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We report the confinement of an optomechanical micro-oscillator in a squeezed thermal state, obtained

by parametric modulation of the optical spring. We propose and implement an experimental scheme based

on parametric feedback control of the oscillator, which stabilizes the amplified quadrature while leaving the

orthogonal one unaffected. This technique allows us to surpass the −3 dB limit in the noise reduction,

associated with parametric resonance, with a best experimental result of −7.4 dB. While the present

experiment is in the classical regime, in a moderately cooled system our technique may allow squeezing of

a macroscopic mechanical oscillator below the zero-point motion.

DOI: 10.1103/PhysRevLett.112.023601 PACS numbers: 42.50.Wk, 05.40.-a, 07.10.Cm, 45.80.+r

A recent major breakthrough in experimental quantum

mechanics is the possibility of preparing macroscopic

systems close to their fundamental quantum state. In

particular, micro-and nanooscillators have been recently

cooled down to an occupation number close to unity or

even below it [1–5]. While remaining in a thermal state,

such systems display peculiar quantum properties such as

asymmetric modulation sidebands induced in a probe

field [6]. A further interesting development would be the

creation of a qualitatively different quantum state, for

instance, a mechanical squeezed state. To this purpose,

possible techniques are backaction evading measurements

[7–10] and degenerate [11,12] or nearly degenerate [13–15]

parametric modulation. Mechanical oscillators operate in

the degenerate parametric regime when their spring con-

stant is modulated at twice the oscillator resonance fre-

quency. In such a condition, the response of the oscillator to

an external excitation acting close to resonance is

enhanced, until the parametric modulation depth reaches

a threshold marking the birth of self-oscillations (para-

metric resonance) [16]. More precisely, the response is

amplified in the quadrature of the motion in phase with the

parametric modulation, and deamplified in the orthogonal

quadrature (π=2 quadrature). Therefore the distribution of

fluctuations in the phase plane caused by stochastic

excitation is squeezed and, in particular, its variance is

reduced below its free-running value in the π=2 quadrature.
As a consequence, the parametric effect can be used to

produce quadrature squeezed states of a macroscopic

oscillator, similarly to what is commonly obtained for

the electromagnetic field in optical parametric oscillators

[17,18]. This effect has already been demonstrated for

thermal oscillators [11,12,15], and is expected even for the

quantum noise [13,14]. However, since the amplified

quadrature evolves into self-oscillations for an excitation

strength approaching the threshold, the corresponding

noise reduction in the π=2 quadrature, monotonic with

the parametric excitation, is limited to −3 dB. This is a

general feature of parametric squeezing [17,18].

Recent proposals to surpass this limit are based on

continuous weak measurements and a detuned parametric

drive [13], or unbalanced sidebands modulation [19].

A recent experiment [15] shows, indeed, that the uncer-

tainty in the knowledge of the oscillator trajectory

in the phase space (localization) is squeezed with a

minimal variance reduced by −6.2 dB with respect to that

of a free thermal oscillator. The authors also suggest that,

using the information on the oscillator position in an

appropriate feedback loop, even the confinement of the

oscillator in a strongly (>3 dB) squeezed state could

be obtained, though such a result has not yet been

demonstrated [20].

In this work, we report on the observation of the

confinement of a micro-oscillator in a squeezed thermal

state, obtained by parametric modulation of the optical

spring constant [21–23]. We also propose and apply an

experimental scheme based on parametric feedback that,

stabilizing the amplified quadrature without influencing the
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orthogonal one, allows us to surpass the >3 dB barrier on

noise reduction, with a best experimental result of−7.4 dB.

Our optomechanical system is composed of a low-

deformationmicro-oscillator [24,25]with a high-reflectivity

coating, working as the end mirror in a high Finesse (half

linewidth κ=2π ¼ 2.3 MHz) Fabry-Perot cavity. The os-

cillator has resonance frequency ωm=2π ¼ 128 960 Hz,

mechanical quality factorQ ¼ ωm=γm ¼ 16 000, and effec-

tive mass m ¼ 1.35 × 10−7 kg. In the presence of an input

field, the intracavity power depends on the detuning Δ ¼
ωL − ωc between the laser and the cavity resonance, and

