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Objective. To assess the covariate balancing properties of propensity score-based
algorithms in which covariates affecting treatment choice are both measured and
unmeasured.
Data Sources/Study Setting. A simulation model of treatment choice and outcome.
StudyDesign. Simulation.
Data Collection/Extraction Methods. Eight simulation scenarios varied with the
values placed onmeasured and unmeasured covariates and the strength of the relation-
ships between the measured and unmeasured covariates. The balance of both mea-
sured and unmeasured covariates was compared across patients either grouped or
reweighted by propensity scores methods.
Principal Findings. Propensity score algorithms require unmeasured covariate varia-
tion that is unrelated to measured covariates, and they exacerbate the imbalance in this
variation between treated and untreated patients relative to the full unweighted sam-
ple.
Conclusions. The balance of measured covariates between treated and untreated
patients has opposite implications for unmeasured covariates in randomized and obser-
vational studies. Measured covariate balance between treated and untreated patients in
randomized studies reinforces the notion that all covariates are balanced. In contrast,
forced balance of measured covariates using propensity score methods in observa-
tional studies exacerbates the imbalance in the independent portion of the variation in
the unmeasured covariates, which can be likened to squeezing a balloon. If the unmea-
sured covariates affecting treatment choice are confounders, propensity score methods
can exacerbate the bias in treatment effect estimates.
Key Words. Propensity scores, covariate balance, matching, binning, assumptions,
simulation

The strength of randomized controlled trials (RCTs) is the assumption that
randomized treatment assignment yields a balanced distribution of covariates
thought to be related to outcome between the treatment and control groups
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(Rubin 2001). Published studies of RCTresults traditionally report a table dis-
playing the balance in measured covariates (e.g., patient age, gender, baseline
clinical conditions, etc.) between the treatment and control groups. Demon-
strated balance of measured covariates across treatment groups is intended to
lend credence that such balance extends to unmeasured covariates (Berk
2004). In the context of observational (nonrandomized) data, researchers have
espoused designing treatment effect studies that mimic the measured covariate
balancing properties of RCTs (Rosenbaum and Rubin 1983a,b; Rubin 1997,
2001, 2007; Joffe and Rosenbaum 1999; Shah et al. 2005). The use of a pro-
pensity score (PS)—the probability a patient received treatment given the
patient’s measured covariate values—has become a mainstay in efforts to find
measured covariate balance in observational data studies to estimate treat-
ment effects. It has been said that PS-based methods “can be used to design
observational studies in a way analogous to the way randomized experiments
are designed” (Rubin 2001) with a design attempting to “assemble groups of
treated and control units such that within each group the distributions of cova-
riates is balanced” (Rubin 2001). While methodologists are quick to qualify
that achieving balance in measured covariates between groups of treated and
untreated patients does not “guarantee” balance in unmeasured covariates
across groups, measured covariate balance often creates an “expectation” of
unmeasured covariate balance as in RCTs (Ward and Johnson 2008). Indeed,
a review of the PS literature noted that “many of the articles in our review”
imply that “propensity scores might also balance the unknown confounders
between exposure groups” (Shah et al. 2005).

Several PS-based algorithms have been suggested to create patient sam-
ples that are balanced in measured covariates between treated and untreated
patients. These algorithms range from stratification (D’Agostino 1998) and
matching based on propensity scores (Hall, Summers, and Oberchain 2003;
Frolich 2007; Stuart 2010) to using patient-specific propensity scores to weight
observations (Rosenbaum 1987; Robins, Hernan, and Brunback 2000). Treat-
ment effect inferences are then made by contrasting average outcomes
between treated and untreated patients with similar propensity scores (and
correspondingly similar distributions of measured covariates). These algorithms
yield unbiased treatment effect estimates only if after balancing measured
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covariates, unmeasured covariates are “ignorable” or that the remaining unmea-
sured covariates that affected treatment choice are independent of outcome
(Rosenbaum and Rubin 1983a,b; Joffe and Rosenbaum 1999). Unmeasured
covariates affecting treatment choice are ignorable if either (1) they have no
relationship (either directly or indirectly) with outcome, or (2) they are bal-
anced between treatment and control groups after balancing measured covari-
ates. Neither of these conditions can be verified directly with data available to
researchers. The condition that the unmeasured covariates affecting treatment
choice have no relationship with outcome is identical to the assumption
required to yield unbiased estimates in standard multivariate regression-based
treatment effect estimators—treatment is orthogonal to the error term in the
outcome relationship after adjusting for the measured covariates included in
the regressionmodel (Angrist and Pischke 2009). Stated differently, this condi-
tion assumes that none of the unmeasured covariates affecting treatment choice
confound the relationship between treatment and outcome. This orthogonal
assumption requires theory-based persuasion by researchers for acceptance.
Therefore, the conceptual advantage of PS-based methods relative to standard
regression appears to hinge on the assumption that balancingmeasured covari-
ates between treated and nontreated patients leads to unmeasured covariate
balance between treated and nontreated patients. If this assumption holds,
unbiased treatment effect estimates can be obtained without relying on theory
to support the orthogonal assumption.

