromachining process. To achieve the design
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Figure 9: Schematic showing: (A) staggered hole configuration: hexagonal pattern (A-B-C-D-E-F) and

circular pressure cells within it; (B) non-staggered (matrix) hole configuration: square pattern (L-M-N-O).

(A) Staggered hole configuration (B) Non-staggered hole configuration

goals of minimizing damping and maximizing the

capacitance a trade-off analysis has to be carried

out between the perforation geometry and the air-

gap. This necessitates creation of simple analytical

models and derivation of closed-form formulae for

the squeeze film analysis. These in turn should

be validated using FEM tools or experimental

measurements. The forces due to the squeeze film

extracted from these behavioural models are in

turn employed in a system-level model for the

performance optimization of a MEMS device.

Thus, the air-gap ha, is perhaps the single most

crucial parameter which affects the squeeze film

behaviour, base capacitance and hence the overall

device performance. Clearly, efficient models for

the squeeze film analysis of MEMS structures are

indispensable in the design of MEMS devices.

4.1. Modelling strategies for perforated structures

The squeeze film flow in dynamic MEMS structures

is modelled well by the 2D Reynolds equation

obtained from the Navier-Stokes equation by

neglecting inertia and assuming the lateral

dimension to be an order of magnitude larger

than the air-gap height. Figure 8 shows typical

pressure contours plotted over the fluid domain for

commonly encountered staggered and non staggered

configurations of perforations. It is observed

that in both configurations of the holes there is

order and symmetry in the pressure contours.

Various approaches based on analytical, numerical
and mixed techniques are found in literature
which model perforated structure. The analytical
approaches employ following two strategies:

1. Pressure cell concept: The inherent symmetry
in the distribution of holes leads to the
formation of repetitive pressure patterns
around each hole in the entire fluid domain.
This particular fact is exploited in this
approach by analysing the problem for a single
hole embedded in a single ‘cell’, and then
obtaining the result for the entire structure
by multiplying with the number of cells (see
Fig. 9).

2. Modified Reynolds equation: In this approach,
the Reynolds equation is modified to include
the flow leakage at the perforations.

For perforated MEMS structures, the effective
lateral dimension is the pitch of the holes (ξo).
Therefore, in the case of perforated structures the
assumption of large lateral dimension begins to
deviate. Moreover, the flow through the perforations
comes into play adding an extra dimension to the
model. The model dimensionality (2D, or 3D) is
governed by the relative size of the perforation
parameters. The significant perforation parameters
are the pitch (ξo), the diameter (d), and the length
of the holes (l, which is the same as the thickness
of the perforated plate). Various models have been
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Figure 10: An overview of the existing squeeze film models for perforated structures (ξo is the pitch of the holes, ha is the air-gap

height, l and d are length and diameter of the holes, respectively).
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Deep Reactive Ion Etching

(DRIE): is a highly anisotropic

etch process developed for

MEMS and used to create

high aspect ratio holes and

trenches in silicon.

Squeeze Film Effects in MEMS Devices REVIEW

Figure 11: Simulated dynamical response of the microaccelerometer with

and without air film damping effects (Yang et al. Proc. IEEE Solid State
Sensors and Actuators Workshop, SC, USA 1996).
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presented for the squeeze film analysis of perforated

MEMS structures in the literature spanning over a

decade. These models differ from each other in the

way they treat the flow (e.g., 2D, or 3D), and the

effects they include in the analysis (e.g., rarefaction,

compressibility and inertia etc.). Figure 10 gives

an overview of different squeeze film models at a

glance. We now discuss some analytical models used

for various perforation geometries.

When the size of the holes is much larger

compared to the air-gap height (d > 10ha) and

the perforations are short (l < d) as shown in

figure 10(a), the loss through the holes is not

significant. In this case, the problem is reduced

to solving the 2-D Reynolds equation under the

simplified boundary condition that the acoustic

pressure vanishes at the edge of a hole. Closed-

form solutions derived assuming incompressible

flow exist for such geometries55. This is based on

the concept of pressure cell mentioned above. The

damping coefficient Ra for a square plate of side

length L having perforation density n is given by

Ra = 12µL2

nh3
aπ

(
α

2
− α2

8
− ln(α)

4
− 3

8

)

, (26)

where α is the perforation fraction. Solutions

including rarefaction, compressibility and inertial

effects are also reported for such geometries54,56–58.

