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Squeeze flow of highly concentrated suspensions of spheres
N. Delhaye, A. Poitou, M. Chaouche

Laboratoire de Mecanique et Technologie, Ecole Normale Superieure de Cachan,

ENS Cachan/CNRS/Université Paris 6, 61, Avenue du President Wilson, Cachan 94235, France

The squeeze flow behaviour of highly concentrated suspensions of spheres in a Newtonian fluid is studied 
experimentally. Analysing the evolution of the squeeze force as a function of time for different controlled velocities, 
the suspension is found to present two main flow regimes. The first regime is characterised by the situation in which 
the force decreases when the velocity decreases, which corresponds to a viscous flow of the suspension. In the 
second regime, the force increases when the velocity decreases, which is shown to correspond to a filtration of the 
solvent through the particle skeleton that behaves then as a deformable porous media. By varying the concentration, 
the sphere diameter and the solvent viscosity, it is found that the transition between the two regimes is a result of a 
competition between the viscous shear forces due the flow of the suspension and the damping force caused by the 
filtration of the fluid through the porous media made up by the particles.
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1. Introduction

Squeeze tests are often utilised in practice as a straightforward technique to determine the flow prop-
erties of highly viscous materials such as concrete, molten polymers, ceramic pastes etc. The material
is squeezed out between two parallel surfaces at either controlled normal force or squeezing speed, and
assuming a rheological model, the flow parameters of the material are inferred by fitting the model with
the experimental measurements. For small gaps and if the no-slip boundary condition is fulfilled, the
flow is dominated by shear and the lubrication-type approach can be used to determine the relationship
between the applied force (or velocity) and the rheological parameters of the material. In an early study,
Stefan and Sitzungber [1] solved the case of a Newtonian fluid and Scott [2] considered the case of power
law fluids. On the other hand, if the material slips along the solid surface, the kinematics is dominated by
the extensional component of the flow. This gives a particularly interesting set-up to study the bi-axial
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elongation properties of such materials. More recently, Laun et al. [3] considered the case of partial wall
slip. In particular, they reported a method, similar to that of Moony [4], for a capillary rheometer, to make
a separation between the bulk shear and the wall slip from a single squeeze test.

In all the above studies, the material is supposed to have a pre-defined rheological behaviour. In
particular, even complex materials are often assumed to remain homogeneous during the squeezing
process and behave as simple power law fluids. Many complex fluids become heterogeneous when
subjected to flow; this can induce a radical change in their rheology. For instance, this is the case for
polymer melts that partially crystallise in flow fields. To our knowledge, the problem of flow-induced
crystallisation in squeeze flows and its consequences on such a rheological technique is still open.

The flow-induced heterogeneities in multi-component systems have also been reported in the literature.
Racineux [5] considered the rheological behaviour of highly concentrated ceramic pastes in both capillary
and squeeze geometries. He showed that his experimental results could be correctly modelled only by
assuming a phase separation in which the particle concentration increases in the low shear regions.
However, the physical origins of this phase separation are not well understood.

In our study, squeeze flow experiments are conducted on a model, well-defined fluid–particulate system
(suspension). Our objective is to highlight the physical mechanisms responsible for this flow-induced
heterogeneity. Concentrated suspensions often become heterogeneous in complex flows. For example, it
is well known that non-uniform shear flows induce particle migrations in concentrated suspensions [6].
The origin of this phenomenon is well understood and attributed to irreversible interactions (collisions)
among the particles [7]. This process is diffusive [6,8] and is shown to be negligible in our experiments.

The experimental parameters and procedures are described in Section 2. In Section 3, we present the
results along with a qualitative interpretation demonstrating a transition between a viscous flow of a
suspension and a solvent filtration through a porous media made up by the particles.

2. Experiments

2.1. Squeezing set-up

The suspensions are squeezed out between two parallel discs mounted on a compression–traction
machine. The upper disc can be displaced at controlled velocities, while the lower one is maintained
stationary. The latter experiences a normal force that is recorded as a function of time for each fixed
velocity. In all experiments, the initial disc separation is taken to be 5 mm, which is much smaller than
the disc diameter (40 mm). In order to avoid a significant deformation of the particles, the squeezing
experiment is stopped when the normal force exceeds 800 N. Since the compression–traction machine
used here is designed for studying rather solid materials, the uncertainty in the force measurements is
quite high (±2 N). On the other hand, the disc separation (velocity) is measured with a much higher
accuracy, namely ±1 mm.

