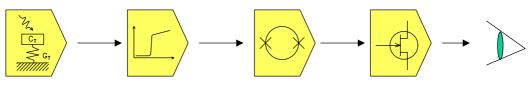
SQUID-based Readout Schemes for Microcalorimeter Arrays

- Mikko Kiviranta
- Heikki Seppä
- Jari S. Penttilä
- Juha Hassel

- Jan van der Kuur
- Piet de Korte
- Martin Frericks
- Wouter van Kampen
- Piet de Groene



The Space Research Organization of the Netherlands

Motivated by the **XEUS** mission by the **ESA**

Single-pixel signal path

Absorber

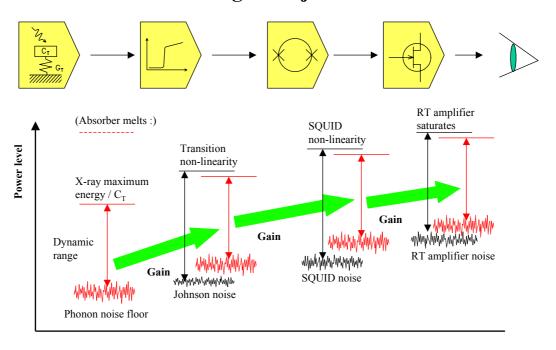
Bandwidth

Transition edge

SQUID amplifier

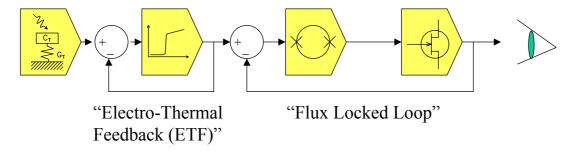
Room-temperature amplifier

Non-fedback bare parameters:

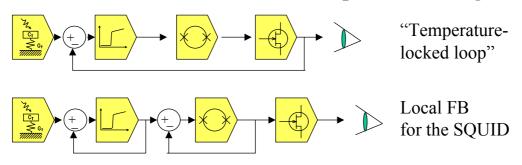

Power gain $\frac{1}{2}\alpha \left(1 - \frac{T_{bath}}{T}\right)$ $\left(8\pi\omega^2 L_{SQ}C_j\right)^{-1}$ Can be very large

Input coil Can be up to GHz's resonance or more

Dynamic $\frac{\Delta T}{T} \sqrt{\frac{G_T}{4k_B}}$ $\frac{\Phi_0}{9.8 L_{SO}^{3/4} C_j^{1/4} \sqrt{k_B T}}$ ~ 10⁹ with standard analog circuits

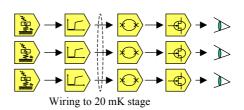

Use negative feedback to trade gain for bandwidth & dyn range Use positive feedback to trade BW & dyn range for gain

The designer's job

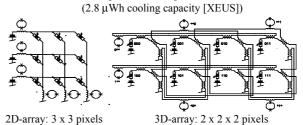


- Take care of the bandwidths, too.
- FB modifies input & output impedances (noise matching)

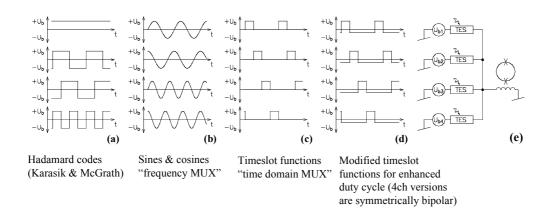
Standard arrangement for the feedback paths ...

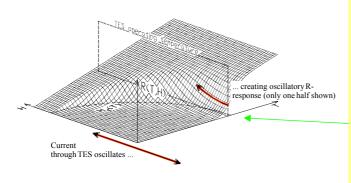

... but there's a number of other possibilities, eg. :

What if we have a large number of pixels?


