
Articles
https://doi.org/10.1038/s41592-021-01358-2

1Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany. 2TUM School of Life Sciences Weihenstephan, Technical University
of Munich, Munich, Germany. 3Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Munich, Germany.
4Department of Mathematics, Technical University of Munich, Munich, Germany. 5Department of Anatomy and Physiology, University of Melbourne,
Melbourne, Victoria, Australia. 6These authors contributed equally: Giovanni Palla, Hannah Spitzer. ✉e-mail: fabian.theis@helmholtz-muenchen.de

Dissociation-based single-cell technologies have enabled the
deep characterization of cellular states and the creation of
cell atlases of many organs and species1. However, how cel-

lular diversity constitutes tissue organization and function is still
an open question. Spatially resolved molecular technologies aim
at bridging this gap by enabling the investigation of tissues in situ
at cellular and subcellular resolution2–4. In contrast to the current
state-of-the-art dissociation-based protocols, spatial molecular tech-
nologies acquire data in greatly diverse forms, in terms of resolution
(few cells per observation to subcellular resolution), multiplexing
(dozens of features to genome-wide expression profiles), modality
(transcriptomics, proteomics and metabolomics) and often with an
associated high-content image of the captured tissue2–4. Such diver-
sity in generated data and corresponding formats currently repre-
sents an infrastructural hurdle that has hampered urgently needed
development of interoperable analysis methods. The underlying
computational challenges lie in efficient data representation as well
as comprehensive analysis and visualization methods.

Existing analysis frameworks for spatial data focus either on pre-
processing5–8 or on one particular aspect of spatial data analysis9–13.
The combination of different analysis steps is still hampered by the
lack of a unified data representation and of a modular application
programming interface, for example loading processed data from
Starfish5, combining stLearn’s11 integrative analysis of tissue images
together with Giotto’s powerful spatial statistics13, BayesSpace spa-
tial clustering14 or leveraging state-of-the-art deep-learning-based
methods for image segmentation15,16 and visualization17. A com-
prehensive framework that enables community-driven scal-
able analyses of both spatial neighborhood graph and image,
along with an interactive visualization module, is missing
(Supplementary Table 1).

For this purpose we developed ‘Spatial Quantification of
Molecular Data in Python’ (Squidpy), a Python-based framework
for the analysis of spatially resolved omics data (Fig. 1). Squidpy
aims to bring the diversity of spatial data in a common data

representation and provide a common set of analysis and interactive
visualization tools. Squidpy introduces two main data representa-
tions to manage and store spatial omics data in a technology-agnostic
way: a neighborhood graph from spatial coordinates and
large-source tissue images acquired in spatial omics data (Fig. 1b).
Both data representations leverage sparse18 or memory-efficient19
approaches in Python for scalability and ease of use. They are also
able to deal with both two-dimensional and three-dimensional (3D)
information, thus laying the foundations for comprehensive molec-
ular maps of tissues and organs. Such infrastructure is coupled with
a wealth of tools that enable the identification of spatial patterns
in tissue and the mining and integration of morphology data from
large tissue images (Fig. 1c). Squidpy is built on top of Scanpy and
Anndata20 and it relies on several scientific computing libraries in
Python, such as Scikit-image21, Napari22 and Dask19. Its modularity
makes it suitable to be interfaced with a variety of additional tools in
the Python data science and machine-learning ecosystem (such as
external segmentation methods and modern deep-learning frame-
works), as well as several single-cell data analysis packages. It pro-
vides a rich documentation, with tutorials and example workflows,
integrated in the continuous integration pipeline. It allows users to
quickly explore spatial datasets and lays the foundations for both
spatial omics data analysis as well as development of new methods.
Squidpy is available at https://github.com/theislab/squidpy; docu-
mentation and extensive tutorials covering the presented results and
more are available at https://squidpy.readthedocs.io/en/latest/.

Results
Squidpy provides infrastructure and analysis tools to iden-
tify spatial patterns in tissue. Spatial proximity is encoded in
spatial graphs, which require flexibility to support the variety
of neighborhood metrics that spatial data types and users may
require. For instance, in Spatial Transcriptomics (ST23, Visium24
and DBit-seq25), a node is a spot and a neighborhood set can be
defined by a fixed number of adjacent spots (square or hexagonal

Squidpy: a scalable framework for spatial omics
analysis
Giovanni Palla   1,2,6, Hannah Spitzer   1,6, Michal Klein1, David Fischer   1,2, Anna Christina Schaar1,2,
Louis Benedikt Kuemmerle   1,3, Sergei Rybakov1,4, Ignacio L. Ibarra1, Olle Holmberg1, Isaac Virshup   5,
Mohammad Lotfollahi   1,2, Sabrina Richter   1,2 and Fabian J. Theis   1,2,4 ✉

Spatial omics data are advancing the study of tissue organization and cellular communication at an unprecedented scale.
Flexible tools are required to store, integrate and visualize the large diversity of spatial omics data. Here, we present Squidpy, a
Python framework that brings together tools from omics and image analysis to enable scalable description of spatial molecular
data, such as transcriptome or multivariate proteins. Squidpy provides efficient infrastructure and numerous analysis methods
that allow to efficiently store, manipulate and interactively visualize spatial omics data. Squidpy is extensible and can be inter-
faced with a variety of already existing libraries for the scalable analysis of spatial omics data.