For inertial MEMS sensors (e.g., gyroscope,

accelerometer, etc.), high aspect ratio perforated

structures using deep reactive ion etching (DRIE)

process are used as shown in figure 10(b). In this

case, the loss through the holes can be significant

as the flow is a combination of the horizontal flow

between the planar surfaces and the vertical flow

through the holes. Bao et al.59,60 have modelled this

problem by modifying the Reynolds equation using

a pressure leakage term corresponding to the loss

through the holes (in the z direction). The modified

incompressible Reynolds equation based on this

model is given as

∂2p

∂x2
+ ∂2p

∂y2
− 3β2r2

o

2h3H

1

η(β)
p

︸ ︷︷ ︸

pressure leakage term

= 12µ

h3

∂h

∂t
. (27)

This model is suitable for the uniformly distributed

holes where the loss through the holes is

homogenized over the entire domain. For

arbitrary perforation having complex shapes,

and nonuniform distribution and size, Veijola

et al.61 have suggested another model. This

model utilizes a Perforation Profile Reynolds

solver (PPR: a multiphysics simulation software),

which includes additional terms in the modified

Reynolds equation that model the leakage flow

through the perforations, and variable viscosity

and compressibility profiles. The frequency domain

form of the equation is given as

∇ ·
(

Dhh3Qpr

12µ
∇p

)

−Ch
jωh

Pa
p−Yhp = w; (28)

where Dh(x, y), Ch(x, y) and Yh(x, y) are

extentions that are specific for perforated structures:

relative diffusivity, relative compressibility, and

perforation admittance profiles, respectively. Wider

perforation geometries can be treated with this

model, however, it requires special computational

tools and takes time to build the model.

Alternatively, the flow problem can be treated

in two distinct parts. The damping effect due to

the lateral flow is modelled by Reynolds equation

and the flow through the holes is modelled by

Poiseuille equation. However, in the region just

above the hole where the lateral squeeze flow joins

the poiseuille flow, there is a complex interaction

causing losses which are difficult to estimate.

Moreover, the trivial boundary condition that the

acoustic pressure vanishes at the edge of a hole does

not hold. Darling et al.62 used arbitrary pressure

boundary conditions based on complex acoustical

impedance of an aperture and treated the squeeze

film problem using Green’s function approach.

Kwok et al.63 used the boundary condition on

the hole evaluated for incompressible flow in the

numerical simulation performed using PDEase,

a custom made finite element solver. Under the

assumption of incompressible flow (i.e., low squeeze

number), the flow through a hole is obtained

merely by geometrical scaling between the cell

diameter to the hole diameter. In a recent study,
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Figure 12: The damping, spring and inertial nature exhibited by air at

different values of the squeeze number σ and the Reynolds number Re; (A)
squeeze film is predominantly viscous, (B) squeeze film is viscous and
compressible, (C) squeeze film besides being viscous and compressible,
exerts inertia

Veijola64 used existing analytic models in the

squeeze film and capillary regions, and using FEM

simulations derived approximate flow resistances at

the intermediate region and at the exit flow from

the hole. The model is valid over a wide range

of perforation fractions (1% to 90%). The study

also presents analysis of cut-off frequencies for

compressibility and inertia and specifies an upper

limit on the frequency up to which the model is

valid.

When the pitch of the holes, the air-gap and the

diameter of the holes are all of the same order as

shown in figure 10(c), the assumptions made in

deriving the Reynolds equation do not hold and the

computationally intensive 3D Navier-Stokes analysis

becomes indispensable. In a recent study, a surface

extension model is proposed65, where the gap size

is comparable to the lateral dimensions. In this

approach it is shown that after extending each open

border by (1.3/2)ha the 2D Reynolds equation can

give accurate results and 3D Navier-Stokes equation

can be dispensed with. This approach could be

applied to the perforated structures as well.

4.2. Criteria for considering Rarefaction,

Compressibility and Inertia

In this section, we discuss various phenomena

associated with the squeeze film analysis in terms

of some non-dimensional numbers characterizing

them and highlight how they are related to the

perforation geometry and the operating frequency

of a device.

