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Squeezing Components in Linear Quantum Feedback Networks

J. E. Gough∗
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The aim of this paper is to extend linear quantum dynamical network theory to include static
Bogoliubov components (such as squeezers). Within this integrated quantum network theory we
provide general methods for cascade or series connections, as well as feedback interconnections using
linear fractional transformations. In addition, we define input-output maps and transfer functions
for representing components and describing convergence. We also discuss the underlying group
structure in this theory arising from series interconnection. Several examples illustrate the theory.

PACS numbers: 03.65.-w, 02.30.Yy, 42.50.-p, 07.07.Tw

I. INTRODUCTION

The aim of this paper is to develop systematic meth-
ods for describing and manipulating a class of quantum
feedback networks. Quantum networks are important
because of the fundamental role they play in quantum
technology, and quantum information, computing, and
control in particular. Knowledge of how to interconnect
quantum (and classical) components in a network is a
pre-requisite for feedback control.

A quantum feedback network (QFN) [8], [9] is a phys-
ical network whose nodes (components) are open quan-
tum systems and whose branches (wires) are quantum
fields. Quantum dynamical components have linear rela-
tions between their input and output fields, but in general
their internal physical variables may evolve nonlinearly.
Furthermore, delays may be present due to the non-zero
physical length of the branches and the finite speed of
light. The network theory developed in [8], [9] is based
on quantum stochastic models of open quantum systems
(Hudson-Parthasarathy [10], Gardiner-Collett [3]), and
provides methods and tools for QFN modeling including
series (or cascade) connections, and feedback loops. The
series connection defines a group operation in the class of
open quantum dynamical systems. In this paper we will
consider the subclass of networks consisting of dynamical
components whose internal variables evolve linearly. In
[15] the theory was presented for components based on
unitary transformations such as beamsplitters and phase
shift modulators, but does not include static components
that require an external source of quanta for their oper-
ation as such amplifiers and squeezers.

In quantum optics one encounters the class of quantum
linear networks with components implementing static lin-
ear transformations, called Bogoliubov transformations,

∗Electronic address: jug@aber.ac.uk
†Electronic address: Matthew.James@anu.edu.au
‡Electronic address: Hendra.Nurdin@anu.edu.au

see [14]. Examples of Bogoliubov components include de-
vices capable of creating squeezed states of field (“squeez-
ers”) out of a vacuum, a non-unitary process. Series
connection of static Bogoluibov components is given by
matrix multiplication of representations of the Bogoli-
ubov transformations, and defines a group product for
this class of systems.

These two classes of quantum networks, which are
characterized by the nature of their components, are dis-
tinct, but have elements in common. The beamsplitter
and phase shift are components in both classes. However,
the squeezer does not belong to the class of open dy-
namical quantum systems (in the framework of Hudson-
Parthasarathy [10] and Gardiner-Collett [3]), though it
may be approximated by systems that are in this class.

The purpose of this paper is merge together these two
classes of linear networks in a unified, multivariable al-
gebraic framework. By ‘multivariable’ we mean that the
framework allows for systems comprised of multiple os-
cillator modes and multiple field channels; accordingly, a
vector-matrix notation is used. The new class of linear
QFNs (LQFNs) we consider in this paper are therefore
assembled from components of the following two types:
(i) dynamical components, with linear evolution of phys-
ical variables, and (ii) static components characterized
by Bogoliubov transformations. An example of such a
network is shown in Figure 1, [19], [8].

To this end, we consider linear open quantum compo-
nents that are in general a series connection of a linear
dynamical part, and a static Bogoliubov part. We de-
fine series connections of these components, and extend
linear fractional transformation (LFT) methods for de-
scribing feedback loops. The series connection defines a
group structure for this new class of systems, which in-
cludes the linear dynamic and static Bogoliubov classes
as subgroups. This group structure is interesting from a
physical as well as a systems and control theoretic point
of view.

Open quantum systems have a natural input-output
structure. We define and make use of input-output maps
for our class of linear open quantum systems, and discuss
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FIG. 1: Linear quantum feedback network (LQFN) consist-
ing of a beamsplitter, squeezer, and cavity. The time delay
around the optical loop is τ .

convergence of systems in these terms. This input-output
notion of convergence is important for applications, and
is weaker than stronger notions of convergence involving
all system variables.

We begin in section II by describing Bogoliubov trans-
formations, which is followed in section III by a dis-
cussion of open linear dynamical models of Hudson-
Parthasarathy type. In section V we discuss quantum
components involving Bogoliubov transformations, both
static and dynamic. Linear quantum feedback networks
are described in section VI. Several examples are dis-
cussed in sections IV and VII.

II. BOGOLIUBOV TRANSFORMATIONS

In this section we present models for the quantum com-
ponents considered in this paper. Before this can be
done, some notation is needed.

A. Notation

Let X = (Xjk), j, k = 1, . . . , n, denote a matrix whose
entries Xjk are operators on a Hilbert space H, or are
complex numbers. We define the matrices

X# = (X∗
jk), X> = (Xkj), X† = (X∗

kj).

Here, the asterisk ∗ indicates Hilbert space adjoint or
complex conjugation.

For a column vector x of operators of length k, we shall
introduced the doubled-up column vector

x̆ ,

[

x
x#

]

(1)

of length 2k, so that x̆† = (x†, x>).
Given a linear transformation of the form

y = E−x + E+x#

where x and y are vectors of operators of lengths k and r
respectively, and E± ∈ Cr×k, we define the transforma-

tion y# = E#
−x# + E#

+ x, and in doubled-up notation we

have

y̆ = ∆(E−, E+) x̆,

where we introduce the 2r × 2k doubled-up matrix

∆(E−, E+) ,

[

E− E+

E#
+ E#

−

]

. (2)

We note that ∆(E−, E+)† = ∆(E†−, E>+ ), and when
the dimensions are compatible, ∆(E−, E+)∆(F−, F+) =

∆(E−F−+ E+F#
+ , E−F+ + E+F#

− ). In the examples we
consider, the linear transformations will be between vec-
tors of equal dimensions and so the matrices E±, etc.,
will be square.

For a 2n× 2m matrix X , we define an involution [ by

X[ , JmX†Jn, (3)

where

Jn ,

[

In 0
0 −In

]

, (4)

with In the n×n identity matrix. When understood, we
shall often drop the dimension index and just write I and
J . For doubled-up matrices, we then have

∆(E−, E+)[ = ∆(E†−,−E>+ ). (5)

B. Canonical Commutation Relations

We consider a collection of m harmonic oscillators,
whose behavior is characterized by independent annihi-
lation aj and creation a∗j operators (j = 1, · · · , m) satis-
fying the canonical commutation relations [aj , a

∗
k] = δjk,

with [aj , ak] = 0 = [a∗j , a
∗
k]. The commutation relations

may be written compactly as

[ăj , ă
#
k ] = Jjk,

where (Jjk) = Jm is the matrix defined in (4).
Systems consisting of m oscillator modes are equiva-

lent, for fixed m, and it is convenient to consider just
the category S(m) of such systems with representative
described by column vector a = (a1, . . . , am)>.

C. The Bogoliubov Matrix Lie Group, Sp(Cm)

Definition A 2m× 2m complex matrix S̃ is said to be
[-unitary if it is invertible and

S̃[S̃ = S̃S̃[ = I2m.

The group of Bogoliubov matrices Sp(Cm) is the sub-
group of [-unitary matrices that are of doubled-up form,
that is S̃ = ∆(S−, S+) for suitable S−, S+ ∈ C

m×m. This
is also known as the symplectic group [12].
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The transformation a′ = S−a + S+a# is called a Bo-
goliubov transformation for a ∈ S(m). In doubled-up
notation this takes the simpler form

ă′ = S̃ă. (6)

Note that a′ ∈ S(m) and in particular, the transforma-
tion preserves the canonical commutation relations.

A Bogoliubov matrix S̃ ∈ Sp(Cm) admits a Shale de-
composition [14]

S̃ = ∆(S†out, 0)∆(coshR, sinhR)∆(Sin, 0), (7)

where Sin, Sout are m×m unitary matrices, and R a real
diagonal m ×m matrix. Note that ∆(cosh R, sinhR) =
exp ∆(0, R). The middle term in (7) corresponds to
squeezing, an important characteristic widely exploited in
applications of quantum optics. To see what this means,
suppose S̃ = ∆(cosh R, sinhR). Define the quadratures
ax = 1

2 (a + a#) and ay = 1
2i (a − a#), and similarly for

a′. Then

(a′)x = eRax, (a′)y = e−Ray, (8)

which shows that if the y quadrature is scaled by less
than unity, the x quadrature must correspondingly be
expanded by an amount greater than unity. Also, note
that the unitary group U(m) of unitary m×m matrices
can be viewed as a subgroup of Sp(Cm) via the corre-
spondence ∆(S, 0) ∈ Sp(Cm) whenever S ∈ U(m).