Nature Methods | VOL 19 | February 2022 | 171–178 | www.nature.com/naturemethods 171

mailto:fabian.theis@helmholtz-muenchen.de
https://github.com/theislab/squidpy
https://squidpy.readthedocs.io/en/latest/
http://orcid.org/0000-0002-8004-4462
http://orcid.org/0000-0002-7858-0936
http://orcid.org/0000-0002-1293-7656
http://orcid.org/0000-0002-9193-1243
http://orcid.org/0000-0002-1710-8945
http://orcid.org/0000-0001-6858-7985
http://orcid.org/0000-0001-6101-2783
http://orcid.org/0000-0002-2419-1943
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-021-01358-2&domain=pdf
http://www.nature.com/naturemethods

Articles Nature MetHodS

grid; Fig. 2a), whereas in imaging-based molecular data (seqFISH26,
MERFISH27, Imaging Mass Cytometry28,29, CyCif30, 4i31 and Spatial
Metabolomics32; Fig. 2a), a node can be defined as a cell (or pixel)
and a neighborhood set can also be chosen based on a fixed radius
(expressed in spatial units) from the centroid of each observation.
Alternatively, other approaches, such as Euclidean distance or
Delaunay triangulation, can be utilized to build the neighbor graph
(Fig. 2a). Squidpy can compute all the aforementioned modalities
thus making it technology-agnostic and providing the infrastruc-
ture for downstream analysis tools that aim at quantifying spatial
organization of the tissue.

A key question in the analysis of spatial molecular data is
the description and quantification of spatial patterns and cel-
lular neighborhoods across the tissue. Squidpy provides several
tools that leverage the spatial graph to address such questions.
On a recently published seqFISH33 dataset we built a spatial
nearest-neighbor graph based on Delaunay triangulation and
computed a permutation-based neighborhood enrichment across
cell-type annotations (Methods). Clusters of enriched cell types
(such as ‘Lateral plate mesoderm’ with ‘Allantois’ and ‘Intermediate

mesoderm’ clusters, ‘Endothelium’ with ‘Hematoendothelial pro-
genitors’; Fig. 2b) are consistent with the original publication33
and the spatial proximity can be visualized in Fig. 2c. A similar
analysis was performed on a MERFISH dataset34, where we could
identify a neighborhood enrichment between ‘Endothelial 2’ and
‘Pericytes’ clusters, whereas the ‘Ependymal’ cluster shows a strong
co-enrichment with itself but depleted enrichment with the other
clusters (Fig. 2d,e shows selected clusters and Supplementary
Fig. 2g shows the the full dataset). Furthermore, our implementa-
tion is scalable and ~tenfold faster than a similar implementation
in Giotto13 (Supplementary Fig. 1a,b and Supplementary Table 2
show extensive comparisons), enabling analysis of large-scale spa-
tial omics datasets. Sparse and scalable implementation in Squidpy
enables working with subcellular-resolution spatial data such
as 4i31. We considered ~270,000 pixels as subcellular resolution
observations across 13 cells (Fig. 2f) and evaluated their cluster
co-occurrence at increasing distances (Fig. 2g). As expected, the
subcellular measurements annotated in the nucleus compartment
co-occur together with the nucleus and the nuclear envelope, at
short distances. The co-occurrence score represents an interpretable
score to investigate patterns of spatial organization in tissue. When
applied to a SlideseqV2 dataset35 (Fig. 2h), the co-occurrence score
could provide a quantitative indication of a qualitative observation
that the ‘Endothelial_Tip’ cluster shows a strong co-occurrence with
the ‘Ependymal’ cluster (Fig. 2i). To obtain a global indication of the
degree of clustering or dispersion of a cell-type annotation in the tis-
sue area, the Ripley’s L can be computed. When applied to the same
dataset (Fig. 2j), it highlighted how the ‘CA1 CA2 CA3 Subiculum’
and the ‘Dentate Pyramids’ annotations have a more ‘clustered’
spatial patterning than other annotations, such as the ‘Endothelial
Stalk’. Squidpy implements three variations of the Ripley statistic
(L, F and G; Supplementary Fig. 2b provides an additional example)
that allows one to gain a global understanding of spatial pattern-
ing of discrete covariates. Finally, to identify genes that show strong
spatial variability, we applied the Moran’s I spatial autocorrelation
statistics (Methods) and visualized the three top genes (Fig. 2k; Ttr,
Mbp and Hpca), which all show different spatial patterns and seem
to largely colocalize with cell-type annotations (‘Endothelial Tip’,
‘Oligodendrocytes’ and ‘CA1 CA2 CA3 Subiculum’, respectively).