However, PS-based analyses of treatment effects using observational data lar-
gely ignore what seems to be a fundamental question—why did patients with the
same or similar propensity scores receive different treatments? Intuitively, it would
seem that unmeasured factors not accounted for in the PS model must be different
between two patients with similar propensity scores for them to receive different
treatments. Let patient utility associated with treatment U(T) and no treatment U
(NT) be represented in terms ofmeasured (XM) and unmeasured covariates (XU):

U ðTÞ ¼ a1 � XM þ a2 � XU; ð1Þ
U ðNTÞ ¼ b1 � XM þ b2 � XU: ð2Þ

The measured and unmeasured covariates in equations (1) and (2) rep-
resent any factors affecting the utility of treatment versus no treatment for the
patient. These covariates could represent factors related to patient preferences
over the outcome changes induced by treatment choice (e.g., an actor may
value facial changes from cosmetic surgery more than a construction worker)
or factors affecting the relative effectiveness of treatment (e.g., a child with an
ear infection and a high fever will expect more benefit from an antibiotic than
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a child with an ear infection and a low fever). A patient will choose treatment if
the net utility gain from treatment—NG(T)—is positive:

NGðTÞ ¼ U ðTÞ � U ðNTÞ ¼ ða1 � b1Þ � XM þ ða2 � b2Þ � Xu > 0: ð3Þ
Based on equation (3), patient treatment choices depend on their respec-

tive values of XM and XU. If (a2 � b2) > 0 treated patients will tend to have
higher average values of XU than untreated patients, but with XM also varying
across patients it may be possible to find treated patients with low values of XU

and untreated patients with high values of XU.
If, however, two patients A and B are matched to have identical values

of the measured covariate—X M—and patient A chooses treatment and
patient B does not, it must be that:

NGðTÞA ¼ ða1 � b1ÞX M þ ða2 � b2ÞXu
A > 0

> ða1 � b1ÞX M þ ða2 � b2ÞXU
B ¼ NGðTÞB ð4Þ

where for patient i NG(T)i equals the net gain of treatment and X i
u equals i’s

value of XU. With a fixed value of XM, for equation (4) to hold it must be that
X A
u 6¼ X B

u . If (a2 � b2) > 0 treated patients with matchedXM values must have
higher values of XU than untreated patients. Therefore, across a set of treated
and nontreated patients matched on XM, we would expect greater average dif-
ferences in XU than the average differences in XU between the population of
treated and nontreated patients not matched by XM.

In this study, we demonstrate the covariate balancing properties of PS-
based algorithms through the lens of a simple treatment choice simulation
model in which covariates affecting treatment choice are both measured and
unmeasured. Prior simulation-based research showed that imbalance in
unmeasured covariates related to treatment assignment remains after using
PS-based algorithms (Austin, Grootendorst, and Anderson 2007). Others
have described the extent in which treatment effect estimates from propensity
score-based approaches are sensitive to imbalance in unobserved covariates
(Rosenbaum and Rubin 1983a,b; Lin, Psaty et al. 1998). However, it has not
been shown how PS-based algorithms affect the balance of unmeasured covari-
ates between treated and untreated patients.

In our simulations, we find properties that are problematic for research-
ers hoping to make treatment effect inferences relying only on the expectation
that balancing measured covariate implies balanced unmeasured covariates.
To yield treated and untreated patients with similar propensity scores, we find
that PS algorithms require imbalance in the portion of the variation of the
unmeasured covariates that affect treatment choice that is unrelated to the
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measured covariates. In addition, as compared with the full unweighted sam-
ple, PS algorithms exacerbate the imbalance in the portion of the unmeasured
covariates unrelated to the measured covariates between treated and
untreated patients. This result is directly counter to the assumption often
relied on in applications of propensity score methods that balancing measured
covariates implies balance in the unmeasured covariates that affected treat-
ment choice (Shah et al. 2005).