4.2.1. Rarefaction

In the presence of perforations, we have to worry

about rarefaction effects in two places— the usual

horizontal expanse between the vibrating plate

and the fixed plate, and the airflow space in the

holes. Therefore, we use two Knudsen numbers

Kng and Knh, for the usual air-gap and the hole,

respectively. We define Kng = l/ha, where ha is the

air gap thickness and l is the mean free path of the

gas molecules. Similarly, Knudsen number for the

flow through a hole is defined as Knh = l/ri, where

ri is radius of the hole. The parameter l is related to

the packaging pressure Pa as l = Polo
Pa

. At ambient

conditions, the mean free path lo for air is 0.064µm.

For MEMS devices having very small air-gap and

low packaging pressure, the Knudsen number Kn

increases and the fluid flow transits from continuum

flow to rarified flow. Based on the values of Kn,

the flow regimes can be divided into four different

types as shown in Table 166. Thus, it is possible to

have different flow regimes in the air-gap and the

holes. As discussed in section 2.2.1, this effect can be

modelled by changing the effective viscosity through

the use of corresponding flow factor. Depending

on the value of Kn, the value of µeff and hence

the squeeze film damping can vary considerably.

For example, the value of damping drops by 30%

for 1µm air-gap at 1 atm pressure if slip flow is

considered. For the rarefied flow regime, analytical

model is derived using the slip-flow wall boundary

conditions at the planar surfaces in the air-gap and

on the cylindrical wall of the hole. Under normal

conditions, the continuum model is used to model

gas flow. But under the condition of extremely low

density (or extremely small flow length), discrete

particle effects become significant, and then we have

to adopt discrete model, i.e., the method of rarified

gas dynamics67.

4.2.2. Compressibility

The squeeze number σ, which is a measure

of the compressibility, is given by σ = 12µL2ω

Pa h2
0

(and for perforated structures σ = 12µωr2
o

Pa h2
a

where

ro is the radius of an equivalent circular pressure

cell which is approximately half the pitch of the

holes (ro ≈ ξo/2)). Thus, the compressibility is

proportional to the square of the lateral dimension

to air-gap ratio ( L
ha

) and the frequency of oscillation

(ω), and inversely proportional to the ambient

pressure (Pa). If σ ≪ 1 the compressibility can be

neglected and the flow is treated as incompressible.

For higher values of σ, the compressibility leads

to a significant air-spring effect which can be

undesirable as it can adversely affect the dynamic

behaviour of a device68. Contrary to this, the fact

that the perforations increase the cut-off frequency,

which is the frequency at which the damping and

the spring forces are equal, can be exploited by

varying the number and size of the perforations69.

Blech27 and Allen et al.70 too have reported the use

of squeeze film damping to tailor the frequency
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Table 1: Knudsen number Range and the corresponding Flow regimes

Knudsen number (Kn) Kn < 0.01 0.01 < Kn < 0.1 0.1< Kn <10 Kn > 10

Flow regime Continuum Flow Slip Flow Transitional Flow Molecular Flow

response of a seismic accelerometer and that of

micromachined sensors, respectively. Figure 6

illustrates the simulated small-amplitude dynamical

response of a micro-accelerometer fabricated at

MIT46. Curve 1 is a typical response without any air

damping. Curve 2, which rolls off very fast, is the

response with air damping indicating the severity

of damping at 1µm air-gap. In order to reduce

damping, a perforated proof mass was used and the

corresponding response is indicated by curve 3 in

figure 11. Thus, including the compressibility effects

in the analysis enables the designer to design the

perforation geometry such that the compressibility

effects are either totally ruled out or suitably tuned

as the case may be.

4.2.3. Inertia

The small dimensions of MEMS devices

constitute a very small volume which contains

a minuscule quantity of air. Hence, fluid inertia

may be neglected at low frequencies (Re ≪ 1).

However, for larger air-gap height, or at higher

frequencies of oscillations the inertial effects may

not be negligible. This is done by incorporating the

frequency dependent flow rate coefficient Qpr which

modifies the velocity profile with frequency50. For

the squeeze film flow in the air-gap, the modified

Reynolds number is defined as Reg = ρωh2
a

µ
and for

the flow through the hole it is defined as Reh = ρωr2
i

µ
.