These statistics yield interpretable results across diverse experi-
mental techniques, as demonstrated on an Imaging Mass Cytometry
dataset36, where we showcase additional methods such as Ripley’s
F function, average clustering and degree and closeness centrality
(Supplementary Fig. 2). In conclusion, Squidpy provides a suite
of orthogonal analysis tools that enable analysts to gain a quan-
titative understanding of the spatial organization of cellular and
subcellular units.

Squidpy enables analysis and visualization of large images in
spatial omics data. The high-resolution microscopy image addi-
tionally captured by spatial omics technologies represents a rich
source of morphological information that can provide key bio-
logical insights into tissue structure and cellular variation. Squidpy
introduces a new data object, the ImageContainer, which efficiently
stores the image with an on-disk/in-memory switch based on xAr-
ray and Dask19,37. This object provides a general mapping between
pixel coordinates and molecular profiles, enabling analysts to relate
image-level observations to omics measurements (Fig. 3a). It pro-
vides seamless integration with napari22, thus enabling interactive
visualization of analysis results stored in an Anndata object along-
side the high-resolution image directly from a Jupyter notebook.
It also enables interactive manual cropping of tissue areas and
automatic annotation of observations in Anndata. As napari is an
image viewer in Python, all the above-mentioned functionalities
can be also interactively executed without additional requirements.
Following standard image-based profiling techniques38, Squidpy

Interface with
ML Python
ecosystem

Spatial
graph

ImageContainer

Interactive visualizationSpatial neighbourhood

Ligand–receptor interactions

Spatial statistics

+ Anndata

Spatial omics data

Visium seqFISH Merfish

IMC 4i CyCIF

Image features

Nuclei segmentation

a

b

c

Fig. 1 | Squidpy is a software framework for the analysis of spatial
omics data. a, Squidpy supports inputs from diverse spatial molecular
technologies with spot-based, single-cell or subcellular spatial resolution.
b, Building upon the single-cell analysis software Scanpy20 and the
Anndata format, Squidpy provides efficient data representations of
these inputs, storing spatial distances between observations in a spatial
graph and providing an efficient image representation for high-resolution
tissue images that might be obtained together with the molecular data.
c, Using these representations, several analysis functions are defined
to quantitatively describe tissue organization at the cellular (spatial
neighborhood) and gene level (spatial statistics, spatially variable
genes and ligand–receptor interactions), to combine microscopy image
information (image features and nuclei segmentation) with omics
information and to interactively visualize high-resolution images.

Nature Methods | VOL 19 | February 2022 | 171–178 | www.nature.com/naturemethods172

http://www.nature.com/naturemethods

ArticlesNature MetHodS

b c

ed

Co-occurrence score

j

p(
ex

p|
en

do
th

el
ia

l_
T

ip
)

p(
ex

p)

p(
ex

p
| n

uc
le

ol
us

)

p(
ex

p)

R
ip

le
y'

s
L

Distance

Square Hex Delaunay KNNRadius

GenericGrida

i k

f g

h

Forebrain/midbrain/hindbrain
Spinal cord

Splanchnic mesoderm
Neural crest

Surface ectoderm
Mixed mesenchymal mesoderm

Definitive endoderm
Low quality

Erythroid
Dermomyotome

Intermediate mesoderm
Allantois

NMP
Anterior somitic tissues

Sclerotome
Hematoendothelial progenitors

Dermomyotome

Endothelium
Hematoendothelial progenitors
Intermediate mesoderm

Lateral plate mesoderm
Presomitic mesoderm

Ependymal 50.00

38.89

27.78

16.67

5.56

–5.56

–16.67

–27.78

–38.89

–50.00

4

3

2

1

0

50

3

150

100

50

0
0 250 500 750 1,000

2

1

500 1,000 1,500

Distance

2,000 2,500

100
Distance

Ttr

Hpca Mbp

4

2

0

4

2

3

1

0

2

3

1

0

OD mature 2
OD mature 1
OD mature 4

OD Immature 2
OD mature 3
Endothelial 3
Endothelial 1

Astrocyte
Microglia

OD Immature 1
Ambiguous

Excitatory
Pericytes

Endothelial 2
Inhibitory

NA

Allantois

Cell_periphery_2
Cell_periphery_3
ER_mitochondria_1
ER_mitochondria_2
Endosomes_Golgi_1
Endosomes_Golgi_2
Nuclear_envelope
Nucleolus
Nucleus

Cell_periphery_1

Astrocytes
CA1_CA2_CA3_Subiculum
DentatePyramids
Endothelial_Stalk
Endothelial_Tip
Ependymal
Interneurons
Microglia
Mural
Neurogenesis
Oligodendrocytes
Polydendrocytes
Subiculum_Entorhinal_cl2
Subiculum_Entorhinal_cl3

Spatial_1

Spa
tia

l_2

S
pa

tia
l_

3

Endothelium
Cranial mesoderm

Lateral plate mesoderm
Presomitic mesoderm

Gut tube
Cardiomyocytes

z score

z score

Neighborhood enrichment

–5
0.