The Bogoliubov transformation (6) defined by a fixed

S̃ ∈ Sp(Cm) corresponds to the action of a physical de-
vice acting on a vector a ∈ S(m). By Shale’s theorem
[14] the Bogoliubov transformation may be unitarily im-
plemented, that is, there exists a unitary operator U such
that

S̃ă = U∗ăU. (9)

D. The Bogoliubov Lie Algebra, sp(Cm)

We remark that the Lie algebra sp(Cm) consists of ma-

trices −iΩ̃ ∈ C2m×2m that are of doubled-up form (in

order to generate doubled-up matrices S̃ = e−iΩ̃) and

satisfy Ω̃[ = Ω̃. The second condition can be written as
JΩ̃−Ω̃†J = 0. We therefore deduce that the infinitesimal
generators take the form

− iΩ̃ = −∆(iΩ−, iΩ+), (10)

with complex matrices Ω− and Ω+ having the symmetries

Ω†− = Ω− and Ω>+ = Ω+. We remark that we may con-
struct a hermitean operator H on the oscillator Hilbert
space as

H =

m
∑

α,β=1

(a∗αω−αβaβ +
1

2
a∗αa∗βω+

αβ +
1

2
aαaβω+∗

αβ ), (11)

where the coefficients are the entries of the matrices
Ω± = (ω±αβ) ∈ Cm×m. From the familiar quantum me-
chanical point of view, H is the Hamiltonian generating
the canonical transformation (6), that is, in (9) we have
U = e−iH .

It is instructive to look at the m = 1 case. Here the
Hamiltonian is H = ω−a∗a + 1

2ω+a∗2 + 1
2ω∗+a2 with ω−

real and ω+ = |ω+|eiθ complex. The corresponding el-

ement −iΩ̃ ∈ sp(C) can be written in terms of Pauli
matrices as as

−iΩ̃ = −∆(iω−, iω+)

= ω+yσx + ω+xσy − iω−σz,

where ω+ = ω+x + iω+y, or

Ω̃ =

[

ω− ω+x + iω+y

ω+x − iω+y −ω−

]

.

The eigenvalues of −iΩ̃ are ±
√

ζ where

ζ = |ω+|2 − ω2
−. (12)

We note that Heisenberg dynamical equations will be
trigonometric type for ζ < 0, and hyperbolic type for
ζ > 0. Let us try and diagonalize the Hamiltonian
by introducing the Bogoliubov transformation eiθa =
cosh r a′ − sinh r a′∗, (this is the original purpose of Bo-
goliubov transformations!). For ζ < 0 we may choose

tanh 2r = |ω+|/ω− to get H ≡ ω−
√

1− |ω+

ω
−

|2a′∗a′.
While for ζ < 0 we may choose tanh 2r = ω−/|ω+| to

get H ≡ 1
2 |ω+|

√

1− |ω−ω+
|2(a′∗2 + a′2). That is, for ζ < 0

we may diagnolize Ω as S̃[ΩS̃ = ∆(ω′−, 0) using a Bo-

goliubov matrix S̃, but for ζ > 0 the best we can do is
to put into the form ∆(0, ω′+).

We say that H is passive if Ω̃ has only real eigenvalues.
In this case we may find an S̃ in Sp(C) such that S̃[Ω̃S̃ =
∆(Ω′−, 0) for some Ω′−. The term “passive” means that
such Hamiltonians do not describe energy flow into the
system from an external pumping source, and that the
dynamical equations are always trigonometric type.

(For m = 1, H is passive if and only if the parameter
ζ ≤ 0 in (12) as the eigenvalues are ±

√
−ζ. )

The group Sp(Cm) is a non-compact group and, in
fact, is not covered by the exponential mapping on its
Lie algebra sp(Cm). We see this in the case m = 1,

where the form of e−iΩ̃ depends on the sign of ζ. We

have e−iΩ̃ given respectively by (ζ > 0)

"

cosh
√

ζ − iω−
sinh

√
ζ√

ζ
ω+

sinh
√

ζ√
ζ

ω∗+
sinh

√
ζ√

ζ
cosh

√
ζ + iω−

sinh
√

ζ√
ζ

#

,

and (ζ < 0)

"

cos
√
−ζ − iω−

sin
√
−ζ√
−ζ

ω+
sin
√
−ζ√
−ζ

ω∗+
sin
√
−ζ√
−ζ

cos
√
−ζ + iω−

sin
√
−ζ√
−ζ

#

.
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Also e−iΩ̃ = 1 − iΩ̃ if ζ = 0 (note that Ω̃2 = 0 in this

case). As observed in [16], we must have tr e−iΩ̃ ≥ −2

so that there exist matrices in S̃ ∈ Sp(C) which do

not possess a logarithm in sp(C), for example, S̃ =
−∆(coshu, sinhu) ≡ exp(−∆(iπ, 0)) exp(−∆(0,−u)).
In particular, such Bogoliubov transformations are not
generated by a single Hamiltonian H . The best that can
be done is to write the unitary U in (9) as U = U1 · · ·Uk

where each Ui has a logarithm in sp(Cm), see [16] for
higher-order cases.

E. Gaussian States

A state on S (m) is said to be Gaussian if we have

〈

exp i
{

ŭ†ă
}〉

= exp

{

−1

2
ŭ†F ŭ + iŭ†ᾰ

}

,

where F ≥ 0. For simplicity we consider mean zero states
(α = 0). In particular, we have that F =

〈

ăă†
〉

takes the
specific form

F =

[ 〈

aa†
〉 〈

aa>
〉

〈

a#a†
〉 〈

a#a>
〉

]

=

[

I + N> M
M † N

]

(13)

with

Njk = 〈a∗jak〉, Mjk = 〈ajak〉 (14)

and we note that N = N † and M = M>. In particular,
positivity of F implies that N ≥ 0. The vacuum state is
the special state determined by the choice N = 0, M = 0,
for

Fvac =

[

I 0
0 0

]

. (15)

For fixed N ≥ 0 the choice of M is constrained by the
requirement that F be positive. For the n = 1 case, N
and M are scalars and the positivity condition is eas-
ily seen to be N ≥ 0 with |M |2 ≤ N (N + 1). More
generally we should have a diagonalization V †NV =
diag (N1, · · · , Nn) for unitary V in which case we could
consider new fields a′ = V a. Here Nj can be interpreted
as the average number of quanta in the mode a′j . In gen-
eral we cannot expect to simultaneously diagonalize N
and M .

1. Generalized Araki-Woods Representation

Given a Gaussian state determined by F in equation
(13), we now show that we can construct modes having
that state through canonical transformations of vacuum
modes. That is, given a state for which a ∈ S(m) has
covariance F given by (13), there exists a 2m×4m matrix

S̃0 such that

ă = S̃0ă0 (16)

where a0 =

[

a1

a2

]

∈ S(m + m) has vacuum statistics,

and

S̃0S̃
[
0 = I. (17)

Indeed, we will construct S̃0 = ∆(E0
−, E0

+) for some m×
2m a matrices E0

−, E0
+. This generalizes a construction

originally due to Araki and Woods [21] for non-squeezed
thermal states, see [22, 23].

2. Construction of Araki-Woods Vacuum Representation

Step 1: Diagonalize N . We may find a unitary matrix
V ∈ Cm×m such that V †NV = diag (N1, · · · , Nm). The
eigenvalues are assumed to be ordered such that N1 ≥
· · · ≥ Nm ≥ 0. Therefore we can restrict our attention
to the case where N is diagonalized in this way.

Step 2: Ignore zero eigenvalues. Take the first m+

eigen values to be strictly positive, with the remaining
m0 = m −m+ to be zero. We respect to the eigen de-
composition Cm = Cm+ ⊕ Cm0 we decompose F as

F =









I + N++ 0 M++ M+0

0 I M0+ M00

M>
++ M>

+0 N++ 0
M>

0+ M>
00 0 0









.

However, we observe that if a positive matrix has a zero
on a diagonal, then every entry on the corresponding row
and column must vanish [26] so that actually

F ≡







I + N++ 0 M++ 0
0 I 0 0

M>
++ 0 N++ 0
0 0 0 0






.

Therefore, we can restrict our attention to the case where
N is diagonal and strictly positive, and in particular in-
vertible.

Step 3: Explicit Construction. We begin by noting the
constraint I + N ≥ M 1

N M †, which follows from noting
the positivity of

[

I −M 1
N

0 0

]

F

[

I −M 1
N

0 0

]†

=

[

I + N −M 1
N M † 0

0 0

]

.

We then introduce the following matrices:

X =

√

I + N −M
1

N
M †,

Y =
√

N = diag
(

√

N1, · · · ,
√

Nm

)

,

Z = MY −1.

Note that Y = Y > and from Z = MY −1 we have that
Y Z> = M> = M = ZY = ZY >. These matrices satisfy
the conditions

XX† − Y Y † + ZZ† = I and Y Z> = ZY >. (18)
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Now take b1 and b2 to be independent (commuting)
modes in S (m). We fix the state to be the joint vacuum
state for both of these modes. Then we may represent a
as

a = Xb1 + Y b]
2 + Zb2; (19)

indeed, it is straightforward to check that

〈

a#a>
〉

= Y 2 = N
〈

aa>
〉

= ZY > = ZY = M.

Therefore we have obtained the representation (16)

with S̃0 = ∆(E0
−, E0

+) and

E0
− =

(

X 0
)

, E0
+ =

(

Z Y
)

.

Property (17) follows from (18).