The Reynolds number in the two cases increases

Figure 13: (A) 2D pressure cell in cylindrical coordinates, (B) 3D pressure cell including loss through the

hole, (C) Frequency response (amplitude) of the full 3D squeeze film model including inertia in comparison
with the results of 2D model with and without inertia, and numerically simulated model in ANSYS-CFX (×)
for ha = 4µm, hole size s = 8µm and l = 20µm.71
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Figure 14: The experimental and theoretical results for the quality factor

versus pressure for a torsion mirror given by Minikes et al.83
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with the square of the air-gap height and the radius

of the hole, respectively. Depending on the value of

Re, one can ignore or include the inertia of air in

the analysis and use appropriate form of equation

presented in section 2.2. Fig. 12 shows schematically

the incompressible, compressible, and compressible

plus inertial nature of squeeze film flow under

different values of σ and Re.

4.3. Numerical solutions and analytical solutions

Solution methods based on numerical, analytical

or mixed techniques are developed to suit different

perforation geometries. Numerical methods are best

suited for modelling nonlinear pressure response

due to high amplitude of oscillation, arbitrary

boundary conditions, complex geometries, and

nonuniform size and distribution of the holes68,72,73.

Computationally efficient FEM based simulation

schemes are reported in the recent past73,74. A

hybrid model combining the Navier-Stokes equation

and the Reynolds equation is proposed by Da

Silva74. A mixed level approach based on FEM

and finite network (FN) simulation is presented

by Schrag et al.75–77. A hierarchical two level

simulation strategy is employed and coupled,

reduced dimensional analysis is performed by

Raback et al.78. Another method for arbitrary

perforation problem utilizes a Perforation Profile

Reynolds (PPR) solver, a multiphysics simulation

software73.

The goal of modelling and analyzing squeeze

film behaviour in perforated structures is to

perform a reasonably accurate analysis with minimal

modelling and computational effort. In this respect,

analytical methods are desirable since they give

closed-form expressions which can be used directly

in system-level simulation for evaluating design
trade-offs. In these methods, the symmetry of
pressure distributions around each hole is exploited
and the entire perforated domain is discretized into
pressure cells under simplifying assumptions64,55,63.
However, to set clear limits to these models,
extensive and independent numerical simulations
are required. For such computations, one often
resorts to full 3-D Navier-Stokes solvers available in
commercial MEMS packages such as ANSYS-CFX.
One such comparative study is shown in figure 1371.
One can clearly see both quantitative and qualitative
changes in response when inertia is considered and
when inertia is ignored.

4.4. Comparison with experimental results
As mentioned earlier there are basically
four important effects—rarefaction effect,
compressibility effect, inertial effect, and perforation
effect that need to be studied through experiments.
The compressibility and inertial effects are dominant
only at higher operating frequencies. On the other
hand, rarefaction and perforation effects can be
seen even at low frequencies.

Rarefaction can be modelled using two
approaches. First approach uses the concept of
effective viscosity as presented by Veijola et al.51

and Li et al.49. In this case the effective viscosity
based on the Knudsen number Kn is used. Second
approach is based on the free molecular dynamic
models derived for a plate vibrating normal to a
fixed substrate. Free molecular models are presented
by Christian79, Zook et al.80, Kadar et al.81, Bao
et al.53 and Hutcherson and Ye82. Among the first
four free molecular models, Bao’s model is more
accurate and handy. Since Bao’s model is valid for
only free molecular regime, Hutchersons model
can be used for transition regime which is based on
molecular dynamic simulations. By comparing all
the important analytical models with experimental
measurements on a MEMS torsion mirror, Minikes
et al.83 have shown that the effective viscosity model
presented by Li et al.49 are most accurate over
different flow regimes as shown in Fig. 14.

Andrews et al.17 have performed experiments
on a silicon microstructure in which fluid damping
is due to squeeze film flow. In this study, the
experiments are performed for a wide range of
pressures ranging from vacuum to atmospheric and
over very low to as high as 50 kHz frequencies.
At frequencies less than 10 kHz, the formula
given by Blech27 gives good agreement while at
higher frequencies there is some discrepancies
due the inertia effect which is not included in the
Blech’s formula. Veijola50 has proposed an analytical
formula for inertial and rarefaction effect which has
to be validated with experimental results.