actually on the cavity length Lc. As a consequence, the

micro-oscillator feels a position-dependent radiation pres-

sure that can be described as the effect of an additional

optical spring [21]. The delay in the intracavity field

buildup gives an imaginary component in the spring

constant, which modifies the damping coefficient γeff of

the optomechanical system. The complex optical spring

constant is mjGj2ωmΔ=½ðκ þ iωÞ2 þ Δ
2�, where G is the

effective optomechanical coupling constant with jGj2

proportional to the intracavity power. For the case of our

interest (bad cavity limit κ ≫ ωm, small detuning Δ ≪ κ,

and ω ≈ ωm) the expression can be simplified introducing

the quantities Kopt ≈ ðmjGj2ωm=κ
2ÞΔ, γopt ≈ ð2Kopt=mκÞ,

and writing the effective susceptibility as χ−1eff ¼
mðω2

eff − ω2
− iωγeffÞ with γeff ¼ γm þ γopt and

ωeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
m − Kopt=m

q

≃ ωm −

jGj2

2κ2
Δ: (1)

To our purpose, it is useful to underline that (a) the frequency

shift is approximately proportional to the detuning and,

therefore, the optomechanical resonance can be tuned by

adjusting the frequency of the drive laser, (b) the damping as

well depends on the detuning; therefore, by varying the

working point we can chose the effective resonance width,

and (c) in the bad cavity limit, the shift in the resonance

frequency is larger than the variation in its width; thus, the

latter can be neglected when considering small variations of

Δ around the working point.

Our setup is sketched in Fig. 1 and more details are given

in the Supplemental Material [28]. Two laser beams derived

from the same Nd:YAG source are sent to the cavity. The

first one (probe beam) is used in a Pound-Drever-Hall

(PDH) scheme [26] to obtain a signal proportional to the

detuning. The PDH signal is used to lock the laser to the

cavity resonance and to measure the oscillator displacement

xðtÞ. For the measurement, the PDH signal is sent to a

double-phase digital lock-in amplifier whose outputs are

acquired for the reconstruction of the motion of the

oscillator. The second beam (control beam, with

jGj2 ≃ 6 × 1012 Hz) has a frequency shift with respect to

the probe, allowing a variable detuning. This second beam

is used to set and control the optical spring. An additional

electro-optic power modulator in its path allows us to

produce a sinusoidal modulation [amplitude modulation

(AM)] in the radiation pressure. In summary, AM drives the

oscillation; slow adjustments to the control beam frequency

tune the effective mechanical frequency, and phase lock the

mechanical oscillator with a definite phase; the frequency

modulation 2f produces the parametric forcing that

squeezes the oscillator fluctuations.

The motion of the oscillator can be decomposed into

two quadratures XðtÞ and YðtÞ in an arbitrary rotating

frame at frequency ω0, according to xðtÞ ¼ XðtÞ sinω0tþ
YðtÞ cosω0t. For the optomechanical oscillator at temper-

ature T, by choosing ω0 ¼ ωeff , XðtÞ and YðtÞ are

Gaussian, stochastic, independent variables (see the sketch

in Fig. 1(a) and the experimental measurements in the left

panel of Fig. 2) with null average, variance hX2i ¼ hY2i ¼
σ2
0
¼ kBTeff=mω2

eff where the effective temperature is

Teff ¼ Tγm=γeff , and Lorentzian spectral densities

SX ¼ SY ¼ σ2
0

γeff

ω2 þ γ2eff=4
: (2)

FIG. 1 (color online). Upper panel: scheme of the experimental

setup. Lower panel: sketch of the experimental techniques

applied to the oscillator to obtain the bright squeezed state (e)

from the thermal state (a).
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The addition of a coherent excitation of amplitude Fe at

frequency ωe (produced, in our case, by the AM oscillator)

shifts the distribution in the phase plane X − Y by a vector

rotating with angular frequency ωe − ω0, and, in particular,

if ωe ¼ ω0 by a constant vector with Cartesian components

X̄e ¼ Fe Reðχeffðω0Þe
iθeÞ and Ȳe ¼ Fe Imðχeffðω0Þe

iθeÞ,
where θe is the phase between the excitation (i.e., the

modulation in the intracavity power) and the detection

[Fig. 1(b)]. Once θe ¼ 0 (this is experimentally performed

by tuning the lock-in reference phase), X̄e vs (ω0 − ωeff)

has a dispersive shape that can be used as the error signal in

a parametric feedback loop. This loop acts on the detuning

of the control beam in order to correct ωeff and keep it fixed

at ω0. The distribution in the phase plane displays now a

nearly symmetric two-dimensional Gaussian shape cen-

tered at Ȳe on the y axis. Since the frequency ωeff is now

locked to ω0, it can be chosen at will and, as a consequence,

we can also choose the effective resonance width γeff .