In the visualisation experiments, the lower disc is transparent (glass). Hence, owing to a CCD camera
associated with an image analyses software (optimas), the evolution of the microstructure due the squeeze
flow can be followed, at least qualitatively, since at high concentrations, the suspensions are opaque.

2.2. Suspensions

The suspensions consist of hard spherical particles dispersed in a Newtonian fluid. The particles are
polymethylmethacrylate (PMMA) (kindly supplied by the company ‘GAZECHIM matières plastiques’).
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Fig. 1. Visualisation of a sample of the particles using an optical microscope.

A photograph of a sample of the particles is represented in Fig. 1. The shape of the particles is fairly
spherical, but there is quite a strong polydispersity in their diameter distribution (Fig. 1). Four batches
of particles are used, A, B, B1 and B2, corresponding to different average diameters, respectively: 117,
79, 69, and 89 �m. Batches B1 and B2 are obtained by sieving batch B; they are then less polydisperse.
Samples of about 100 particles are analysed, and the particle size distribution functions are found to
present approximately a Gaussian shape. The breadth of this distribution is about 50% in the case of
batches A and B, and 20% in the case of the two other batches.

Three different suspending fluids are used: a 20%/80% water/glycerol solution, pure glycerol and
silicone oil. Their viscosities are measured using a Couette device (Stresstech from Rheologica). The
viscosity of the solution water/glycerol is 0.085 Pa s. At 25◦C, the glycerol and the silicone oil are found
to be Newtonian up to a shear rate of 102 s−1, with a viscosity of 0.86 and 12.5 Pa s, respectively. The den-
sity of the particles is sufficiently close to that of the solvents so that we can ignore sedimentation effects.
Indeed, in the worst case (highest sedimentation rate), the characteristic mean sedimentation time (the
time required for a particle to sediment over its diameter) can be estimated as [14] τs = (18μ/(�ρgd))

(1 −φ)−6.55 ≈ 2000 s. In this expression, μ is the viscosity of the solvent, �ρ the difference between the
density of the particle and that of the solvent, d the average diameter of the particles, and where φ is the
volume fraction. This sedimentation time is higher than the largest corresponding flow characteristic time
(the time required for the particle to move over its diameter due to the flow) involved in our experiments,
which can be estimated as τf = d/U ≈ 7 s. U is the squeezing velocity. Finally, the largest particle
Reynolds number in our experiments is Re = (ρUd/μ) ≈ 2.5 × 10−3 ≪ 1; inertia is then negligible.

3. Experimental results and discussion

3.1. Viscous flow behaviour

Fig. 2 represents the evolution of the squeezing force versus the gap distance h for different velocities
V. This corresponds to the case of a suspension in silicone oil with a volume concentration of 56.6%.
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Fig. 2. Temporal evolution of the normal force for different velocities in the case of a concentrated suspension (56.6%) for
a relatively high viscous fluid (silicone oil of 12.5 Pa s). The experimental results (dotted lines) are compared to a theoretical
calculation assuming that the suspension has a power law fluid behaviour.

The particles are taken here from Batch B1. The suspension behaves as a viscous fluid: the force is an
increasing function of the velocity for a given gap thickness and diverges when the gap approaches 0.
Nevertheless, the behaviour of the suspension is not Newtonian, contrary to that one would expect for
non-Brownian hard spheres in a Newtonian fluid undergoing only hydrodynamic interactions. Moreover,
the suspension can not be modelled as a simple power law with the same exponent for all the squeeze
speeds considered. Indeed, in Fig. 2, we also represent the predicted temporal evolution of the force for
the Oswald de Waele power law fluid. We used the Scott result for the normal force [2]:

F = 2π

(

2m + 1
m

)m
A

m + 3
V m

h2m+1 R(m+3).