III. QUANTUM OPEN LINEAR DYNAMICS

In this section we consider the general class of open
linear dynamical models arising from a unitary model
for the joint system and field. The system will be a col-
lection S(m) of m harmonic modes with representative
a = (a1, . . . , am)>.

A. Boson Fields: Vacuum States

The open quantum systems to be described below are
driven by n quantum noise fields (input processes) rep-
resented by annihilation bj(t) and creation b∗j(t) opera-
tors (j = 1, · · · , n) satisfying canonical commutation re-
lations [bj(t), b

∗
k(t′)] = δjkδ(t− t′), with [bj(t), bk(t′)] = 0.

This may be written compactly as

[b̆j(t), b̆
#
k (t′)] = Jjk δ(t− t′). (20)

We shall denote the class of m independent input pro-
cesses by F(n) with representative described by column
vector b = (b1, . . . , bn)>.

The vacuum state for the field is characterized by

〈

exp i

∫ ∞

0

{

u (t) b† (t) + u† (t) b (t)
}

dt

〉

vac

= exp−1

2

∫ ∞

0

u† (t)u (t) dt.

It is convenient to introduce the integrated fields

Bj(t) =

∫ t

0

bj(r)dr,

and in the vacuum representation their future-pointing
(Itō) increments satisfy the quantum Itō table

× dB†k dBk

dBj δjkdt 0

dB†j 0 0

.

We may write the above more compactly as

〈

exp i

∫ ∞

0

ŭ† (t) b̆ (t) dt

〉

vac

=

exp−1

2

∫ ∞

0

ŭ† (t)Fvacŭ (t) dt.

The vacuum state is then the Gaussian state for which
〈

b̆ (t) b̆† (t′)
〉

vac
= Fvacδ(t− t′) and the Itō table may be

summarized by

dB̆dB̆† = Fvacdt.

Here B = (B1, B2, . . . , Bn)>. In the vacuum case we may
also define the counting process

Λjk(t) =

∫ t

0

b∗j (r)bk(r)dr,

which may be included in the Itō table [10]. The addi-
tional non-trivial products of differentials are

dΛjkdB†l = δkldB†j , dBjdΛkl = δjkdBl, dΛjkdΛli = δkldΛji.

B. Boson Fields: Gaussian Field States

We may generalize the situation in III A to the case
where the input fields are in Gaussian states with zero
mean, but with the correlation functions

〈b∗j (t)bk(t′)〉 = Njk δ(t− t′),

〈bj(t)bk(t′)〉 = Mjk δ(t− t′),

with N and M as in (14). That is,

〈

b̆ (t) b̆† (t′)
〉

≡ Fδ (t− t′) , (21)

where F has the same form encountered in the case of a
finite number of modes in equation (13). The extended
Itō table is then

× dB†k dBk

dBj (δjk + Nkj)dt Mjkdt

dB†j M∗
kjdt Njkdt.

Generalized Araki-Woods representations for arbi-
trary Gaussian field states may be obtained based on
a straightforward lifting of the constructions in II E,
[22, 23].
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C. Quantum Linear Dynamical Models

The dynamical behavior of a system comprised of m os-
cillators, interacting with n input fields (vacuum state) is
given in terms of the Hudson-Parthasarathy Schrödinger
equation (in Itō form) [10]

dU(t) =

{ n
∑

i,j=1

(Sij − δij) dΛij(t) +

n
∑

j=1

dB∗j (t)Lj

−
n

∑

j,k=1

L∗jSjk dBk(t)− (
1

2

n
∑

j=1

L∗jLj + iH) dt

}

U(t),(22)

for a unitary operator U(t), with U(0) = I. To obtain
a unitary evolution leading to linear dynamics we must
take S ∈ Cn×n to be unitary, H to be of the form encoun-
tered in (11), while the coupling of the system modes to
the fields is to be of the form

Lj =
m
∑

α=1

(C−jαaα + C+
jαa∗α), (23)

where C± = (C±jα) ∈ Cn×m.

The oscillator variables evolve unitarily aj(t) =
U∗(t)ajU(t), and likewise the output field is Bout(t) =
U∗(t)B(t)U(t). The dynamical equations are

ȧ(t) = C>+S# b#(t)− C†−S b(t) + A−a(t) + A+a#(t),

bout(t) = S b(t) + C−a(t) + C+a#(t), (24)

where

A∓ = −1

2
(C†−C∓ − C>+C#

± )− iΩ∓. (25)

Note that − 1
2i (A−−A†−) = Ω− and − 1

2i (A++A>+) = Ω+,

but in general A− 6= A†− and A+ 6= A>+. Here and below
differential equations are expressed in terms of quantum
noise fields, and may be interpreted in the Stratonovich
or Itō sense, moreover the evolution preserves the com-
mutation relations of the oscillator variables.

The linear dynamical equations can be written in
doubled-up form as

˙̆a(t) = ∆(A−, A+)ă(t)−∆(C−, C+)[∆(S, 0)b̆(t),

b̆out(t) = ∆(C−, C+) ă(t) + ∆(S, 0) b̆(t). (26)

Let us introduce the doubled-up matrices Ã =
∆(A−, A+), C̃ = ∆(C−, C+), and −iΩ̃ = −∆(iΩ−, iΩ+),
then we have the identities

2Re[(A) = Ã + Ã[ = −C̃[C̃, Ω̃[ = Ω̃. (27)

These are readily established by noting

∆(A−, A+) + ∆(A−, A+)[ = ∆(A− + A†−, A+ −A>+)

= −∆(C†−C− − C>+C#
+ , C†−C+ − C>+C#

− )

= −∆(C−, C+)[∆(C−, C+),

and

∆(iΩ−, iΩ+)[ = ∆(−iΩ†−,−iΩ>+) = −∆(iΩ−, iΩ+).

The dynamical equations can then be recast as

˙̆a(t) = Ãă(t) + B̃b̆(t),

b̆out(t) = C̃ă(t) + D̃b̆(t), (28)

where

D̃ = ∆(S, 0), (29)

and

B̃ = −C̃ [D̃, Ã = −1

2
C̃ [C̃ − iΩ̃. (30)

We denote this class of linear Hudson-Parthasarathy
systems with n input fields and m oscillators by
LHP(n, m), and write LHP(n) = ∪mLHP(n, m). Systems
G ∈ LHP(n, m) may be parameterized in several ways.
In terms of the scattering matrix, S, vector of coupling
operators L and Hamiltonian H we may write

G = (S, L, H). (31)

Since these physical parameters are determined by the
matrices given above, we may also write

G = (S, C̃, Ω̃). (32)

Alternatively, we may use the matrices appearing in
equations (28),

G =

[

Ã B̃

C̃ D̃

]

, (33)

a notation commonly used in linear systems and control
theory. We remark that an arbitrary quadruple of ma-
trices Ã, B̃, C̃, D̃ need not necessarily correspond to a
quantum open system, [11], [18].

D. Stability

In linear systems theory, a system G of the form (33)

is said to be Hurwitz stable if the matrix Ã has all eigen-
values having strictly negative real part. Now if the joint
system-field state is one in which the inputs are mean-
zero, then d

dt〈ă (t)〉 = Ã〈ă (t)〉 and so Hurwitz stability
implies that 〈ă (t)〉 → 0 as t→∞.

When A+ = 0, we have Ã = ∆(A−, 0) with A− ≡
− 1

2C†−C− − iΩ− and Ω∗− = Ω−. Since X†X is non-
negative definite it is easy to determine whether A− is
Hurwitz. For instance, it is sufficient to have C− invert-
ible. However, expressions such as X[X are indefinite
due to the presence of the matrix J . There may be non-
passive contributions to Ã from both C+ and Ω+.

As an illustration let us consider how the eigenvalues
of Ã depend on the physical parameters in the simplest
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case n = 1 = m. We have seen that the most general
parameterization is

C̃ = ∆
(√

γ−eiφ
− ,
√

γ+eiφ+
)

and Ω̃ = ∆(ω−, ω+) ,

with γ±, φ± and ω− real and ω+ ∈ C. In this case

Ã = −∆(
1

2
(γ− − γ+) + iω−, iω+)

which has eigenvalues 1
2 (γ− − γ+)±√ζ where we recall

the parameter ζ = |ω+|2 − ω2
− from (12). The plant is

Hurwitz if

1. ζ ≤ 0 and γ− > γ+;

2. or ζ > 0 and
√

ζ < 1
2 (γ− − γ+).

In situation 1 the system has a passive Hamiltonian
and the damping rate is greater that the pumping rate.
However situation 2 shows that if the damping is suf-
ficiently large then the system may still be stable even
if the Hamiltonian is not passive. In general, as one ex-
pects, stability will depend on the relative flows of energy
into and out of the system.

E. Series Connections

Open linear dynamical systems G1 = (S1, L1, H1) and
G2 = (S2, L2, H2) in LHP(n) (recall the parameterization
(31)) may be connected in series by passing the output
of system G1 into the input of system G2, [5], [2], [9].
The system formed from this connection in the zero-delay
limit is an open system G = G2 / G1, which in terms of
the parameters (31) is given by

G2 / G1 = (S2S1, L2 + S2L1, H1 + H2 + Im{L†2S2L1}).
(34)

We refer to / as the series product of G1 and G2 and
gives the cascaded system. The set LHP(n) forms a group
with respect to the series product, with inverse G−1 =
(S†,−S†L,−H) (where G = (S, L, H)).