90 Journal of the Indian Institute of Science VOL 87:1 Jan–Mar 2007 journal.library.iisc.ernet.in



Squeeze Film Effects in MEMS Devices REVIEW

Figure 15: (A) Variation of non-dimensionalized damping and spring force with squeeze number for ǫ =

0.001, 0.05, and 0.1; (B) Percentage change in total non-dimensionalized back force with log(ǫ).
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At σ = 25

Kim et al.84 performed experimental studies
to estimate viscous damping offered by planar
structures having different size and number of
perforations. They found that in addition to squeeze
film damping, loss through holes and the loss
at the boundaries of the suspended structures
too are significant. Kowk et al.63 also performed
experiments on perforated MEMS gyroscope to
calculate net squeeze film damping and compared it
with the analytical results. The formulae given by
them is valid for large perforations only. There are
various other analytical formulae available as given
in Fig. 10 which model perforation and rarefaction
effects simultaneously. All of them need to be
compared with experimental results for different
perforation topologies.

5. Open issues and current thrust
5.1. Nonlinearities

The analytical models available in the literatures are

derived under the assumptions of small variation in

air-gap thickness and pressure. When the amplitude

of vibration increases, the non-linear terms in the

governing equations start dominating. To study the

effect of non-linear terms in the Reynolds equation,

the non-dimensional damping and spring forces

are numerically obtained by solving non-linear

Reynolds equation for different values of non-

dimensionalized amplitude ǫ (ratio of vibrational

amplitude to the air-gap thickness). The results are

obtained for different values of squeeze number

as shown in Fig. 1585. It is found that when the

Figure 16: (A) Effect of isotropic and anisotropic distribution of roughness patterns on squeeze film

damping and spring forces; (B) Effect of different roughness amplitudes on damping and spring forces.
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value of ǫ varies from 0 to 20% of the initial gap,

the absolute back force increases by more than two

orders of magnitude (Fig. 15(B)). Since, some of the

MEMS devices such as deformable mirror devices

and RF switches, etc., have large amplitude motion,

nonlinear effects of squeeze film damping need to

be investigated well.

5.2. Effect of surface roughness

For most MEMS devices, air-gap thickness is large

enough to neglect the effect of surface roughness

on squeeze film damping. However, when the size

of the device reduces to nano scale the relative

amplitude of surface roughness increases and

eventually affects the characteristics of squeeze film

damper86. Theoretical studies show that when the

roughness amplitude is about 10% of the air-gap

thickness, the surface roughness effect becomes

pronounced (Fig. 16(A)). Such condition can

be seen in devices with submicron scale air-gap

thickness. It is also found that the rarefaction effect

obtained by reducing pressure or reducing length

scale is also affected by surface roughness as shown

in Fig. 16(B). This is because, under rarified gas flow

the interaction of gas molecules and irregular surface

of the oscillating plate plays an important role in

deciding the nature of interaction, i.e., diffusive

interaction, specular interaction or a combination

of diffusive and specular interactions. Although

most of the studies done in the literature use surface

roughness of Gaussian distribution, more accurate

measurement of surface roughness profile in MEMS

structures are needed for reliable modelling. The

most challenging part is to measure the roughness

profile of two surfaces facing each other in the

air-gap thickness without breaking the structures.

6. Conclusions
Squeeze film damping affects the dynamic

performance of most MEMS devices that employ

vibrating structures with some gas or other fluid

trapped between the vibrating surface and a

narrowly separated fixed substrate. The effect of

the squeeze film on the dynamics of the structure

is found by solving fluid flow equations with

appropriate conditions to evaluate the back pressure

on the structure which in turn gives damping

and spring force components. Several analytical

solutions exist that provide very good estimates

of damping and spring forces due to the squeeze

film under various flow conditions (i.e., 1-D,

2-D and 3-D flow). These solutions are based

on the mathematical models (mostly variants of

Reynolds equation) that differ in their treatment

of rarefaction, compressibility, inertia and flow

through perforations. Most models compare well

with numerical simulations based on direct solution

of fluid flow equations. Some models have been

experimentally verified as well. However, more

careful and varied experiments are required for

verification of existing models as well as for better

understanding of squeeze film effects at extremely

small scales.
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