00

50
.0

0

–3
8.

89

38
.8

9

–2
7.

78

27
.7

8

–1
6.

67

16
.6

7

–5
.5

6

5.
56

Nature Methods | VOL 19 | February 2022 | 171–178 | www.nature.com/naturemethods 173

http://www.nature.com/naturemethods

Articles Nature MetHodS

implements a pipeline based on Dask Image19 and Scikit-image21
for preprocessing and segmenting images, extracting morpho-
logical, texture and deep-learning-powered features (Fig. 3a). To
enable efficient processing of very large images, this pipeline uti-
lizes lazy loading, image tiling and multiprocessing (Supplementary
Fig. 1b). When using image tiling during processing, overlapping
crops are used to mitigate border effects. Features can be extracted
from a raw-tissue image crop or Squidpy’s segmentation mod-
ule can be used to extract segmentation objects (nuclei or cells)
counts, sizes or general image features at segmentation-mask level
(Supplementary Fig. 2b).

For segmentation, Squidpy provides a pipeline based on the
watershed algorithm and provides an interface to state-of-the-art
nuclei segmentation algorithms such as Cellpose16 and StarDist15
(Supplementary Fig. 5a). As an example for segmentation-based fea-
tures, we computed nuclei segmentation using the 4,6-diamidino-
2-phenylindole (DAPI) stain of a fluorescence mouse brain section
(Fig. 3b,c) and showed the estimated number of nuclei per spot on
the hippocampus (Fig. 3d, left). The cell-dense pyramidal layer can
be easily distinguished with this view of the data, showcasing the
richness and interpretability of information that can be extracted
from tissue images when brought in a spot-based format. In addi-
tion, we can leverage segmented nuclei to inform cell-type deconvo-
lution (or decomposition/mapping) methods such as Tangram39 or
Cell2Location40. In Supplementary Fig. 4 we showcase how priors on
nuclei densities derived from nuclei segmentation in Squidpy can be
used both for inferring cell-type proportions as well as mapping cell
types to segmentation objects with Tangram.

Image-based features contained in Squidpy include built-in sum-
mary, histogram and texture features and more-advanced features
such as deep-learning-based (Supplementary Fig. 2a) or CellProfiler
(Supplementary Fig. 5b) pipelines provided by external packages.

Using the anti-NeuN and anti-glial fibrillary acidic protein
(GFAP) channels contained in the fluorescence mouse brain sec-
tion, we calculated their mean intensity for each Visium spot using
summary features (Fig. 3d center and right). This image-derived
information relates well to molecular information: Visium spots
with high marker intensity have a higher expression of Rbfox3
(for anti-NeuN marker) and Gfap (for anti-GFAP marker) than
low-marker-intensity spots (Fig. 3e). Image features can also be
calculated at the spot level, thus aggregating several cells or at an
individual per-cell level. Using a multiplexed ion beam imaging by
time of flight (MIBI-TOF) dataset41 with a previously calculated cell
segmentation, we calculate mean intensity features of two markers
contained in the original image (Fig. 3f). The calculated mean inten-
sities have a high correlation with the associated mean intensity val-
ues contained in the associated molecular profile (Supplementary
Fig. 3a). These results highlight how explicitly analyzing image-level
information leads to insightful validation but also potentially
new hypotheses.

Squidpy’s workflow enables the integrative analysis of spatial
transcriptomics data. The feature extraction pipeline of Squidpy
allows the comparison and joint analysis of spatial patterning of
the tissue at the molecular and morphological level. Here, we show
how Squidpy’s functionalities can be combined to analyze 10X