Given an open system G = (S, C̃, Ω̃) (now we use the
parameterization (31) in anticipation of later use), it fol-
lows from properties of the series product that

G = (I, C̃, Ω̃) / (S, 0, 0). (35)

This factorization says that an open system with scatter-
ing S is equivalent (in the zero-delay limit) to a dynamic

open system without scattering (I, C̃, Ω̃) connected in se-
ries with a non-dynamic or static open system (S, 0, 0).

F. Input-Output Maps

In classical systems and control theory [20] the input-
output map is a basic tool, which in the case of linear

systems may be expressed explicitly in the time and fre-
quency domains. Input-output maps for the open quan-
tum linear system may be defined in the same way; in
terms of the doubled-up parameters (33), we have

b̆out(t) = C̃eÃtă(0) + Σ̃G[t; b̆in] (36)

where

Σ̃G[t; b̆] = −
∫ t

0

C̃eÃ(t−r)C̃[D̃b̆(r)dr + D̃b̆(t). (37)

Here the input bin is understood as the input field b
and we shall often use the subscript for emphasis. The

impulse response associated with the term Σ̃G[t; b̆] is

σ̃G(t) = −C̃eÃtC̃[D̃ + D̃δ(t), from which we have the

transfer function (the Laplace transform of Σ̃G[t; b̆], in
which s is a complex variable):

Ξ̃G(s) =

[

Ã −C̃[D̃

C̃ D̃

]

(s) = −C̃(sI − Ã)−1C̃[D̃ + D̃.

(38)
Let us introduce the transformed

b̆in [s] ,

∫ ∞

0

e−stb̆in (t) dt, (39)

that is, bin [s] =
∫∞

0
e−stbin (t) dt and b#

in [s] = bin[s
∗]# =

∫∞

0
e−stb#

in (t) dt.
Adopting a similar convention for the outputs, we then

obtain an input-output relation of the form bout [s] =
ΞG,− (s) bin [s] + ΞG,+ (s) b∗in [s], or

b̆out [s] = Ξ̃G(s)b̆in [s] (40)

where

Ξ̃G(s) =

[

ΞG,− (s) ΞG,+ (s)

ΞG,+ (s∗)
#

ΞG,− (s∗)
#

]

, (41)

and we have ignored the initial value contribution of the
system modes.

Note that while the transfer function Ξ̃G(s) is uniquely
determined by G, the transfer function does not uniquely
determine the system G - many systems may have the
same transfer function.

IV. EXAMPLES

A. Annihilation Systems

A system G̃ = (S, C̃, Ω̃) with C+ = 0, Ω+ = 0
has dynamics and output relations that depend only
on the annihilation operators and annihilation fields,
[15, 17, 24]. For a physically motivated reason, since
neither the Hamiltonian (passive) nor the coupling oper-
ator of the system contain terms that would require an
external source of quanta (i.e, a classical pump beam) to
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implement (this follows from the synthesis theory of [18];
see also [24, Section 7] for a discussion), they are also
referred to as passive systems [24]. This type of system
often arises in applications, and includes optical cavities.
Transfer functions for this class of systems takes a simpler
form, as we now describe.

We have A− ≡ − 1
2C†−C− + iΩ− and A+ = 0. Then

the matrices C̃ = ∆(C−, 0) and Ã = ∆(A−, 0) are block
diagonal and the transfer function takes the form

Ξ̃G(s) =

[

ΞG,− (s) 0

0 ΞG,− (s∗)
#

]

, (42)

with

ΞG,−(s) =

[

A− −C†−S
C− S

]

(s) = −C−(sI−A−)−1C†−S+S.

(43)
In this situation, we have the input-output rela-
tion bout(t) = CeAta(0) + ΣG[t; b] with ΣG[t; b] =

−
∫ t

0 CeA(t−r)C[Db(r)dr + Db(t). In comparison with
(36) and (37), the output field depends affinely on b, but
not the conjugate b].

B. Cavity

In a rotating reference frame, a model for a de-
tuned cavity is characterized by the parameters Gcav =
(1,
√

γa, ωa∗a); i.e. Ω− = ω, Ω+ = 0, C− =
√

γ, C+ = 0,
S = I.

This corresponds to an annihilation-form system

ȧ = −(
γ

2
+ iω)a−√γbin

bout =
√

γ a + bin (44)

when driven by vacuum input b. The transfer function
for this system may readily be computed to be

Ξcav,-(s) =
s− γ

2 + iω

s + γ
2 + iω

, (45)

which in doubled-up form is

Ξ̃cav(s) =





s− γ
2
+iω

s+ γ
2
+iω 0

0
s− γ

2
−iω

s+ γ
2
−iω



 . (46)

Thus this system is

Gcav = (I, ∆(
√

γ I, 0),−i∆(iω, 0)) ∈ LHP(1).

C. Degenerate Parametric Amplifier

We consider the model for a degenerate parametric am-
plifier (DPA) [6, sec. 7.2], which corresponds to a single
oscillator G coupled to a single field with S = I, ω− = 0,

ω+ = i
2ε, ε > 0, C− =

√
κ, and C+ = 0. The Hamilto-

nian will not be passive, however, the system is stable in
the sense of Hurwitz if take ε ≤ κ as we shall do from
now on. Using (38) we find that the doubled-up transfer
function, in agreement with [6], is

Ξ̃DPA(s) =
1

P (s)

[

s2 − κ2+ε2

4 − 1
2εκ

− 1
2εκ s2 − κ2+ε2

4

]

,

where P (s) = (s + 1
2κ)2 − 1

4ε2. The poles of the transfer
function therefore occur at the zeros of P , namely s =
± ε

2 − κ
2 . In the frequency domain, the output field is

bout(s) =
1

P (s)
(s2 − κ2 + ε2

4
)b(s)− 1

2P (s)
εκb∗(s).

(Here we ignore the initial condition contribution which
is justified by the stability of the system.) In terms of
quadratures bx = 1

2 (b + b∗) and by = 1
2i (b − b∗), we find

that

bx
out(s) = Ξx

DPA(s)bx(s), by
out(s) = Ξy

DPA(s)by(s)

where (in agreement with [6, eq. (7.2.26)])

Ξx
DPA(s) =

s− κ + ε

2

s +
κ− ε

2

=
1

Ξy
DPA(s)

.

The DPA can be implemented in a single-ended cavity
and a case that is of our main interest in this paper is
the idealized one (for a full discussion see [6, 10.2.1.g])
where κ, ε →∞ (in practice to be taken large) such that
the ratio ε

κ is constant. Rescaling κ = kκ0 and ε = kε0 is
equivalent to replacing κ by κ0 and ε by ε0 and rescaling
s as s

k :

Ξ̃DPA(s, κ = kκ0, ε = kε0) = Ξ̃DPA(
s

k
, κ0, ε0).

The limit k → ∞ is the appropriate limit and here the
cavity has an instantaneous response and the internal
cavity dynamics are essentially eliminated by adiabatic
elimination. This results in bout(s) being given as the
following Bogoliubov transformation of the input:

bb(s) = − cosh(r0) b(s)− sinh(r0) b†(s),

where

r0 = ln
κ0 + ε0
κ0 − ε0

.

The output is then an ideal squeezed white noise process
satisfying the quantum Itō rule discussed in section III A,
where

N = sinh2 r0 =
4κ0ε0

(κ2
0 − ε20)

2
,

M = cosh r0 sinh r0 =
2κ0ε0(κ

2
0 − ε20)

(κ2
0 − ε20)

2
.
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Note here that M and N satisfy the relation |M |2 =
N(N + 1). In this limit the DPA device behaves like
a static device that instantaneously outputs a squeezed
white noise field from a vacuum white noise field source,
and the transfer function has a constant Bogoliubov ma-
trix value across all frequencies. That is

Ξ̃DPAstatic(s) = lim
k→∞

Ξ̃DPA(
s

k
, κ0, ε0)

= −∆(cosh r0, sinh r0), ∀s ∈ C,

and the quadrature transfer functions are

Ξx
DPAstatic(s) = −er0, Ξy

DPAstatic(s) = −e−r0.

For a DPA device with a sufficiently wide bandwidth,
one may approximately model it as a static DPA device
with the ideal characteristics described above. Clearly,
LHP(n) is not closed with respect to this type of approx-
imation.

V. COMPONENTS INVOLVING BOGOLIUBOV

TRANSFORMATIONS

In section IVC we obtained the constant transfer func-
tion Ξ̃DPAstatic ∈ Sp(C) for a static approximation to a
DPA. Such static approximations afford useful simplifica-
tions, though in reality the DPA is a dynamical physical
device. The idealized DPA therefore yields outputs that
are a squeezing of the inputs.

Motivated by this, in section VA we consider Bogoli-
ubov matrices acting on boson fields, thereby extending
the class of static components beyond unitary scattering
devices. These components will be combined with linear
dynamics in section VC to form a general class of quan-
tum linear systems; such models may be useful when the
time scales of the dynamical parts are slower than the
time scales of the systems represented by static Bogoli-
ubov matrices. These components will be combined with
linear dynamics in section V C to form a general class
of quantum linear systems; such models may be useful
when the time scales of the dynamical parts are slower
than the time scales of the systems represented by static
Bogoliubov matrices.