Moreover, frequency instabilities (thermal drifts and slow

fluctuations due to the effect of intracavity radiation) are

corrected and, even more important, we have a precise

phase reference of the coherent component of the oscillator

motion.

Let us now analyze qualitatively the effect of the feed-

back on the two quadratures. If Ȳ2
e ≫ hðY − ȲeÞ

2 þ X2i,
we can define a time-dependent oscillator phase

ϕ¼ arctanX=Y≃X=Ȳe, with hϕi ¼ 0 and hϕ2i≪ 1, and

an instantaneous angular frequency ω0 þ ϕ
:

. The control

loop acts by correcting ϕ
:

: pictorially, it rotates the fluctu-

ating vector (X, Y) forcing it to point to the y direction

[Fig. 1(c)]. As long as ϕ ≪ 1, the feedback reaction just

influences the X quadrature, while Y remains free.

We now move to the most important part of this work,

the parametric squeezing. A modulation of the spring

strength is just obtained by modulating the detuning of

the control beam. The modulation signal is derived from a

copy of the reference oscillator at ω0, frequency doubled and

phase shifted by θ2f. For a free-running optomechanical

oscillator (i.e., switching off the coherent excitation and

frequency feedback), the expected variances in the two

quadratures X0 and Y 0, now referred to the phase of the

parametric modulation, are [12]

σ2
X0 ¼ hX02i ¼

σ2
0

1 − g
; (3)

σ2
Y 0 ¼ hY 02i ¼

σ2
0

1þ g
; (4)

where g is the parametric gain, proportional to the depth of

the parametric modulation, and we have identified Y 0 with

the previously mentioned π=2 quadrature. The spectral

densities maintain a Lorentzian shape, with width multi-

plied, respectively, by (1 − g) and (1þ g). In the X − Y
plane, we find an elliptical probability distribution rotated

by an angle [Fig. 1(d)] that can be set to zero by tuning θ2f,

thus setting X0
≡ X and Y 0

≡ Y (the experimental PDFs are

shown in the central panel of Fig. 2). The variance σ2
X0

clearly diverges for g → 1, giving the upper limit σ2
Y 0 <

0.5σ2
0
(the mentioned −3 dB limit reduction). Switching

on the coherent modulation just shifts the ellipse center to

ð0; Ȳe=ð1þ gÞÞ [Fig. 1(e)]. The configuration in the phase

plane is now equivalent to that of an optical field with

bright squeezing [27]. However, we remark that the

fluctuations along x still increase with g and the squeezing

remains limited to 3 dB. On the other hand, by activating

the parametric feedback we can depress the parametric

amplification and prevent the divergence of hX2i. As a

consequence, the parametric gain g can now be increased

above unity (see the right panel of Fig. 2). SX is deformed

and depends on the electronic servo loop, but the standard

deviation of X is maintained close to its thermal value. The

crucial issue is that the Y quadrature remains free. The

fluctuations on Y maintain, indeed, a Gaussian distribution

and SY keeps a Lorentzian shape, as shown in Fig. 3. The Y
variance σ2Y ¼ hðY − ȲeÞ

2i is further reduced below the

−3 dB barrier, continuing to follow Eq. (4).

FIG. 2 (color online). Phase space probability density functions (PDFs) for the three configurations named, respectively, (a),(d), and

(e) in the lower panel of Fig. 1: from left to right, thermal oscillator (a) at the effective temperature Teff ≃ 15 K (γeff=2π ¼ 110 Hz);

parametrically squeezed oscillator (d), with a parametric gain g ¼ 0.83; squeezed oscillator with coherent excitation and frequency

feedback (e), with a parametric gain g ¼ 5.4.
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This is shown quantitatively in Fig. 4, where we plot the

variances for the X and Y quadratures, normalized to their

free-running value in the absence of parametric modulation,

for two experimental configurations: the parametrically

squeezed oscillator, and the system with coherent excitation

and parametric feedback. In both cases, the amplitude of

the coherent excitation has been adapted during the

measurement in order to keep a constant value of the

coherent component in the oscillator motion, i.e., a constant

hYi≃ Ȳe, compensating the parametric deamplification.