Direct readout:

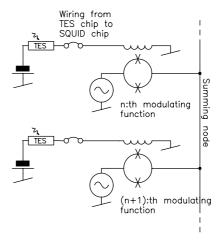
- Feasible (compare: MEG devices)
- Heat leak through the wires
- Complex and fragile


Correlation-based schemes:


- Noises are summed bad
- Acceptable only when SNR can tolerate summation

Multiplexing:

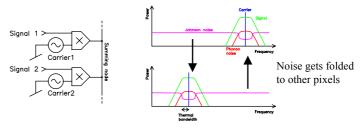
- Fingerprint signals by multiplying by an orthogonal set of functions $f_1(t)$, $f_2(t)$... (sines & cosines; Hadamard functions; wavelets ...)
- Sum to a single wire
- Detect the signals by multiplying with the same set $f_1(t)$, $f_2(t)$... and integrate over all times
- Multiplier: (i) TES, (ii) SQUID, (iii) some extra device

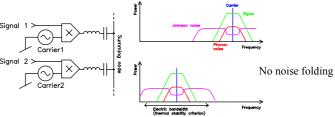


TESes as modulators

- $I(t) = G(t) \times U_b(t)$
- Conductance G carries the signal
- Bias voltage carries the modulating function
- No direct thermal response: average RMS heating
- Magnetic nonlinearity?
- Only *N* wires from TES chip to SQUID chip for *N*×*M* pixels
- Only N SQUIDs

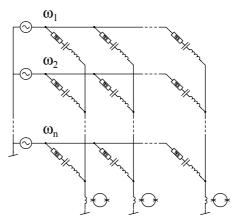
SQUID as modulator

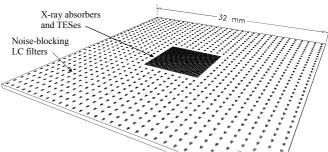

- Signal is multiplied by SQUID response function $I = MI_{TES} \times \partial I / \partial \Phi$.
- $\partial I/\partial \Phi$ is a non-linear function of U_h
- Works best with two-level mod-functions
- $m \times n$ wires from TES chip to SQUID chip, if cannot be integrated monolithically

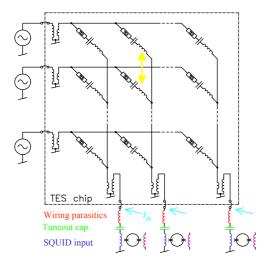

Noise folding

- Wideband noise is added after the modulator
- The noise from a given pixel aliases into *frequency bands / timeslots / codes* of other pixels
- (i) Provide gain so that noise summing can be tolerated.
- (ii) Use frequency-preferring / timeslot-preferring / code-preferring noise blocker.
- In case of freq. MUX, the blocker is just an LC resonator
- With other MUX schemes, active elements and external clock signal feeds are needed

Without noise blockers

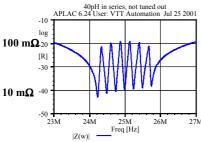


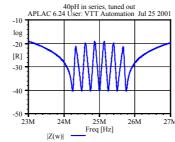

With noise blockers

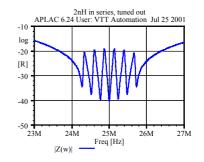

Filter implementation

- L is set by stability requirement
- 80 nH fits in $\sim 0.2 \times 0.2$ mm
- C implementability sets lower limit to f ~ 25 MHz
- Magnetic cross-coupling demands
 - ~ 1 mm filter-to-filter separation:
 - (i) crosstalk between different columns
 - (ii) limits total BW available to a column
- Band separation
 - Only to avoid noise folding
 - Channel confusion: taken care by post-detection filters

Common inductance in a column




- Magnetic cross-coupling (example) appears as common series inductance, like L_n
- Parasitic inductance L_p in wiring: reactive part tuned out with C_c , L_p limits the bandwidth.
- \bullet Transformers ramp up the impedance level, to help with parasitic \boldsymbol{L}
- SQUID input inductance L_{in} can be screened away with negative feedback
- Feedback by flux injection or current injection