A. Bogoliubov Static Components

More generally we could consider a static component
which performs a Bogoliubov transformation of the input
field bin ∈ F(n):

b̆out(t) = S̃ b̆in(t). (47)

where now S̃ ∈ Sp(Cn). This transformation, of course,
preserves the canonical commutation relations so that
bout ∈ F(n).

Some caution should be applied here as we are now
using the symbol S̃ in (47) in a purely algebraic man-
ner as an element of Sp(Cn) when we strictly mean the
second-quantization of the Bogoliubov matrix as an op-
erator on the fields. Despite its formal similarity to (6),
the relation (47) is of a different character as the fields
carry a continuous time-variable. Moreover, since such
a transformation in general form linear combinations of
field annihilation operator and creation operators, the

transformation b̆out(t) = S̃b̆in(t) cannot be described by
the usual Hudson-Parthasarathy QSDE for open Markov
systems (cf. Section III C). Such a QSDE can only model
linear combinations of field annihilation operators of the

form b̆out(t) = ∆(S, 0)b̆in(t) for a unitary matrix S that
appears as one of the parameters of the QSDE (here we
set the other parameters to L = 0 and H = 0). As such,
in the transformation of fields with a non-unitary Bogoli-
ubov matrix we do not have an analogue of (9) in the form

of b̆out(t) = U(t)∗b̆in(t)U(t) for some unitary process U(t)
on the system and noise Hilbert space. At present we do
not know whether a unitary transformation exists and if
it exists what kind of dynamical equations it would sat-
isfy. Since unitary evolution is a fundamental postulate
of quantum mechanics, the situation is somewhat unsat-
isfactory and is the subject of continuing research. How-
ever, the relation (47) is nevertheless a useful idealization
for certain devices used in quantum optics, such as what
we have seen with the static DPA in Section IVC, and
has formally been employed up to now (see, for instance,
the discussion in Chapter 7 of [6] on various quantum op-
tical amplifiers). The physical meaning of the Bogoliubov
transformation (47) is correctly interpreted as a limiting
situation.

B. Bogoliubov Static Components as Limits of

Dynamical Components

The class of linear dynamical components described
in section III C is not closed under input-output conver-
gence. We now show how arbitrary static Bogoliubov
components may arise as limits of unitary models. The
idea is to exploit the Shale decomposition (7). Thus

any given Bogoliubov matrix S̃ has the decomposition

S̃ = ∆(S̃†out, 0)∆(cosh R, sinhR)∆(S̃in, 0), where S̃in and

S̃out are some unitary matrices and R is some real diag-

onal matrix. We note that the end terms ∆(S̃†out, 0) and

∆(S̃in, 0) can each be realized as a static passive net-
work made of beamsplitters, mirrors and phase shifters.
The middle term of course describes squeezing but this
arises from a straightforward construction involving n in-
dependent static-limit DPAs acting as ideal squeezing de-
vices. (Each DPA corresponding to a diagonal entry of
R providing a degree of squeezing (cf. Section IVC) as
determined by that entry.) Then we note that we may
approximate each DPA with a corresponding dynamic
(non-ideal) DPA with appropriate parameters (see the
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discussion of the DPA in Subsection IVC).

C. Dynamical Bogoliubov Components

We introduce an extension of the class of dynamical
linear models LHP(n) considered up to now to accom-
modate the notion of squeezing. This extension is in-
spired by the factorization (35) for open linear systems
of LHP (n) type, suggesting that we consider a new class
of dynamical components of the form

G = (S̃, C̃, Ω̃) , (I, C̃, Ω̃) / S̃, (48)

where (I, C̃, Ω̃) ∈ LHP (n, m) and S̃ = ∆(S−, S+) ∈
Sp(Cn).

A system G = (S̃, C̃, Ω̃) is defined by equations (28),

where Ã, B̃ and C̃ are as before (section III C), but now

D̃ = S̃. We use the notation LBog.(n, m) to denote this
class of systems and write LBog.(n) = ∪mLBog.(n, m).
The class LBog.(n) includes LHP(n) as a special case

(with S̃ = ∆(S, 0)). The justification for the cascade
expression (48) will be given in section VI F, where we
shall extend the series product for cascaded systems in
LBog. (n).

The doubled up input-output map is of the form (36),

where now D̃ = S̃. The transfer function is explicitly

Ξ̃G(s) =

[

Ã −C̃[S̃

C̃ S̃

]

(s) = −C̃(sI − Ã)−1C̃[S̃ + S̃.

(49)
The transfer function has the following properties:

1. Ξ̃G ≡
[

Ã −C̃[

C̃ I

]

S̃;

2. Whenever its value exists, we have Ξ̃G(iω) ∈
Sp(Cn), for ω ∈ R.

Property 1 follows directly from (49) while Prop-
erty 2 follows mutatis mutandis from the proof of [15,
Lemma 2] by the replacing † with [ and (A, B, C, D) with

(Ã, B̃, C̃, D̃).
Physically, the meaning of (48) is that to process an

input signal, the Bogoliubov transformation S̃ is applied
and the result is fed into the dynamical subsystem. As
we have argued in section VA, Shale’s theorem precludes
a unitary stochastic dynamical model giving rise to a
system G̃ ∈ LBog. (n). Nevertheless, as we have also seen

that there will exist a sequences G̃L ∈ LHP (n) such that
pointwise

lim
L→∞

ΞG̃L
(s) = ΞG̃ (s) ,

with G̃ ∈ LBog. (n) but not in LHP (n). One might en-
visage other modes of convergence of transfer function,
however, we shall restrict to pointwise convergence for
the purposes of this paper. It is interesting to note that

the class of Hudson-Parthasarathy models is not closed in
the above sense of convergence in the input-output sense,
but may be extended to include Bogoliubov transforma-
tions.

We remark that in many cases where a boson field is
in a squeezed state (recall section III B), this field may
be regarded as the output of a static Bogoliubov com-
ponent S̃ driven by vacuum inputs. This means, for ex-
ample, that a dynamical component (1, C̃, Ω̃) driven by
squeezed fields may be represented as a dynamical Bo-
goliubov component (S̃, C̃, Ω̃).

D. Example: Cavity with Squeezed Input

Consider the cavity discussed in section IVB, where
now we suppose that the cavity input is given by the
output of a squeezer Gsq, described by the Bogoliubov
transformation

S̃sq = ∆(cosh λ, sinhλ) =

[

cosh r sinh r
sinh r cosh r

]

. (50)

That is,

Gsq = (∆(cosh λ, sinhλ), 0, 0) .

The squeezed-input cavity Gcav, sq = G̃cav / G̃sq has
transfer function

Ξ̃cav, sq(s) = Ξ̃cav(s)S̃sq

=





s− γ
2
+iω

s+ γ
2
+iω cosh r

s− γ
2
+iω

s+ γ
2
+iω sinh r

s− γ
2
−iω

s+ γ
2
−iω sinh r

s− γ
2
−iω

s+ γ
2
−iω cosh r



 .(51)

This corresponds to the equations
[

ȧ
ȧ∗

]

=

[

−(γ
2 + iω) 0

0 −(γ
2 − iω)

] [

a
a∗

]

+

[

cosh r sinh r
sinh r cosh r

] [

b
b∗

]

[

bout

b∗out

]

=

[ √
γ 0

0
√

γ

] [

a
a∗

]

+

[

cosh r sinh r
sinh r cosh r

] [

b
b∗

]

. (52)

The physical parameters for the squeezed-input cavity
are Ωcav,sq - = ω, Ωcav,sq+ = 0, Ccav,sq - =

√
γ, Ccav,sq+ =

0, S̃cav,sq - = S̃sq = ∆(cosh r, sinh r), and so

Gcav, sq = (∆(cosh λ, sinhλ), ∆(
√

γ I, 0),−i∆(iω, 0)).

This system is a member of LBog.(1) but not of LHP(1).

VI. LINEAR QUANTUM FEEDBACK

NETWORKS

We are now in a position to described feedback net-
works constructed from Bogoliubov dynamical compo-
nents as nodes, and boson fields as links. The general
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form of such a linear quantum feedback network (LQFN)
is shown in Figure 2. The fundamental algebraic tool for
describing such networks in subsequent sections is the
linear fractional transformation (LFT).

Θτ

�

� �

-

b1

bout,2

bout,1

b2

G

Fl(G, Θτ )

FIG. 2: General form of a linear quantum feedback network
(LQFN), with the time delay due to the spatial extent of the
feedback connection represented by Θτ (see text).

A. Linear Fractional Transformations

Linear fractional transformations (LFTs) arise natu-
rally when dealing with feedback networks, and a formal
notation has been developed in classical linear systems
theory, [20]. Consider a classical transfer function Ξ(s)
partitioned as

Ξ(s) =

[

Ξ11(s) Ξ12(s)
Ξ21(s) Ξ22(s)

]

corresponding to a partition u = (u1, u2)
>, y = (y1, y2)

>

of the input and output signals. If the system is placed in
a feedback arrangement defined by u2 = K(s)y2, then the
closed-loop system is described by the transfer function

F(Ξ(s), K(s)) =

Ξ11(s) + Ξ12(s)K(s)[I − Ξ22(s)K(s)]−1Ξ21(s).