Fig. 3 | Image analysis and relating images to molecular profiles with Squidpy. a, Schematic drawing of the ImageContainer object and its relation
to Anndata. The ImageContainer object stores multiple image layers with spatial dimensions x, y, z (left). An exemplary image-processing workflow
consisting of preprocessing, segmentation and feature extraction is shown in the bottom. Using image features, pixel-level information is related to
the molecular profile in Anndata (top right). Anndata and ImageContainer objects can be visualized interactively using napari (bottom right). DL,
deep-learning. b, Fluorescence image with markers DAPI, anti-NeuN and anti-GFAP from a Visium mouse brain dataset (https://support.10xgenomics.
com/spatial-gene-expression/datasets). The location of the inset in c is marked with a yellow box. c, Details of fluorescence image from b, showing from
left to right the DAPI, anti-NeuN and anti-GFAP channels and nuclei segmentation of the DAPI stain using watershed segmentation. d, Image features
per Visium spot computed from fluorescence image in b. From left to right are shown: number of nuclei in each Visium spot derived from the nuclei
segmentation, the mean intensity of the anti-NeuN marker in each Visium spot and the mean intensity of the anti-GFAP marker in each Visium spot.
e, Violin plot of log-normalized Gfap and Rbfox3 gene expression in Visium spots with low and high anti-GFAP and anti-NeuN marker intensity (lower
and higher than median marker intensity), respectively. f, Calculation of per-cell features from a MIBI-TOF dataset41. Tissue image showing three markers
CD45, CK and vimentin (left). Cell segmentation provided by the authors41 (center left). Mean intensity of CD45 per cell derived from the raw image using
Squidpy (center right). Mean intensity of CK per cell derived from the raw image using Squidpy (right). For quantitative comparison see Supplementary
Fig. 2. This example is part of the Squidpy documentation (https://squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_visium_fluo.html and https://
squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_mibitof.html).

Fig. 2 | Analysis of spatial omics datasets across diverse experimental techniques using Squidpy. a, Example of nearest-neighbor graphs that can
be built with Squidpy: grid-like and generic coordinates. b, Neighborhood enrichment analysis between cell clusters in spatial coordinates. Positive
enrichment is found for the following cluster pairs: ‘Lateral plate mesoderm’ with ‘Allantois’ and ‘Intermediate mesoderm’ clusters, ‘Endothelium’ with
‘Hematoendothelial progenitors’, ‘Anterior somitic tissues’, ‘Sclerotome’ and ‘Cranial mesoderm’ clusters, ‘NMP’ with ‘Spinal cord’, ‘Allantois’ with ‘Mixed
mesenchymal mesoderm’, ‘Erythroid’ with ‘Low quality’, ‘Presomitic mesoderm’ with ‘Dermomyotome’ and ‘Cardiomyocytes’ with ‘Mixed mesenchymal
mesoderm’. These results were also reported by the original authors33. NMP, neuromesodermal progenitor. c, Visualization of selected clusters of the
seqFISH mouse gastrulation dataset. d, Visualization in 3D coordinates of three selected clusters in the MERFISH dataset34. The ‘Pericytes’ are in pink,
the ‘Endothelial 2’ are in red and the ‘Ependymal’ are in brown. The full dataset is visualized in Supplementary Fig. 2g. e, Results of the neighborhood
enrichment analysis. The ‘Pericytes’ and ‘Endothelial 2’ clusters show a positive enrichment score. OD, oligodendrocytes. f, Visualization of subcellular
molecular profiles in HeLa cells, plotted in spatial coordinates (approximately 270,000 observations/pixels). ER, endoplasmic reticulum. g, Cluster
co-occurrence score computed for each cell, at increasing distance threshold across the tissue. The cluster ‘Nucleolus’ is found to be co-enriched at
short distances with the ‘Nucleus’ and the ‘Nuclear envelope’ clusters. h, Visualization of SlideseqV2 dataset with cell-type annotations35. i, Cluster
co-occurrence score computed for all clusters, conditioned on the presence of the ‘Ependymal’ cluster. At short distances, there is an increased
colocalization between the ‘Endothelial_Tip’ cluster and the ‘Ependymal’ cluster. j, Ripley’s L statistics computed at increasing distances; clusters such as
‘CA1_CA2_CA3_Subiculum’ and ‘DentatePyramids’ show high Ripley’s L values across distances, providing quantitative evaluation of the ‘clustered’ spatial
pattern across the slide. Clusters such as the ‘Endothelial_Stalk’, with a lower Ripley’s L value across increasing distances, have a more ‘random’ pattern.
k, Expression of top three spatially variable genes (Ttr, Mbp and Hpca) as computed by Moran’s I spatial autocorrelation on the SlideseqV2 dataset. They
seem to capture different patterning and specificity for cell types (‘Endothelial_Tip’, ‘Oligodendrocytes’ and ‘CA1_CA2_CA3_Subiculum’, respectively).

Nature Methods | VOL 19 | February 2022 | 171–178 | www.nature.com/naturemethods174

https://support.10xgenomics.com/spatial-gene-expression/datasets
https://support.10xgenomics.com/spatial-gene-expression/datasets
https://squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_visium_fluo.html
https://squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_mibitof.html
https://squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_mibitof.html
http://www.nature.com/naturemethods

ArticlesNature MetHodS

Genomics Visium spatial transcriptomics data of a coronal mouse
brain section.