METHODS

Simulation Model Structure

Wemodified a simple simulation model of treatment choice and outcome that
was used in previous research (Brooks and Fang 2009). In this model, covari-
ates affecting treatment choice are divided between those measured and
unmeasured by a subsequent researcher. A propensity score is estimated for
each simulated patient using the measured covariate. In simulations, the
unmeasured covariates affecting treatment choice are distinguished by their
assumed relationship with the model outcome. For simplicity, outcome in the
model is defined as being “cured” from a given condition. Patients can either
choose the “treatment” or the “alternative” (e.g., another treatment, watchful
waiting). Patients can be cured using the alternative, but the treatment
increases the cure probability relative to the alternative. Patients value being
cured, but treatment is more costly relative to the alternative. Treatment is
specified as a binary variable—T, where T = 1 if the patient chooses treat-
ment, and 0 if the patient chooses the alternative. The probability of a cure, P
(C), is specified in the followingmanner:

P ðCÞ ¼ bo þ bT � T þ bM � XM þ bU1 � XU1 þ bU2 � XU2 þ e: ð5Þ
bT equals the increase in the probability of cure relative to the alternative for a
patient that chooses treatment. The vector b contains the parameters bT, bM,
bU1, and bU2 in equation (5) that equal the changes in the probability of cure
related to T, XM, XU1, and XU2, respectively. Covariates XM, XU1, XU2, and e
have direct effects on P(C) and are distinguished by the assumption that XM is
measured and available for subsequent research, whereas XU1, XU2, and e are
not. Specifically, e represents the accumulated other risk factors related to cure
that are not related to treatment choice.

The model assumes that patients consult with their providers to
gain knowledge of equation (5) and form a treatment valuation relative to the
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alternative—T*—that is based on the value patients associate with a cure, the
cost of treatment, and the effect on treatment valuation frompatient-specific co-
variates:

T � ¼ ðV � bTÞ � Sþ aM � XM þ aU1 � XU1 þ aU3 � XU3 þ aU4 � XU4; ð6Þ
where V is the value patients place on being cured; S equals the incremental
costs associated with the treatment relative to the alternative; XM and XU1 are
defined as in equation (5), and each was specified to have a direct effect on
treatment valuation. XU3 and XU4 are additional unmeasured covariates affect-
ing treatment valuation. XU3 is specified to have an indirect effect on cure
through a correlation with the covariate XU2 that is specified in equation (5):

CorrðXU2;XU3Þ 6¼ 0: ð7Þ
An intuitive example of an XU2, XU3 combination could be XU3 (patient

health preferences) and XU2 (healthy diet). A patient with higher health prefer-
ences may place greater value on treatment (aU3 > 0) and patient health pref-
erences and healthy diet are likely positively correlated. XU4 affects treatment
valuation but has no direct or indirect effect on cure and, given these proper-
ties, would be an instrumental variable if it was measured. The vector a con-
tains the covariate value weights aM, aU1, aU3, and aU4 in equation (6) that
represent changes in treatment valuation from changes in XM, XU1, XU3, and
XU4, respectively.

Following standard discrete choice theory (Ben-Akiva and Lerman
1985), the patient chooses treatment (T) if T* is greater than zero, or:

T ¼ 1 if ðT � ¼ fðV, S, XM;XU1;XU3;XU4; a; bÞ > 0Þ; 0 otherwise ð8Þ
Figure 1 contains a directed acyclic graph summarizing the model rela-

tionships.

Figure 1: Directed Acyclic Graph of Simulation Model Relationships
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XU1 and XU2 represent unmeasured confounding variables in the estima-
tion of the relationship between the likelihood of a cure C and Twhen only
adjusting for XM.

P ðCÞ ¼ b0 þ bT � T þ bM � XM þ error, ð9Þ
where error = (bU1•XU1 + bU2•XU2 + e). Because XU1 and XU2 are in the
error term of this relationship, T would not be orthogonal to the error
term as XU1 is directly related to T and XU2 is indirectly related to T via
its correlation with XU3. As the orthogonal assumption is not valid in this
model, to make inferences on bT from equation (5) using PS algorithms,
it must be assumed that balancing XM between treated and untreated
patients yields balance in XU1 and XU3 (and indirectly XU2) between trea-
ted and untreated patients.