The rheological parameters m and A involved in this expression are related to the constitutive equation
for a power law fluid which can be written in the case of a shear dominated flow as τ = Aγ̇ m, where τ is
the shear stress and γ̇ the shear rate. The best fit of Scott’s equation with the experimental results gives
A=594.6 Pa sm and m=0.5. For a Newtonian fluid, m=1 and A is its Newtonian viscosity; since m<1, the
suspension behaves as a shear thinning fluid. The shear thinning effect can not be attributed to the solvent
since the silicone oil is Newtonian in the shear rate interval involved in this experiment (γ̇ <5 s−1). This
can rather be attributed to non-hydrodynamic close contact interactions among the particles. As we can
see in Fig. 2, the experimental results for the other velocities can not be fitted using the same rheolog-
ical parameters. The suspension can not be then modelled as a simple power law fluid. Other squeeze
experiments have been conducted at smaller velocities for which similar behaviour has been obtained.
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Fig. 3. Temporal evolution of the normal force for different velocities, in the case of a concentrated suspension (56.6%) in a less
viscous fluid (glycerol) than in Fig. 2.

3.2. Filtration

In Fig. 3, the temporal evolution of the normal force is represented for different velocities, for the same
batch (B1) and concentration as that given above, but with a less viscous solvent (glycerol). The squeeze
behaviour of the suspension is radically different from that with silicone oil (see Fig. 2). Above a certain
velocity (Uc=0.5 mm s−1), the results are similar to those obtained with a suspension in silicone oil: for
a given gap thickness, the force increases with the velocity. Below Uc, the trend is reversed: the force
strongly increases when the velocity decreases. Note also the appearance of very large force fluctuations
at small velocities. This suggests that, in this very low velocity flow regime, the suspension deforms rather
like a dry granular material.

3.3. Interpretation

The most significant parameters that control the transition reported above can be inferred by assuming
a diphasic behaviour of the suspension. A model based on such an assumption has been successfully
applied to describe the rheological behaviour of ceramic pastes [9,10]. In this approach, the suspension is
assumed to deform with two flow fields vp and vf , associated, respectively, with the particles and the fluid.
This vision is different from what is generally assumed for flow of suspensions, in which the particles are
supposed to move affinely with the fluid. The diphasic approach is rather similar to the Brinkman model
[11], but with a deformable porous media.
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Since the particles and the fluid do not necessarily have the same velocity, the rate of the viscous energy
dissipation can be divided into two terms. The first term is related to the flow of the suspension as a whole
(the particles have the same velocity as the fluid), and the second term is related to the damping force
caused by the filtration of the fluid through the porous media made up by the particles. Hence, this rate
of energy dissipation can be written as

W =

∫

V

(

σ γ̇ +
η0

k
(vf − vs)

2
)

dV.

In the above expression, k is the permeability of the porous media formed by the particles and σ the shear
stress experienced by the suspension (which is a function of its effective viscosity ηs). The integration is
made over the volume of the sample.

The permeability scales with the particle size squared, and is a rather weak function of the concentration
(cf. the Kozeny–Carman relationship [12]). This is in contrast to the effective viscosity (shear stress),
which is a strong function of the concentration but independent of the particle size. As discussed above,
the suspension presents a shear thinning flow behaviour; thus, the shear stress can be written as σ =

Aγ̇ m ≈ A (U/h)m, where m is the shear thinning index, and A is the consistency index of the suspension.
The ‘critical’ velocity for which the filtration competes with the suspension flow can be estimated by

assuming that this occurs when the two terms of the viscous dissipation are equal:

Uc =

(

Ak

η0hm+1

)1/(1−m)

.

According to this expression, the non-Newtonian character of the suspension is required to obtain a
filtration/suspension flow transition.

The permeability of the porous media made up by the particles scales with the particle diameter squared;
we expect then that the appearance of the filtration would depend strongly on the particle size, in particular
for highly shear thinning suspensions. For example, we found experimentally that increasing slightly (from
0.069 to 0.089 mm) the mean particle diameter, and keeping the other suspension parameters unchanged,
the velocity for which the filtration starts up is multiplied by a factor of 2.