As previously shown, we can apply spatially variable feature
selection to identify genes that show a pronounced spatial pat-
tern. Moran’s I spatial correlation statistics identifies Mobp and
Nrgn (Fig. 4a,b) to be spatially variable; both genes show a distinct
spatial expression pattern and seem to encompass the localization
of several cell clusters (Fig. 4d; ‘Fiber tract’ and ‘Hypothalamus

2’ for Mobp and ‘Pyramidal layers’ and ‘Pyramidal layers/Dentate
gyrus’ for Nrgn). An orthogonal method for the same task, Sepal42
ranks Krt18 as a top spatially variable gene, which shows a distinct
expression in a subset of the ‘Lateral ventricle’ cluster (Fig. 4d and
Supplementary Fig. 1f,g show a comparison with original imple-
mentation). The variety of tools for spatially variable gene iden-
tification provided by Squidpy enhances standard cluster-based
gene expression signatures by providing insights into spatial

AnnData

Interactive visualization

a

b c

ImageContainer

Extract features
- Summary/histogram
- Texture
- Deep representations

Features

Preprocess
- Smooth
- Convert to grayscale
- Custom functions

Segment
- Watershed
- Custom (DL-based,
Cellpose, StarDist, ...)

e
d

f

Visium fluorescence image
(red, DAPI; green, anti-NeuN; blue, anti-GFAP) DAPI

No. of nuclei per spot Anti-NeuN mean intensity per spot

Cell segmentation CD45 mean intensity per cell CK mean intensity per cell

Anti-GFAP mean intensity per spot
1.0

0.830

20

10

0.6

0.4

0.2

0

1.0

3

2

G
fa
p

1

0

High anti-GFAP Low anti-GFAP

2.0

1.5

1.0

R
bf
ox

3

0.5

0

High anti-NeuN Low anti-NeuN

0.8

0.6

0.4

0.2

0

3

2

1

0

3

2

1

0

Anti-NeuN Anti-GFAP Nucleus segmentation

MIBI-TOF image
(cyan, CD45; magenta, CK; yellow, vimentin)

Nature Methods | VOL 19 | February 2022 | 171–178 | www.nature.com/naturemethods 175

http://www.nature.com/naturemethods

Articles Nature MetHodS

distribution of genes. Ligand–receptor interaction analysis can
be a useful approach to shortlist candidate genes driving cellu-
lar interactions. Squidpy provides a fast re-implementation of the
CellphoneDB43 method (Supplementary Fig. 1b,d shows runtime
comparison against original implementation and Giotto), which
additionally leverages the Omnipath database for ligand–recep-
tor annotations44 (Supplementary Fig. 1e shows a comparison with

CellphoneDB). Applied to the same dataset, it highlighted different
ligand–receptor pairs between the ‘Hippocampus’ cluster and the
two ‘Pyramidal layer’ clusters. Whether permutation-based tests of
ligand–receptor interaction identification are able to pinpoint cel-
lular communication and pathway activity is an open question45.
However, it is useful to inform such results with a quantitative
understanding of cluster co-occurrence. Squidpy’s co-occurrence

a b c d

g h

e

i

f

j

Pyramidal layer

Pyramidal layer -
dentate gyrus

H
ippocam

pus

Mobp

200
500 20.0

Cortex 1
Cortex 2
Cortex 3
Cortex 4
Cortex 5

Fiber tract
Hippocampus
Hypothalamus 1
Hypothalamus 2
Lateral ventricle
Pyramidal layer
Pyramidal layer dentate gyrus
Striatum

Thalamus 1
Thalamus 2

17.5

15.0

12.5

10.0

7.5

5.0

2.5

8

1,000 2,000

Distance

p(exp |hippocampus)

p(exp)