We found little discussion in the literature describing how the char-
acteristics of the relationships among the covariates and outcomes affect
the ability to balance unmeasured covariates between treated and
untreated patients using PS algorithms. Here, we theorized that unmea-
sured covariate balance will be affected by the relative covariate value
weights (a) placed on measured and unmeasured covariates in the treat-
ment valuation equation (6). We suspected that smaller value weights on
the unmeasured covariates (aU1, aU3, aU4) relative to the measured covari-
ate (aM) will require greater differences in the actual unmeasured covari-
ate values to yield treated and untreated patients with matched measured
covariates. In addition, it has been suggested that relationships among the
measured and unmeasured covariates may enable the measured covariates
to serve as proxies for the unmeasured covariates and lead to balance in
the unmeasured covariates (Schneeweiss et al. 2009; Stuart 2010). To eval-
uate this suggestion, the simulation model was constructed to specify rela-
tionships between the XM and the unmeasured covariates XU1, XU3, and
XU4.

We suspect that the stronger the relationships between the measured
and unmeasured covariates, the less independent influence unmeasured cova-
riates will have on treatment choice, and the more difficult it will be to find
matched treated and untreated patients based on propensity scores generated
by the measured covariate. As a result, we expected that as the strength of the
relationship between the measured and unmeasured covariates increases, we
would find greater imbalance between matched treated and untreated patients
in variation in each unmeasured covariate that is unrelated to the measured
covariate.

Squeezing the Balloon 1493



Simulation Approach

Eight simulation scenarios were specified that varied with the value weights
(a) placed on the measured and unmeasured covariates in equation (6) and
the level of relationship between the measured covariate and the unmeasured
covariates. In each scenario, 100,000 simulated patient observations were gen-
erated and the values of the parameters V, S, a, and bwere identical for all sim-
ulated patients. Table 1 contains the parameter values used in the eight
simulation scenarios. Scenarios 1, 2, and 3 were constructed with no relation-
ships among the measured and unmeasured covariates in equation (6), and
the simulations varied only by the value weights (a) assigned to each covariate.
Value weights were assigned to the covariates so that relative value of the
unmeasured covariates fell relative to the measured covariate moving from
scenarios 1 through 3 (aU1, aU3, and aU4 equaled 200, 100, and 50 in scenarios
1, 2, and 3, respectively, whereas aM equaled 100 across all three scenarios).
To better contrast the differences in the covariate balancing properties of pro-
pensity score methods across scenarios 1, 2, and 3, the treatment cost parame-
ter (S) was adjusted to ensure that the expected treatment valuation (T*) in
each scenario equaled zero so approximately 50 percent of the patients in each
scenario chose treatment. In these scenarios, the values of covariates them-
selves—XM, XU1, XU3, and XU4—for each simulated patient were randomly

Table 1: Model Parameters across Simulation Scenarios

Scenarios

1 2 3 4 5 6 7 8

V 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500
bT .2 .2 .2 .2 .2 .2 .2 .2
S 650 500 425 500 500 500 500 500
aM 100 100 100 100 100 100 100 100
aU1 200 100 50 100 100 100 100 100
aU3 200 100 50 100 100 100 100 100
aU4 200 100 50 100 100 100 100 100
Weight* 0 0 0 .1 .3 .5 .7 .9
(R2)† .042 .168 .434 .289 .559 .691 .735 .750

*The value used in equation (11) relating unmeasured covariate i to the measured confounder via:

XUi ¼ ðweightÞ�XM þ ð1� weightÞ�Ei;

where Ei is a uniform random variable (0,1).
†Percentage of variation Texplained by XM in the propensity score equation (12).
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sampled from independent uniform distributions between (0, 1) using the
RANUNI function within the SAS IML procedure. This approach insured
the independence of each covariate across patients. XU2 was then estimated to
ensure a correlation with XU3 using the following linear relationship:

XU2 ¼ ð:5Þ�XU3 þ ð:5Þ�D; ð10Þ
whereD is an independent uniform random variable (0,1).

In scenarios 4 through 8, the covariate value weights (a) were specified
as in scenario 2, but the covariate values of XU1, XU3, and XU4 for each simu-
lated patient were estimated with relationships with XM based on the following
linear models:

XUi ¼ ðweightÞ�XM þ ð1� weightÞ�Ei; ð11Þ
where each Ei was an independent uniform random variable (0,1). In scenar-
ios 2, 4, 5, 6, 7, and 8, “weight” was set to 0, .1, .3, .5, .7, and .9, respectively, so
that the strength of the relationship between the measured and unmeasured
covariates increases across scenarios. In each of these scenarios, XU2 was then
estimated using equation (10) and the covariate XU3.