The arrangement is said to be well-posed whenever the
inverse [I − Ξ22(s)K(s)]−1 exist. This transfer function
is obtained by eliminating the in-loop variables.

In what follows we generalize this type of representa-
tion to our class of LQFNs (see also [9], [15]).

B. Fractional Linear Transformations

In this section we provide some technical results needed
for the network theory described in subsequent sections.

Lemma 1 Let S̃ = ∆(S−, S+) ∈ Sp(Cn1+n2) with block
decomposition

S∓ =

[

S∓11 S∓12
S∓21 S∓22

]

,

where S∓jk ∈ Cnj×nk . Setting Ŝjk = ∆(S−jk, S+
jk) ∈

C2nj×2nk , we have that

∑

k=1,2

Ŝ[
kiŜkj =

∑

k=1,2

ŜikŜ[
jk = δij . (53)

Proof. The relation S̃[S̃ = I implies that

∆(S†−,−S>+)∆(S−, S+) = ∆(I, 0), and so S†−S− −
S>+S#

+ = I, S†−S+−S>+S#
− = 0. These may be written as

∑

k=1,2(S
−†
ki S−kj−S+>

ki S+#
kj ) = δij , and

∑

k=1,2(S
−†
ki S+

kj−
S+>

ki S−#
kj ) = 0. Therefore

∑

k=1,2

Ŝ[
kiŜkj =

∑

k=1,2

∆(S−†ki ,−S+>
ki )∆(S−kj , S

+
kj)

=
∑

k=1,2

∆(S−†ki S−kj − S+>
ki S+#

kj , S−†ki S+
kj − S+>

ki S−#
kj )

which equals ∆(δij , 0) = δij . The second identity simi-

larly follows from S̃S̃[ = I. �

Theorem 2 Let S̃ ∈ Sp(Cn1+n2) and define the
fractional linear (Möbius) transformation Ψ2→1

S̃
:

dom(Ψ2→1
S̃

) ∈ Cn2×n2 7→ Cn1×n1 by

Ψ2→1
S̃

(X) , Ŝ11 + Ŝ12X(I − Ŝ22X)−1Ŝ21, (54)

with X ∈ dom(Ψ2→1
S̃

) if and only if the inverse (1 −
Ŝ22X)−1 exists. Then Ψ2→1

S̃
maps Sp(Cn2)∩dom(Ψ2→1

S̃
)

into Sp(Cn1).

Proof. We first note the Siegel-type identities

Ψ2→1
S̃

(X)[Ψ2→1
S̃

(Y ) = I − Ŝ[
21(I −X[Ŝ[

22)
−1(I −X[Y )(I − Ŝ22Y )−1Ŝ21,

Ψ2→1
S̃

(X)Ψ2→1
S̃

(Y )[ = I − Ŝ12(I −XŜ22)
−1(I −XY [)(I − Ŝ[

22Y
[)−1Ŝ[

12. (55)

These are structurally the same as the standard Siegel
identities based on partitioning a unitary Ŝ but the in-

volution [ replacing the usual Hermitian involution †,
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see Theorem 21.16 and Corollary 21.17 of reference [7].
The identities rely on the unitary analogue of the iden-
tities (53) and so follow mutatis mutandis. Evidently, if
X ∈ Sp(Cn2) ∩ dom(Ψ2→1

S̃
) then Ψ2→1

S̃
(X)[Ψ2→1

S̃
(X) =

Ψ2→1
S̃

(X)Ψ2→1
S̃

(X)[ = I. �

Corollary 3 If K̃(iω) is an Sp(Cn2)-valued transfer ma-
trix function taking values in dom(Ψ2→1

S̃
) for all ω real,

then the fractional linear transformation Ψ2→1
S̃

(K̃(iω))

will be Sp(Cn1)-valued function of ω.
In particular, if I ∈ dom(Ψ2→1

S̃
) then

Ψ2→1
S̃

(I) = Ŝ11 + Ŝ12(1− Ŝ22)
−1Ŝ21 ∈ Sp(Cn1). (56)

C. Finite Time-Delay LQFNs

A general LQFN is a network of linear quantum com-
ponents Gv ∈ LBog.(n), labeled by the vertices v of the
network, with quantum fields traveling along the edges.
The edges are directed so that we distinguish inputs and
outputs, and the multiplicity of input fields equals the
multiplicity of outputs for each component.

In a physical LQFN we will have time delays associ-
ated with each internal edge due to the finite time taken
by light to travel from an output port to an input port.
In fact, we may lump the individual components as one
single global component G̃ with all external inputs going
into a collective input port 1 and coming out from a col-
lective output port 1, as in Figure 2. Likewise, all the
internal fields can be viewed as traveling from the col-
lective output port 2 to the collective input port 2. The
effect of the (multichannel) time-delay can be described
by the operator Θτ defined by

Θτ (f1(t), . . . , fn(t))> = (f1(t− τ1), . . . , fn(t− τn))>,

where τ1 > 0, . . . , τn > 0 are the time delays of each
channel. Here fk(t) denotes the quantum stochastic pro-
cess propagating along channel k in doubled-up form.
For instance, fk(t) could be y̆k(t), the doubled-up output
quantum output processes propagating along channel k.
In a slight abuse of notation, we also occasionally over-
load the notation Θτ to denote the delayed version of a
quantum process that is not in doubled-up form, such
as when fk(t) is taken to be yk(t) for all k. Note that
[Θτ (iω)]jk = eiωτj δjk. Extending the standard notation
recalled in section VI A), we denote this by

Ñτ = F(G̃, Θτ ).

A Hamiltonian for a LQFN with squeezing compo-
nents could be constructed approximately by replacing
Bogoliubov components S̃ with dynamical components
Gε

S̃
. This would then fit into the QFN framework of [8].

D. Parameters for Network Model

We now suppose that the LQFN of Figure 2 is de-
scribed by field channels b1, bout,1 and b2, bout,2 having
lengths n1 and n2, respectively, so that the total num-
ber is n1 + n2 = n. The system is parameterized by
G = (S̃, L, H), with S̃ = ∆(S−, S+) and we partition the
matrices as

C∓ =

[

C∓1
C∓2

]

, S∓ =

[

S∓11 S∓12
S∓21 S∓22

]

.

The field-field component of the input-output relations
can be now written as

b̆out,i =
∑

j=1,2

Ĝij(s)b̆j ,

with transfer matrix function

Ξ̂G(s) =





Ã −[C̃[
1, C̃

[
2]Ŝ

[

C̃1

C̃2

]

Ŝ



 (s)

= −
[

C̃1

C̃2

]

(sI − Ã)−1[ C̃[
1, C̃

[
2 ]Ŝ + Ŝ (57)

where

Ŝjk = ∆(S−jk, S+
jk), C̃j = ∆(C−j , C+

j ).

The network Nτ is given by the linear fractional trans-
formation

Ñτ = F(G̃, Θτ) =

[

Ãτ −C̃[
τ S̃τ

C̃τ S̃τ

]

(58)

where

S̃τ = Ŝ11 + Ŝ12Θτ (I − Ŝ22Θτ )−1Ŝ21 (59)

C̃τ = C̃1 + Ŝ12Θτ (I − Ŝ22Θτ )−1C̃2 (60)

Ãτ = Ã−
∑

j=1,2

C̃[
j Ŝj2Θτ (I − Ŝ22Θτ )−1C̃2. (61)

Due to the non-zero delay, the network model Nτ is non-
Markovian.

E. Zero Delay Limit Models

Of particular interest are the simpler models that arise
in the zero-delay limit Θτ → I (τ → 0). Assume that

I − Ŝ11 is invertible. From above we have

Ñ0 = F(G̃, I) =

[

Ã0 −C̃[
0S̃0

C̃0 S̃0

]

(62)

where

S̃0 = Ŝ11 + Ŝ12(I − Ŝ22)
−1Ŝ21 (63)

C̃0 = C̃1 + Ŝ12(I − Ŝ22)
−1C̃2 (64)

Ã0 = Ã−
∑

j=1,2

C̃[
j Ŝj2(I − Ŝ22)

−1C̃2. (65)
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We note that

Ã0 = −1

2
C̃[

0C̃0 − iΩ̃0, (66)

where

Ω̃0 = Ω̃ + Im[

∑

j=1,2

C̃[
j Ŝj2(I − Ŝ22)

−1C̃2. (67)

Here, Im[X means 1
2i(X −X[). The matrix S̃0 defined

by (63) is a Bogoliubov matrix, as it corresponds to the
matrix in (56). Therefore the zero-delay limit N0 is a
Markovian system belongs to LBog.(n) with parameters

N0 =
(

Ŝ11 + Ŝ12(I − Ŝ22)
−1Ŝ21,

C̃1 + Ŝ12(I − Ŝ22)
−1C̃2,

Ω̃ + Im[

∑

j=1,2
C̃[

j Ŝj2(I − Ŝ22)
−1C̃2

)

. (68)

Thus LBog.(n) is closed with respect to this zero-delay
limit network construction.