3,000 4,000

6

V
al

ue 4

2

0

0.30

0 0.25

0.20

0.15

0.10

0.05

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

H&E stain Image feature clusters Fraction of nuclei per spot

****0.25

0.20

N
uc

le
ar

 d
en

si
ty

0.15

0.10

0.05

Cor
tex

_5

Cor
tex

_4

Cor
tex

_1

Gene clusters
Cor

tex
_3

0

0

400

300

200

100

0

175

150

125

100

75

50

25

0

Nrgn Krt18 Gene clusters

4.1 6.7

()+ 12
molecule1 + molecule2

8.3

0 1.43 2.86

log2

–log10 P

4.29 5.72

9.4 10.0 F
Y

N
 |

G
R

IA
1

B
D

N
F

 |
G

R
IA

1
N

T
S

 |
G

R
IA

1
C

1Q
L1

 |
G

R
IA

1
F

Y
N

 |
T

H
Y

1
F

Y
N

 |
A

P
P

N
O

T
C

H
1

| A
P

P
IG

F
1

| A
P

P
T

G
F

B
1

| A
P

P
IL

18
 |

A
P

P
S

LI
T

2
| A

P
P

A
P

O
E

 |
A

P
P

S
P

O
N

1
| A

P
P

C
C

L5
 |

C
X

3C
L1

R
E

T
N

 |
C

X
3C

L1
IL

2
| H

S
P

90
A

A
1

K
D

R
 |

H
S

P
90

A
A

1
V

T
N

 |
H

S
P

90
A

A
1

S
S

T
 |

A
D

C
Y

1
N

R
G

1
| G

R
IN

1
N

LG
N

1
| G

R
IN

1
LA

M
B

1
| P

R
N

P
LA

M
A

4
| P

R
N

P
LA

M
A

5
| P

R
N

P
LA

M
C

1
| P

R
N

P
LA

M
C

2
| P

R
N

P
LA

M
A

3
| P

R
N

P
LA

M
C

3
| P

R
N

P
LA

M
A

1
| P

R
N

P
LA

M
A

2
| P

R
N

P
LA

M
B

2
| P

R
N

P
N

P
T

X
2

| N
P

T
X

R
N

P
T

X
1

| N
P

T
X

R
LA

M
A

1
| R

P
S

A
LA

M
A

2
| R

P
S

A
LA

M
B

2
| R

P
S

A
D

U
S

P
18

 |
R

P
S

A

Fig. 4 | Analysis of mouse brain Visium dataset using Squidpy. a,b, Gene expression in spatial context of two spatially variable genes (Mobp and Nrgn) as
identified by Moran’s I spatial autocorrelation statistic. c, Gene expression in spatial context of one spatially variable gene (Krt18) identified by the Sepal
method42. d, Clustering of gene expression data plotted on spatial coordinates. e, Ligand–receptor interactions from the cluster ‘Hippocampus’ to clusters
‘Pyramidal layer’ and ‘Pyramidal layer dentate gyrus’. Shown are a subset of significant ligand–receptor pairs queried using the Omnipath database. Shown
ligand–receptor pairs were filtered for visualization purposes, based on expression (mean expression > 13) and significant after false discovery rate (FDR)
correction (P < 0.01). P values results from a permutation-based test with 1,000 permutations and were adjusted with the Benjamini–Hochberg method.
f, Co-occurrence score between ‘Hippocampus’ and the rest of the clusters. As seen qualitatively by clusters in a spatial context in d, ‘Pyramidal layer’ and
‘Pyramidal layer dentate gyrus’ co-occur with the Hippocampus at short distances, given their proximity. g, H&E stain. h, Clustering of summary image
features (channel intensity mean, s.d. and 0.1, 0.5, 0.9th quantiles) derived from the H&E stain at each spot location (for quantitative comparison to gene
clusters from d see Supplementary Fig. 2e). i, Fraction of nuclei per Visium spot, computed using the cell segmentation algorithm StarDist15. j, Violin plot
of fraction of nuclei per Visium spot (g) for the cortical clusters (d) plotted with P value annotation. The cluster Cortex_2 was omitted from this analysis
because it entails a different region of the cortex (cortical subplate) for which the differential nuclei density score between isocortical layers is not relevant.
Test performed was two-sided Mann–Whitney–Wilcoxon test with Bonferroni correction, P value annotation legend is the following: ****P ≤ 0.0001. Exact
P values are the following: Cortex_5 versus Cortex_4, P = 1.691 × 10−36, U = 1,432; Cortex_5 versus Cortex_1, P = 2.060 × 10−54, U = 775; Cortex_5 versus
Cortex_3, P = 5.274 × 10−51, U = 787. This example is part of the Squidpy documentation (https://squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_
visium_hne.html).

Nature Methods | VOL 19 | February 2022 | 171–178 | www.nature.com/naturemethods176

https://squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_visium_hne.html
https://squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_visium_hne.html
http://www.nature.com/naturemethods

ArticlesNature MetHodS

score is a simple but interpretable approach, which applied to the
Visium dataset highlights an expected direct relationship between
the previously described clusters (‘Hippocampus’ and the two
‘Pyramidal layer’ clusters; Fig. 4f).