The influence of the particle volume fraction results in two opposing effects. The effective suspension
viscosity is an increasing function of the concentration (ηs = η0(1 − (φ/φmax))

−2 for a Newtonian hard
sphere suspension [13]). On the other hand, the permeability is a decreasing (although slightly) function
of the concentration (k ∝ ((1 − φ)3/φ2), according to the Kozeny–Carman model [12]). The resulting
effect of the concentration increase would be the increase in the squeeze velocity for which the filtration
(phase separation) appears. This is confirmed experimentally by conducting squeeze experiments for
different volume fractions. For instance, increasing the volume fraction from 53.6 to 56.6% results in an
increase in the transition velocity by a factor of 5 (0.1 to 0.5 mm s−1).

Due to the quite narrow interval of the suspension’s parameters accessible in our experiments, it is not
possible to go farther in the comparison between our qualitative model and the experiments. Moreover,
the main objective of this model is only to bring to the fore the main parameters controlling the appearance
of the phase separation. Numerical simulations similar to those of Racineux and Poitou [10] are needed
to make quantitative predictions.

It is to be noted that the origin of this flow-induced concentration heterogeneity can not be attributed
to the well-studied shear-induced particle migration in non-homogeneous shear flows [6,8]. Indeed, this
phenomenon is diffusive and occurs on time scales (hours) [6] much larger than those involved in our
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Fig. 4. Sketch of the set-up for the visualisation experiments.

experiments (seconds or few minutes). The length scale of the flow-induced heterogeneity observed in
our experiment is the disc radius R, and the diffusion coefficient for shear-induced particle migrations can
be estimated as a2γ̇ [8]. The characteristic time corresponding to this phenomenon can be written then
as R2/a2γ̇ . This diffusive time is much larger than the squeezing time (1/γ̇ ) which is actually required
to induce the observed heterogeneity.

3.4. Visualisation experiments

Visualisation experiments are carried out in order to examine, at least qualitatively, the temporal evo-
lution of the concentration during a squeeze experiment. The experimental set-up is depicted in Fig. 4.
In these experiments, a colouring is added to the suspending fluid in order to allow observations. In
Fig. 5a, we represent a sequence of two images corresponding to the beginning (h=5 mm) and the end

Fig. 5. (a) Visualisation of the initial and the final state of the suspension for a squeeze velocity (U=3 mm h−1) for which phase
separation is not expected according to the force behaviour. The concentration remains homogeneous during the experiment.
(b) A sequence of images showing the increase in the particle concentration in the central part of the discs. The dark regions
correspond to high particle concentration. In this experiment, the velocity is 0.02 mm s−1, and the phase separation is expected
to appear at U=0.5 mm s−1 according to the force measurements.
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(h=0.7 mm) of the experiment, at a velocity (U=3 mm s−1) for which phase separation is not expected.
Qualitatively, it can be seen that the concentration remains homogeneous on sufficiently large scales.

In Fig. 5b, we represent an image sequence corresponding to a velocity (U=0.02 mm s−1) for which
phase separation is expected according to the force behaviour. Clearly, it can be seen in Fig. 5b that
the concentration significantly increases in the central region of the discs, a result of a phase separation
between the particles and the fluid.

4. Conclusion

The squeeze test is often used in practice to determine the rheological properties of highly viscous
materials. Such a rheometer is quite simple in its design, but the interpretation of its measurements is
not straightforward since the materials it is used for are in general complex fluids. In this work, the flow
of concentrated model suspensions in a squeeze rheometer has been considered. Our purpose was to
help in understanding the results reported in the literature regarding the rheological behaviour of ceramic
industrial pastes [5]. Our squeeze force results were qualitatively similar to those obtained with industrial
pastes. At relatively high squeeze speeds, the suspension presented a usual, although non-Newtonian,
viscous flow behaviour. At low squeeze velocities, the suspension responded much like a sponge-form
media. This behaviour has been attributed to a phase separation between the fluid and the particles due to
the competition between the shear flow of the suspension as a whole and the solvent filtration through the
particles. This is confirmed by visualisation experiments, which clearly made evidence of a concentration
increase in the central part of the squeeze device at sufficiently low velocities. Our investigation was
rather qualitative, and more quantitative studies in order to test models based on the above assumptions
are clearly needed, including for instance the concentration measurements in refractive index-matched
suspensions.
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