Other types of limits are also considered in applications
(see, e.g. [1, sec. 2.3]). Suppose that the system Gε and
the delay τ ε depend on a small parameter ε > 0, defining
a physical regime of operation. Then one may obtain
a limit model limε→0 F(Gε, Θτε). An example of this is
considered in section VII B below.

F. Series Product

The series product G2 / G1 of two systems G̃1 =
(S̃1, C̃1, Ω̃1) and G̃1 = (S̃2, C̃2, Ω̃2) follows from the zero-
delay limit (62). For the series product, we interchange
the index 1 and 2 (this simply means interchanging the

role of G1 and G2 in the LQFN) and then set Ŝ12 = S̃1,

Ŝ21 = S̃2, Ŝ22 = 0 and Ŝ11 = 0 (note that without
the interchange we would be computing G1 / G2 instead
G2 / G1).

Substituting into (63,64,65) we find

Ξ̃series =

[

Ã− C̃[
2S̃2C̃1 −

(

C̃[
2S̃2 + C̃[

1

)

S̃1

C̃2 + S̃2C̃1 S̃2S̃1

]

. (69)

The matrices for G2 / G1 = (S̃series, C̃series, Ω̃series) are
given by

S̃series = S̃2S̃1,

C̃series = C̃2 + S̃2C̃1 = ∆(Cseries−, Cseries+),

Ω̃series = Ω̃1 + Ω̃2 + Im[C̃
[
2S̃2C̃1

≡ ∆(Ωseries−, Ωseries+),

where

Cseries− = C2− + S2−C1− + S2+C#
1+,

Cseries+ = C2+ + S2−C1+ + S2+C#
1−.

From

C̃[
2S̃2C̃1 = ∆(C†2−,−C>2+)∆(S2−, S2+)∆(C1−, C1+)

= ∆(X−, X+)

with

X∓ = (C†2−S2−−C>2+S#
2+)C1∓+(C†2−S2+−C>2+S#

2−)C#
1±,

we see that

Ωseries− = Ω1− + Ω2− +
1

2i
(X− −X†

−),

Ωseries+ = Ω1+ + Ω2+ +
1

2i
(X+ + X>

+ ).

Succinctly, the series product in LBog.(n) is given by

G2 / G1 = (S̃2S̃1, C̃2 + S̃2C̃1, Ω̃1 + Ω̃2 + Im[{C̃[
2S̃2C̃1});

(70)
cf. (34).

Clearly, LBog.(n) is a group with respect to the series
product, and the classes of components LHP(n), Sp(Cn),

and U(n) are subgroups. If G = (S̃, C̃, Ω̃) the inverse is
given by

G−1 = (S̃[,−S̃[C̃,−Ω̃), (71)

with transfer function given by

Ξ̃G−1 (s) ≡ Ξ̃G (s∗)
[
. (72)

The series product is not limited simply to feedforward,
and the above formula apply to the case where the two
systems have one or more modes in common. The series
product is therefore highly non-trivial [8, 9, 15].

G. Series Product and Cascaded Transfer

Functions

In classical linear systems theory, the transfer function
of a cascade of two separate systems is obtained by mul-
tiplying the transfer functions (see, e.g., [20]).

We need to emphasize here that two systems will
be distinct if they consist of different oscillator modes.
Specifically let there be m1 modes in the first system

and m2 in the second, and set a =

[

a1

a2

]

∈ S (m1 + m2),

then we wish to consider G1 =
(

S̃1, C̃1, Ω̃1

)

and G2 =
(

S̃2, C̃2, Ω̃2

)

with

C̃1 = ∆([C1−, 0] , [C1+, 0]) ,

−iΩ̃1 = −∆

([

iΩ1− 0
0 0

]

,

[

iΩ1+ 0
0 0

])

,

C̃2 = ∆([0, C2−] , [0, C2+]) ,

−iΩ̃2 = −∆

([

0 0
0 iΩ2−

]

,

[

0 0
0 iΩ2+

])

,
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with respect to the decomposition Cm = Cm1 ⊕ Cm2 .
This is simply a statement that the dynamics of G1 does
not depend on the internal variables of G2, and vice-
versa. Putting this particular form into (69), we then
obtain

Ξ̃G2/G1
(s) =







[

Ā1 0

−C̄[
2S̃2C̄1 Ā2

] [

−C̄[
1S̃1

−C̄[
2S̃2S̃1

]

[

S̃2C̄1, C̄2

]

S̃2S̃1






(s)

= Ξ̃G2
(s) Ξ̃G1

(s), (73)

where C̄j = ∆(Cj,−, Cj,+) and Āj = − 1
2 C̄[

j C̄j −
i∆(Ωj,−, Ωj,+). Here we use the unitary transformation

ă 7→
[

ă1

ă2

]

to present the transfer function in a more

convenient form. The algebra is then similar to Section
IV A in [15].

If the systems are not separate, then we do not expect
such a factorization of the transfer function to hold. The
series product [8], [9], [15] is defined quite generally in
terms of physical parameters (section III E) which may,
for example, depend on the same oscillator mode vari-
ables). In the general case, the transfer function can be
computed using the general formulas (62)-(65).

Let us remark that the series product inverse G−1

given by (71) may be realized in terms of a physical sys-
tem that is not separate from the original system. Phys-
ically, if we pass input fields through a system with pa-
rameters G, then G−1 gives the parameters required to
undo the effect by passing the output back through the
same system for a second pass.

H. Inverse Transfer Functions

The input-output relation b̆out = Ξ̃b̆in + ξ̃ă (0) may be
inverted to yield

b̆in = Ξ̃−1b̆out − Ξ̃−1ξ̃ă (0) .

In particular, we can give the following useful description
of Ξ̃−1. The linear equations (28) in the time domain may
be rearranged algebraically to give

d

dt
ă = (Ã− B̃D̃−1C̃)ă + B̃D̃−1b̆out,

b̆in = −D̃−1C̃ă + D̃−1b̆out,

with D̃ invertible, and in the transform domain, we de-
duce that

[

Ã B̃

C̃ D̃

]−1

=

[

Ã− B̃D̃−1C̃ B̃D̃−1

−D̃−1C̃ D̃−1

]

.

For the model with parameters G = (S̃, C̃, Ω̃), we find

Ξ̃−1
G (s) =

[

Ã −C̃[S̃

C̃ S̃

]−1

≡
[

−Ã[ −C̃[

−S̃[C̃ S̃[

]

= S̃[C̃(sI + Ã[)−1C̃[ + S̃[,

or

Ξ̃G (s)
−1 ≡ Ξ̃G (−s∗)

[
. (74)

We note that Ξ̃G−1 (s) = Ξ̃G (−s)
−1 ≡ Ξ̃G (s∗)

[
(recall

(72)).

1. Example: separate cavity inverse

As a concrete example, consider the single mode cavity
G = Gcav considered in IVB. The transfer function (45)
and related functions are given by

ΞG,−(s) =
s− γ

2 + iω

s + γ
2 + iω

,

ΞG−1,−(s) =
s− γ

2 − iω

s + γ
2 − iω

,

Ξ−1
G,−(s) =

s + γ
2 + iω

s− γ
2 + iω

.

That is, G−1 is obtained from G by keeping C− =
√

γ,
C+ = 0 and replacing Ω− = ω by −ω. In what follows we

obtain a physical realization Ĝ of the transfer function
Ξ−1

G,−(s) that is a system distinct from G, so that

Ξ̃Ĝ(s) = Ξ̃−1
G (s). (75)

The system Ĝ is obtained by setting Ω− = −ω, Ω+ = 0
and swapping C− = 0 and C+ =

√
γ.

In this example we can take the two modes to be
[

a1

a2

]

∈ S (2) and write G as
(

S̃1 = I, C̃1, Ω̃1

)

where

C̃1 = ∆([
√

γ, 0] , [0, 0]) ,

−iΩ̃1 = ∆

([

−iω 0
0 0

]

,

[

0 0
0 0

])

,

and Ĝ as
(

S̃2 = I, C̃2,−Ω̃2

)

where

C̃2 = ∆([0, 0] , [0,
√

γ]) ,

−iΩ̃2 = −∆

([

−iω 0
0 0

]

,

[

0 0
0 0

])

.

That is, in terms of scattering matrices, coupling opera-
tors and Hamiltonians (31) we have

G = (I,
√

γ a1, ωa∗1a1), and Ĝ = (I,
√

γ a∗1,−ωa∗2a2).

The series product Ĝ / G is given by
(

I, C̃ = C̃1 + C̃2, Ω̃ = Ω̃1 + Ω̃2 + Im[[C̃
[
2C̃1]

)

(recall

(70)) and this corresponds to a system with a nontrivial
dynamics, since (by (34)

Ĝ / G = (I,
√

γ (a1 + a∗2), ω(a∗1a1 − a∗2a2) + Im[a2a1]).
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Nevertheless, some calculation shows that

Ξ̃ĜCG (s) = I,

as required by (73) and (75). This continues to hold if
there is a term Ω+ = ω+ added to the cavity Hamilto-
nian.