Propensity Score Approaches Using the Simulated Data

Once treatment choices were generated for the simulated patients in each of
the eight scenarios, a treatment propensity score was estimated for each
patient as the predicted probability of treatment based on a linear probability
model using the measured covariate XM, where XMi equals the value of the
measured covariate for patient i:

T̂i ¼ d̂0 þ d̂MXMi: ð12Þ
T̂i equals the predicted propensity score for patient i given XMi. Table 1

contains the R2 value for each scenario showing the proportion of T variation
described by XM. Using the estimated propensity scores, three distinct PS
algorithms were used to balance XM between treated and untreated patients.
First, simulated patients were stratified into five PS bins using the algorithm
described by D’Agostino (1998). The full sample was grouped into quintiles of
the propensity score, with “Bin 1” containing the fifth of the sample with the
lowest probability of choosing treatment (lowest propensity scores), and “Bin
5” containing the fifth of the sample with the highest probability of choosing
treatment (highest propensity scores). Second, the entire sample was reweight-
ed using the inverse probability weighting algorithm T̂i based on Imbens

Squeezing the Balloon 1495



(2000) and Robins et al. (2000). Third, treated patients were matched with
untreated patients based T̂i on the using matching without replacement and
three different criteria for the required “closeness” of propensity scores to be
considered a match, sometimes referred to as the match “tolerance” or “cali-
per” value; specifically, the match tolerance was varied from 0.1, 0.01, and
0.001 (Stuart 2010).

Within each scenario, the ability of the PS algorithms to balance
covariates was assessed by comparing the means of the measured covari-
ate XM and the unmeasured covariates for treated and untreated patients
within (1) the full unweighted sample; (2) the full sample weighted by
the inverse probability weights; (3) the samples within each of the five
PS-stratified bins; and (4) patient samples matched by propensity scores.
In addition, for each unmeasured covariate XUi, we estimated Ri as the
residual of the regression of XM on XUi. Ri contains the portion of the
XUi variance that is not “redundant” with XM. We assessed the impact on
the balance of these residuals between treated and untreated patients
using each PS sampling approach in each scenario.

RESULTS

The results for all model covariates and cure rates for each simulation scenario
are provided in the Appendices. Appendices A, B, C, D, and E contain results
for XU1, XU2, XU3, XU4, and cure (C), respectively. For comparison purposes,
each appendix contains the results for XM. The Appendices report the means
of each covariate for the treated and untreated patients and the mean differ-
ence between the treated and untreated patients for each model scenario and
sampling approach. Appendices A–D also contain results for each Ri—the
portion of XUi unrelated XM that was measured as the residuals of the regres-
sion of XM on each XUi–Ri.

General Results across Scenarios

The first row for each scenario in the appendices shows the imbalance for each
model covariate between treated and untreated patients in the full unweighted
sample. For example, in scenario 2 in Appendix A, the mean of XM is .617 for
treated patients and .380 for untreated patients for a difference of .237; and
the mean of R1 is .115 for treated patients and �.115 for untreated patients for
a difference of .230. The remaining rows under each scenario show the means
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of each model covariate for treated and untreated patients for the respective
PS algorithm. In scenario 2 in Appendix A, using the matching algorithm with
(.01) tolerance, the mean of XM is .494 for treated patients and .505 for
untreated patients for a difference of .011, and themean ofR1 is .138 for treated
patients and �.137 for untreated patients for a difference of .275. As a result,
matching by propensity scores decreased the imbalance in the measured covari-
ate XM by 95 percent (100*(.237–.011)/.237) but increased imbalance in R1—
the portion of XU1 unrelated to XM—by 20 percent (100*(.230–.275)/.275).
Table 2 contains a summary of the change in imbalance between treated and
untreated patients moving from the full unweighted sample to each
PS-adjusted sample for XM and the portion of the variation in each unmea-
sured covariate that that is unrelated to XM – R1, R2, R3, & R4, for the covariates
XU1, XU2, XU3, & XU4, respectively. In every scenario, for every unmeasured covari-
ate related to treatment choice, the imbalance in the portion of those covariates
that is unrelated to XM always increases when moving from the full unweighted
sample to PS-adjusted samples.