Quantum-limited bandwidth:

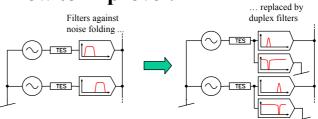
$$\varepsilon = \frac{1}{2} L_{in} I_n^2 = \frac{R I_n^2}{4\pi \Delta t}$$

XEUS: $R = 10 \text{ m}\Omega$ 24 hbar for 32 chans separated by 200 kHz

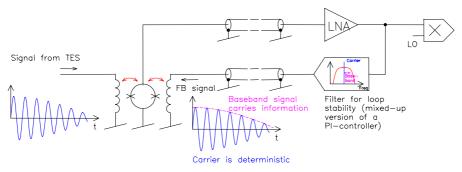
Dynamic range

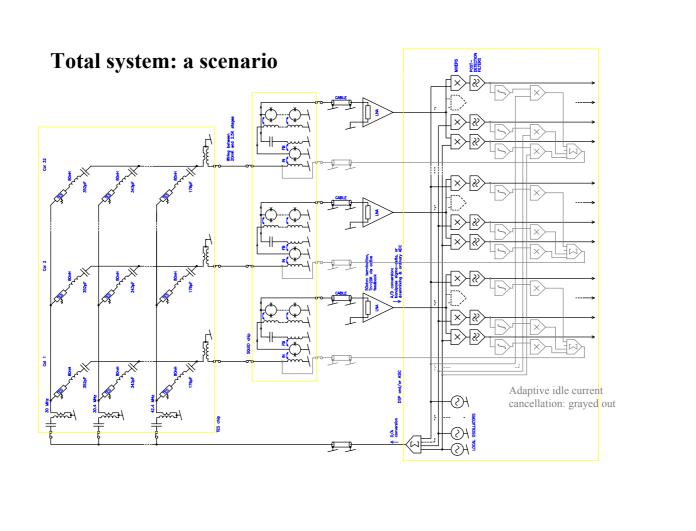
TES current:
$$\frac{I_{pp}}{I_n} = \frac{2\sqrt{2} \times 2.36 \times E_{\text{max}}}{\Delta E_{FWHM} \sqrt{\tau_i}} \sim 5 \times 10^6 \text{ for XEUS}$$

SQUID:
$$\frac{\Phi_{0}/2}{\Phi_{n}} = \frac{\Phi_{0}}{9.8L_{SQ}^{3/4}C_{j}^{1/4}\sqrt{k_{B}T}} \qquad \begin{array}{l} \sim 2.4 \times 10^{7} \text{ for } T = 1 \text{ K}, \\ C_{j} = 0.5 \text{ pF}, L_{SQ} = 4 \text{ pH} \\ (\epsilon \sim 2.2 \text{ hbar}) \end{array}$$


SQUID:
$$\frac{\Phi_0/2}{\Phi_n} = \frac{\Phi_0}{5.3L_{SQ}^{3/4}C_j^{1/4}\sqrt{k_BT_n}}$$
 $\sim 8 \times 10^6$, when
$$Tn = 10 \text{ K} + 20 \text{ K}$$
 (for 30MHz RT amp + cables)

Need some more dynamic range for linearity?


- Harmonic production by an event ? (No, falls above the signal band)
- Mixing between an event & imperfect idle current balancing? (Probably not)
- Mixing between two coincident events? (Not likely if pixels are scattered)
- Gain stability ? (Probably yes)


Dynamic range - how to improve?

• Alleviate DR requirement? Increase integration time (= filter settling time), still retaining thermal stability condition.

- Array SQUID for sqrt(n) -fold DR improvement?
- Long negative feedback at carrier freq. through RT not feasible, but...
 - ... (i) FB through low-dissipation MOS amplifier at 20 K?
 - ... (ii) FB through RT at baseband rather than carrier frequency?