This value is hYi≃ 300 fm, i.e., at least 6 times larger than

the standard deviation of the thermal distributions. This

ensures, together with the stabilization of the X quadrature,

that the condition ϕ ≪ 1 is satisfied. The solid lines in

Fig. 4 are given by the expressions 1=ð1 − gÞ and 1=ð1þ gÞ
[see Eqs. (3) and (4)] with g ¼ V2f=Vth, where V2f is the

amplitude of the modulation sent to the laser frequency

controller, and the threshold Vth is obtained by fitting

Eq. (4) to the variance of Y. The maximum noise reduction

is −7.4� 0.2 dB, limited by the appearance of instabilities

in the control loop (servo bumps). An optimization of the

control loop, not yet performed, would likely allow a wider

working range and stronger squeezing.

In summary, we have described three original exper-

imental results. The first one is the parametric excitation

and squeezing obtained by modulation of the optical spring

(similar recent proposals are described in Refs. [22,23]).

The second result is the frequency locking and phase

stabilization of the optomechanical oscillator using feed-

back on the optical spring constant (parametric feedback)

and, thus, on the effective mechanical oscillation frequency.

The addition of a known coherent component hYi to the

motion of the oscillator establishes a correspondence

between quadrature fluctuations (on X and Y) and, respec-
tively, phase and amplitude fluctuations. This allows us to

limit the effect of phase locking to just one quadrature, at

first order (quadratic fluctuations must, however, be

included in a complete quantum description). As the third

issue, we have demonstrated noise reduction and quad-

rature confinement below the −3 dB barrier. All these

results can be reproduced in a large variety of optome-

chanical devices, including systems with reduced effective

mass, which can be operated at a low occupation number

[1–5]. Parametric feedback is based on a low-fidelity

measurement whose backaction, influencing both quad-

ratures, sets a limit to the achievable noise reduction.

However, a weak measurement (with sensitivity well below

the standard quantum limit) is sufficient to confine the

(classical) motion of the Y quadrature, giving a limited

detrimental effect. The ultimate achievable squeezing is just

FIG. 3 (color online). Upper panel: experimental PDFs of the Y
quadrature. Violet (dark gray) histogram: thermal oscillator at

Teff ≃ 15 K. Orange (light gray) histogram: squeezed oscillator

(with coherent excitation and parametric feedback) with g ¼ 5.9.

Solid lines show the Gaussian fitting functions. In the inset the

same histograms are shown in logarithmic scale, with statistical

error bars (see the Supplemental Material [28]). Lower panel:

corresponding power spectral densities (PSD) of the Y quad-

rature, with Lorentzian fitting functions.

FIG. 4 (color online). Normalized measured variances of

the X and Y quadratures (see text), as a function of the parametric

gain g. Squares: parametric modulation without coherent

excitation and parametric feedback: ωeff=2π ≡ ω0=2π ¼
127 400 Hz (γeff=2π ¼ 160 Hz, Teff ≃ 10 K at g ¼ 0). Circles:

parametric modulation in the presence of coherent excitation

and parametric feedback for ωeff=2π ≡ ω0=2π ¼ 127 400 Hz

(γeff=2π ¼ 160 Hz); triangles: ωeff=2π ≡ ω0=2π ¼ 128 000 Hz

(γeff=2π ¼ 110 Hz, Teff ≃ 15 K at g ¼ 0). Solid lines represent

the theoretical curves 1=ð1 − gÞ and 1=ð1þ gÞ.
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limited by technical effects (e.g., detector noise, dynamic

range of the measurement, and nonlinearity of the opto-

mechanical oscillator). In the scheme implemented in the

work of Ref. [15] the low-fidelity estimate must trace back

the evolution of the classical oscillator trajectory, in order to

extract information on the oscillator position surpassing its

standard limit. In our case, the combination of coherent

excitation and parametric feedback loop sets a priori the

reference frame and confines the oscillator in a squeezed

state. Remarkably, the low-fidelity measurement is just

necessary on the (not-squeezed) X quadrature. Therefore

such a measurement is not critical, thus avoiding the

problem of optimal filtering [14,15]. Finally, we remark

that, due to the strong obtainable squeezing, the starting

system can be a moderately cooled oscillator (with an

occupation number significantly above unity) that can even

be reached in the bad cavity configuration exploited in this

work. As a consequence, our scheme can be efficiently

exploited to produce a macroscopic mechanical oscillator

in a bright squeezed state, opening the way to further

studies of quantum phenomena in macroscopic systems.
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