Table 2: Percent Reduction (Increase) in Sample Mean Difference (Treated–
Untreated) from PS Methods for the Measured Covariate XM, and the Inde-
pendent Portions of the Unmeasured Covariates Affecting Treatment Choice
R1, R3, and R4

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
5

Scenario
6

Scenario
7

Scenario
8

XM

Binning* 95.5% 95.7% 93.5% 94.9% 91.1% n/a n/a n/a
Matching† 85.7 95.4 98.9 97.7 99.1 99.2% 99.0% 98.4%
Weighting 100.8 101.3 122.6 100.0 61.3 22.7 16.8 15.0
R1

Binning* �4.4 �20.0 �81.5 �42.0 �157.4 n/a n/a n/a
Matching† �3.9 �19.6 �76.1 �40.0 �130.2 �323.5 �720.0 �2,200.0
Weighting �4.6 �21.9 �117.9 �53.3 �88.6 �75.0 �33.3 �66.7
R3

Binning* �4.5 �20.3 �82.8 �41.5 �155.1 n/a n/a n/a
Matching† �3.8 �19.7 �75.6 �28.0 �134.9 �343.8 �730.0 �2,300.0
Weighting �4.6 �21.4 �111.0 �51.6 �101.2 �71.9 �70.0 �40.0
R4

Binning* �4.2 �19.9 �83.3 �41.3 �155.3 n/a n/a n/a
Matching† �4.2 �18.5 �74.4 �38.5 �131.4 �334.4 �740.0 �2,500.0
Weighting �4.9 �21.6 �111.3 �53.8 �95.3 �68.8 �60.0 �70.0

*Average across 5 PS-quintile “bins,” n/a when not all five bins contained patients.
†Formatch tolerance value = 0.01 (for matched portion of total sample only).
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Appendix E contains differences in cure rates for each scenario between
treated and untreated patients for the full unweighted sample and each
PS-adjusted sample. Table 3 summarizes the treatment effect estimates across
scenarios using propensity score methods and standard regression estimators.
In all scenarios, the true value of bT, the incremental effect of treatment on the
probability of a cure, is 0.2. The unmeasured confounding covariates in each
scenario—XU1 and XU2—are both positively related to treatment choice and
the probability of cure. Therefore, the direct estimation of the effect of treat-
ment on cure after controlling for XM alone should yield estimates of treat-
ment effect that are biased high. Column I in Table 3 shows the difference in
cure probabilities between treatment and untreated patients without adjusting
for XM. Column II contains the regression-based treatment effect estimate
using the full unweighted sample after controlling for XM. Regression-based
estimates only come close to the true value of bTwhen XM is highly correlated
with the unmeasured confounders as in scenarios 7 and 8. Columns III, IV,

Table 3: Treatment Effect Estimates by Scenario Using (1) Regression and
(2) Differences between the Cure Rate for the Treated and Untreated Patients
from Propensity Score Algorithms

I II III IV V

Matching Tolerance
Based on Propensity

Score¶

Scenario Truth
No

Control*
Regression Estimate
Controlling for XM

†

Inverse
Probability
Weighting‡

Average
across
Bins§ .1 .01 .001

1 .200 .263 .254 .255 .255 .263 .258 .257
2 .200 .273 .257 .257 .257 .268 .261 .260
3 .200 .271 .260 .286 .265 .265 .262 .261
4 .200 .275 .254 .255 .256 .261 .254 .253
5 .200 .282 .232 .256 .239 .240 .234 .233
6 .200 .304 .227 .291 .239 .242 .231 .233
7 .200 .318 .203 .299 .223 .220 .212 .210
8 .200 .338 .194 .316 .220 .213 .222 .225

*Difference in cure rates between treated and untreated patients without control for XM.
†Linear multiple regression estimate of the effect of T on cure controlling for XM.
‡Weighted difference in cure rates between treated and untreated patients with weights based on
the propensity score.
§Average of the difference in cure rates between treated and untreated patients across the five pro-
pensity score bins.
¶Difference in cure rates between propensity score-matched treated and untreated patients.
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and V contain estimates using inverse probability weighting, binning, and
matching, respectively. Although differences in the extent of bias across esti-
mation approaches were generally small, the treatment effect estimates gener-
ated via the propensity score algorithms were generally larger (more biased)
than regression estimates with only one exception (the matching estimate in
scenario 4 using .001 tolerance). Nonetheless, these simulation results suggest
that propensity score algorithms are unlikely to reduce the bias in estimated
treatment effects compared with regression estimates in the presence of
unmeasured confounders.