2. General separate system inverses

We now show how to obtain a physical realization for
Ξ−1

G (s) in the case where Ω̃ = 0. We have

Ξ̃−1
G (s) = S̃[ + S̃[C̃(sI − 1

2
C̃[C̃)−1C̃[

= [I + S̃[(s− 1

2
C̃C̃[)−1C̃C̃[]S̃[.

Now C̃C̃[ is not definite and in fact we have

C̃C̃[ = ∆(C−C†− − C+C†+,−C−C>+ + C+C>− )

= −∆(C+, C−)∆(C†+,−C>− )

≡ −K̃K̃[,

where

K̃ = ∆(C+, C−). (76)

We therefore obtain

Ξ̃−1
G (s) = [I − S̃[(s +

1

2
K̃K̃[)−1K̃K̃[]S̃[

= [I − S̃[K̃(s +
1

2
K̃[K̃)−1K̃[]S̃[

≡ Ξ̃Ĝ(s),

where

Ĝ = (S̃[, S̃[K̃, 0). (77)

We note that this choice of Ĝ is not unique in producting
a transfer function inverse inverse to Ξ̃G. Finding an
inverse when Ω̃ 6= 0 is more involved.

3. Comments

We have the mapping G 7→ Ξ̃G from the group of
LBog.(n) of systems parameters with series product to
the group of matrix transfer functions. This mapping is
not however a group homomorphism. Indeed, we typi-
cally have

Ξ̃G2/G1
(s) 6= Ξ̃G2

(s)Ξ̃G1
(s),

though equality - the cascade formula (73) - holds when
the systems are separate assemblies of oscillators.

We should also caution that, as we have seen in the
example in VI H1, there are solutions for G other than
the trivial G = (I, 0, 0) to the equation Ξ̃G (s) = I.

VII. NETWORK EXAMPLES

A. In-loop Squeezing and Cavity as a Feedback

Network

We now describe the LQFN of Figure 1, which contains
a cavity and squeezer in a feedback loop resulting from
interconnection with a beamsplitter. The total propaga-
tion delay around the loop is τ , which we take to be small
and send τ → 0. In order to determine an equivalent
zero-delay limit model, following the general approach of
section VI E, we re-draw the network as shown in Figure
3.

G

- -

�

- -

- S̃sq
y2

y1

u2

Sb

v2 w2

u1

Ξcav(s)

v1 w1

squeezerbeamsplitter

Gdyn

cavity

Gstatic

τ

FIG. 3: Linear quantum feedback network of Figure 1 redrawn
in standard from as Figure 2.

As indicated in Figure 3, the in-loop system G =
Gdyn / Gstatic is a dynamical Bogoliubov component ob-
tained by cascading the beamsplitter, the (augmented)
squeezer (which together form Gstatic), and the (aug-
mented) cavity Gdyn.

The static part Gstatic is described as follows. Because
the beamsplitter has two inputs and two outputs, we aug-
ment the squeezer Ssq (given by (50)) by including a di-
rect feed through channel (v1 to w1 in Figure 3). Because
the squeezer is represented by a static Bogoliubov trans-
formation expressed in doubled-up form, we express the
beamsplitter in doubled-up form: S̃b = ∆(Sb, 0). To be
clear, the beamsplitter is described by

v1 = αu1 − βu2

v2 = βu1 + αu2, (78)

where |α|2 + |β|2 = 1, α∗β = β∗α. Thus we have

Sb =

[

α −β
β α

]

, (79)

and

S̃b = ∆(Sb, 0)

=







α −β 0 0
β α 0 0
0 0 α∗ −β∗

0 0 β∗ α∗






. (80)
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The static component Gstatic has inputs (u1, u2)
> and

outputs (w1, w2)
>, and is given by the Bogoliubov matrix

R̃ = ∆

([

1 0
0 cosh r

]

,

[

0 0
0 sinh r

])

S̃b

= ∆(R−, R+) (81)

where

R− =

[

α −β
β cosh r α cosh r

]

,

R+ =

[

0 0
β∗ sinh r α∗ sinh r

]

. (82)

The dynamic component Gdyn, with inputs (w1, w2)
>

and outputs (y1, y2)
>, is given by

[

ȧ
ȧ∗

]

=

[

−(γ
2 + iω) 0
0 −(γ

2 − iω)

] [

a
a∗

]

−
[

0
√

γ 0 0
0 0 0

√
γ

]







w1

w2

w∗1
w∗2






,







y1

y2

y∗1
y∗2






=







0 0√
γ 0

0 0
0
√

γ







[

a
a∗

]

+







w1

w2

w∗1
w∗2






. (83)

Thus A− = −(γ
2 + iω), A+ = 0, Ã = ∆(−(γ

2 + iω), 0),

C− =

[

0√
γ

]

, C+ =

[

0
0

]

, C̃ = ∆(

[

0√
γ

]

, 0). (84)

Also, Ω− = ω, Ω+ = 0.
Now that we have a complete model for the in-loop

system G, we may apply the formulas in section VI E to
obtain a zero-delay network model N0. This involves first
working out the Bogoliubov matrix in partitioned form:

Ŝ11 = ∆(α, 0), Ŝ12 = ∆(−β, 0),

Ŝ21 = ∆(β cosh r, β∗ sinh r),

Ŝ22 = ∆(α cosh r, α∗ sinh r). (85)

We set α =
√

ε and β =
√

1− ε to simplify some of the
algebra. The network model is given as follows. We now
use the equations (63,64,65) to determine the network
parameters. The equivalent network Bogoliubov matrix
is

S̃0 = ∆(
√

ε− 1− ε

µ
(cosh r −

√
ε),− (1− ε) sinh r

µ
), (86)

where

µ = 1− 2
√

ε cosh r + ε. (87)

Next,

C̃0 = −
√

1− ε
√

γ

µ
∆(1−

√
ε cosh r,

√
ε sinh r), (88)

so that

C−0 = −
√

1− ε
√

γ

µ
(1 −

√
ε cosh r),

C+
0 = −

√
1− ε

√
γ

µ

√
ε sinh r.

Now Ã0 = ∆(A−0 , A+
0 ), where

A−0 = −(
γ

2
+ iω)−

√
εγ

µ
(cosh r−

√
ε), A+

0 =

√
εγ

µ
sinh r

(89)
From this we compute

Ω−0 = ω, Ω+
0 = i

√
εγ

µ
sinh r. (90)

We therefore see that not only does the network model
N0 ∈ LBog.(1) have a non-trivial static Bogoliubov term,
it also has field couplings involving a creation operator
a∗, and Hamiltonian terms involving a2 and (a∗)2.

Stability of the feedback system may be analyzed using
the methods of section III D or the small gain theorem
[20], [4].

As a possible application, we note that the squeezing
parameter of a DPA may be altered by placing it in-loop
in a beam-splitter arrangement of this type [25].

B. Dynamics from Feedback

In this example we give an illustration from quantum
optics showing that LQFNs involving only static com-
ponents may give rise to dynamical behavior. This dy-
namical behavior is due to a time delay in the feedback
loop. We consider the network shown in Figure 1, [19],
[8]. This is a special case of the LQFN network of Figure
1, but with no squeezing and no cavity. The beamsplitter
Sb is given by (78) or 79, with α =

√
ε and β =

√
1− ε.

u2 τ

- -
6

u1

y1

y2

 
 
 
  

FIG. 4: Beamsplitter feedback network with time delay τ .

Feedback in the network is defined by the constraint
u2(t) = Θτy2(t) = y2(t − τ), where τ > 0 is the time
taken for light to travel from the output to the input.
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This network is a LQFN with Gε = (∆(Sb, 0), 0, 0) ∈
U(2). With ε > 0 fixed, the zero-delay network model
τ → 0 is the system N0 = Fl(G

ε, I) = (∆(−I, 0), 0, 0) ∈
U(1), with transfer function N0(s) = −1, a trivial pass-
through system with sign change (phase shift).

Now if the reflectivity coefficient ε and the time delay
are comparable, say τ = ε/γ, where γ > 0, then we
obtain a dynamical model as ε → 0, [1, Section 2.3] (recall
section VI E above). Indeed, solving (79) and (80) in the
frequency domain we find that the transfer function is

N ε(s) = Fl(G
ε, Θτε)(s) =

√
1− ε − εe−sε/γ

1−
√

1− ε e−sε/γ

(91)
By L’Hopital’s rule, we find that the limit transfer func-
tion is

N(s) = lim
ε→0

N ε(s) = 1− γ

s + γ/2
=

s− γ/2

s + γ/2
. (92)

This transfer function corresponds to a cavity N =
(I,
√

γ a, 0) = (I,
√

γ I, 0) ∈ LHP(1, 1), where a ∈ S(1),
[6], [1]. Here, γ plays the role of the coupling strength
between the trapped cavity mode and the external free
field.

This example shows that U(2) is not closed under
this type of physically natural approximation process
(since the limit belongs to LHP(1) which is outside U(2)),

while LBog.(2) is closed (since it contains both U(2) and
LHP(1)).

VIII. CONCLUSION

We have shown how to extend linear quantum dynam-
ical network theory to include static Bogoliubov compo-
nents (such as squeezers). This unified framework ac-
commodates squeezing components which are important
in quantum information applications. We provided tools
for describing network connections and feedback using
generalizations of linear fractional transformations and
the series product, [9], [15], [19], [20, Chapter 10]. We
have also defined input output maps and transfer func-
tions within this linear quantum network theory, and
shown how they can be used in applications. Finally,
we explained the natural group structure arising from
the series product.
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