Smaller Unmeasured Covariate Value Weights Increase Unmeasured Covariate
Imbalance

Scenarios 1, 2, and 3 were constructed with variation in the value weights
placed on each covariate in the treatment value relationship but with no rela-
tionships between the measured and unmeasured covariates. The treatment
value weights applied to the unmeasured covariates fall relative to the value
weight placed on the measured covariate moving from scenario 1 to scenario
3. Figures 2 and 3 summarize these results focusing on XM and the portion of
XU1 variation unrelated to XM–R1. Figures 2 and 3 show the percent change in

Figure 2: Percent Reduction (Increase) in Sample Mean Difference (Treated–
Untreated) from PS Binning for XM and R1, by Unmeasured Covariate Effect
Size (aU1)
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difference in XM and R1 balance between treated and untreated patients as a
result of propensity score binning and propensity score matching, respec-
tively. The green lines represent the balance change for the scenario with the
lowest relative treatment value weight placed on the unmeasured covariates.
Regardless of propensity scoremethod used, the smaller the relative treatment
weight placed on the unmeasured covariates, the greater the increase in the
imbalance in unmeasured covariates when propensity score methods are
applied (Figures 2b and 3b). This occurs because smaller relative value
weights placed on the unmeasured requires greater differences in these covari-
ates between treated and untreated patients for them to match on the mea-
sured covariate XM. Interestingly, with respect to XM, the ability to balance XM

falls with relative value weights placed on the unmeasured covariates using
the propensity score binning approach (Figure 2a), whereas it increases with
relative value weights placed on the unmeasured covariates using the match-
ing approach (Figure 3a). The matching process appears to do a better job
eliminating matches dissimilar in XM when the unmeasured covariates have
less weight in treatment choice. However, the number of simulated treated
and untreated patients that are matched falls with relative value weights placed
on the unmeasured covariates.

Figure 3: Percent Reduction (Increase) in Sample Mean Difference (Treated–
Untreated) from PS Binning for XM and R1, by Unmeasured Covariate Effect
Size (aU1)
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Greater Correlation between Measured and Unmeasured Covariates Increases
Unmeasured Covariate Imbalance

Scenarios 2, 4, 5, 6, 7, and 8 have consistent treatment value weights across
covariates, but they vary with the strength of the relationships between the
measured and unmeasured covariates. The strength of the relationships
between XM and the unmeasured covariates increases moving from scenarios 2
through 8. Figures 4 and 5 summarize these results, focusing on XM and the
portion of XU1 variation unrelated to XM – R1. Figures 4 and 5 show the per-
cent change in difference in XM and R1 balance between treated and untreated
patients as a result of propensity score binning and propensity score matching,
respectively. Both figures show that as XM explains more of the variation in
the unmeasured covariates, the more difficult it is to find patients that made
different treatment choices with similar propensity scores. For example, in sce-
nario 8, no treated patients were found in propensity score bins 1 and 2, and
no untreated patients were found in bins 4 and 5. Likewise, in scenario 8 only
1,112 treated patients were matched to an untreated patient using matching

Figure 4: Percent Reduction (Increase) in Sample Mean Difference (Treated–
Untreated) from PS Binning for XM and R1, by Correlation between XM, XU1

(qM,U1)

Note. [1] Empty cells in Bins 1 and 5; [2] Empty cells in Bins 1, 2, 4, and 5.
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tolerance of .001. Regardless of the propensity score method used, the imbal-
ance in R1 between treated and untreated patients increases with the strength
of the relationships between XM and the unmeasured covariates. With respect
to balancing XM, stronger relationships between XM and the unmeasured co-
variates moving from scenarios 2 through 8 are similar to decreasing the treat-
ment value weights moving from scenarios 1–3. The ability to balance XM

falls with stronger relationships with the unmeasured covariates using the pro-
pensity score binning approach (Figure 4a), whereas it increases using the
matching approach (Figure 5a). The matching process does a better job elimi-
nating matches dissimilar in XM when the unmeasured covariates have less
independent effect on treatment choice, but the number of matched simulated
treated and untreated patients falls dramatically.

DISCUSSION

It has been suggested that researchers estimating treatment effects using obser-
vational data should use propensity score-based algorithms to mimic a ran-
domized controlled trial design. The strength of randomization, however, is
the assumption that it will evenly distribute covariates (both measured
and unmeasured) across treated and untreated patients. The results of

Figure 5: Percent Reduction (Increase) in Sample Mean Difference (Treated–
Untreated) from PS Matching for XM and R1, by Match Tolerance Factor
(±0.1, ±0.01, ±0.001)
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randomization are often reinforced in studies by demonstrating balance in
measured covariates. In addition, many researchers using propensity score
methods to estimate treatment effects with observational data imply that the
measured covariate balance produced by these methods results in unmea-
sured covariate balance (Shah et al. 2005).

Our simple simulation model suggests that balancing measured
covariates between treated and untreated patients actually has opposite
implications for randomized and observational studies. We first showed
that to balance measured covariates, PS algorithms require the existence
of unmeasured covariates with variation unrelated to the measured co-
variates. This independent variation is needed to ensure that patients with
similar propensity scores are observed making different treatment choices.
Second, whereas demonstrated measured covariate balance between trea-
ted and untreated patients resulting from ex ante randomized treatment
assignment reinforces the notion that all covariates are balanced, we
showed that the forced balance of measured covariates using PS-based
algorithms based on ex post treatment selection in observational studies
exacerbates the imbalance in the variation of the unmeasured covariates
that is unrelated to the measured covariates. In addition, the greater the
impact that measured covariates have on treatment choice relative to
unmeasured covariates, the more that the forced balance of measured cova-
riates increases unmeasured covariate imbalance. This can be likened to
squeezing a balloon. When a set of patients making different treatment
decisions are forced to be balanced on one set of covariates (measured),
this must be compensated by increased imbalance in the remaining
unmeasured covariates affecting treatment choice. These results have
implications on the use of higher dimensional propensity scores for
balancing treated and untreated patients (Rassen, Brookhart et al. 2009;
Schneeweiss et al. 2009). The more the variation in treatment choice that
is explained by measured covariates, the harder it is to match treated and
treated patients and the more imbalance in the unmeasured covariates
will occur between the treated and untreated patients that are matched
by propensity scores.

Because of these results, for PS methods to yield unbiased treatment
effect estimates, the remaining factors affecting treatment choice have to have
the properties of XU4, which would be natural instruments if they were mea-
sured. Treatment variation caused by the class of variables XU4 can be thought
of as “good” treatment variation that is tantamount to a natural experiment,
but theory is required to justify the notion that all remaining treatment
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variations are from the class of variables XU4. This is why researchers should
not put measured covariates thought to be instruments in propensity score
models because this reduces the amount of “good” treatment variation used to
estimate treatment effects (Bhattacharya and Vogt 2007).

CONCLUSION

We used a simple model of treatment choice and outcome to assess the effect
of propensity algorithms that balance measured covariates between treated
and untreated patients on the balance of unmeasured covariates between these
patients. We found that propensity score algorithms that balance measured
confounders between treated and untreated patients exacerbate imbalance for
these same patients in a portion of the variation in unmeasured confounders
that is unrelated to measured covariates. However, independent variation in
the unmeasured covariates is required for propensity score algorithms to bal-
ance measured covariates between treated and untreated patients. Although
our simulation model was simple, we challenge researchers to construct alter-
native models in which in the independent variation in the unmeasured cova-
riates that affect treatment choice becomes more balanced as a result of using
propensity score algorithms to balance measured covariates. As in regression-
based estimation, researchers using propensity score algorithms still must
provide theoretical justification for the assumption that the unmeasured cova-
riates affecting treatment choice have no direct or indirect effects on study
outcomes. Indeed, based on the results here, acceptance of this assumption
appears to be even more critical when using propensity score methods as the
imbalance between treated and untreated patients in the portion of the varia-
tion of the unmeasured covariates unrelated to the measured covariates will
increase. As a result, if the unmeasured covariates affecting treatment choice
are confounders, propensity score methods can exacerbate the bias in treat-
ment effect estimates.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
article:

Appendix A: Mean Measured (XM) and Unmeasured Covariate (XU1)
Values across Model Scenarios.

Appendix B: Mean Measured (XM) and Unmeasured Covariate (XU2)
Values across Model Scenarios.

Appendix C: Mean Measured (XM) and Unmeasured Covariate (XU3)
Values across Model Scenarios.

Appendix D: Mean Measured (XM) and Unmeasured Covariate (XU4)
Values across Model Scenarios.
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Appendix E: Mean Measured (XM) and Cure (C) Rates across Model
Scenarios.

Appendix SA1: AuthorMatrix.
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