Squidpy’s feature extraction pipeline enables direct comparison
and joint analysis of image and omics data. The integrative analy-
sis of gene expression and image data enhances pattern discovery
and enables joint interpretation of the information obtained from
morphology and molecular data. For instance, on the same mouse
brain coronal section data, we compared clusters computed from
gene expression profiles with clusters computed from summary sta-
tistics (mean, s.d., 0.1, 0.5 and 0.9th quantiles) of high-resolution
hematoxylin and eosin (H&E) image channels (Fig. 4g,h). The
image-based clusters recapitulate regions of image intensities with
similar mean and standard variation, whereas the gene-based clus-
ters are related to broad cell-type definition. We can see that several
image-based clusters are highly overlapping with the gene-based
clusters, especially in the cluster ‘Hippocampus’ (54% overlap with
image feature cluster 10) and the cluster ‘Hypothalamus’ (72%
overlap with image feature cluster 8). This shows how members
of such clusters share a similar definition both at morphology and
molecular level which allows further characterization of the clus-
ter. In contrast, the image-based clusters provide a different view
of the data in the cortex (no overlap >33% with any image feature
clusters) (Supplementary Fig. 3e). Here, gene clusters identify broad
cortical layers whereas the image-based clusters separate differ-
ent regions of the cortex based on changing local image intensi-
ties, indicating changes in cell density, morphology or changes in
the staining that are not captured by the gene expression data. For
further examination of these image feature clusters, we calculated
a nuclei segmentation using StarDist15 and extracted the number
of nuclei per Visium spot (Fig. 4i). This nuclear count shows that
image-based cluster 15 highlights an area in the bottom part of the
cortex with low cell density that is not covered fully by the gene clus-
ter ‘Cortex_5’. This example highlights how variation in interpre-
table image-based features can reveal higher variability within the
same annotation and why the integrative tools available in Squidpy
enables such analysis. In addition to explaining variation in the
image-based clusters, the fraction of nuclei was combined with gene
clusters to show that the nuclear density varies between the different
cortical clusters (Fig. 4j,). This indicates that gene expression clus-
ters represent a different grouping of the cortex than the one identi-
fied by the image-based clustering. Such regions of different nuclear
densities and morphology in the brain are of broad interest to neu-
roscientists46–48 and low nuclei density in the outer cortical layer of
the isocortex (corresponding to cluster ‘Cortex_5’) has been previ-
ously established48. Furthermore, Squidpy image-processing tools
allow to quickly validate the robustness of such findings, by refining
the selection of spots that fully overlap the detected tissue area to
remove potential false positives (Supplementary Fig. 6). Therefore,
nuclear density and morphological information represent valuable
information to disentangle sources of variation in spatial transcrip-
tomics data and allow scientists to generate additional insights for
the biological system of interest. Similar tissue hallmarks that can be
inferred from image data and may be used to explain gene expres-
sion variation, include blood vessels, tissue boundaries and fibrotic
areas. Squidpy’s integrative analysis workflows leverage the spatial
context and large microscopy images to generate new hypothesis
classes in spatial transcriptomics data, thus bridging tissue-level
characterizations of samples, which are typical in pathology, with
the new high-resolution gene expression characterization yielded by
spatial transcriptomics.

Discussion
In summary, Squidpy enables analysis of spatial molecular data by
leveraging two data representations: the spatial graph and the tissue

image. Squidpy infrastructure leverages sparse and memory-efficient
implementations and its core spatial statistics and image analysis
methods are fast and computationally efficient, making them suit-
able for the increasing size of modern spatial omics data. It inter-
faces with Scanpy and the Python data science ecosystem, providing
a scalable and extendable framework for development of new meth-
ods in the field of biological spatial molecular data. Squidpy’s rich
documentation in the form of functional application program-
ming interface documentation, examples and tutorial workflows, is
easy to navigate and is accessible to both experienced developers
and beginner analysts. Furthermore, Squidpy is equipped with an
extensive testing suite, implemented in a robust continuous integra-
tion pipeline. We foresee in the development roadmap support for
GPU-accelerated workflows (specifically using Dask) and a tighter
integration with the developing ecosystem of spatial omics meth-
ods, with explicit addition of an external module with methods and
wrappers provided by contributors and additional tutorials and best
practices of the nascent field of spatial omics data analysis. We hope
that Squidpy will serve as a bridge between the molecular omics
community and the image analysis and computer vision community
to develop the next generation of computational methods for spatial
omics technologies.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41592-021-01358-2.

Received: 19 February 2021; Accepted: 21 November 2021;
Published online: 31 January 2022

References
	1.	 Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).
	2.	 Larsson, L., Frisén, J. & Lundeberg, J. Spatially resolved transcriptomics adds

a new dimension to genomics. Nat. Methods 18, 15–18 (2021).
	3.	 Zhuang, X. Spatially resolved single-cell genomics and transcriptomics by

imaging. Nat. Methods 18, 18–22 (2021).
	4.	 Spitzer, M. H. & Nolan, G. P. Mass cytometry: Single cells, many features. Cell

165, 780–791 (2016).
	5.	 Axelrod, S. et al. Starfish: open source image-based transcriptomics and

proteomics tools. http://github.com/spacetx/starfish (2018).
	6.	 Prabhakaran, S., Nawy, T. & Pe’er’, D. Sparcle: assigning transcripts to

cells in multiplexed images. Preprint at BioRxiv https://doi.org/10.1101/
2021.02.13.431099 (2021).

	7.	 Park, J. et al. Cell segmentation-free inference of cell types from in situ
transcriptomics data. Nat. Commun. 12, 3545 (2021).

	8.	 Petukhov, V. et al. Cell segmentation in imaging-based spatial
transcriptomics. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01044-w
(2021).

	9.	 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating
single-cell transcriptomic data across different conditions, technologies, and
species. Nat. Biotechnol. 36, 411–420 (2018).

	10.	Righelli, D. et al. SpatialExperiment: infrastructure for spatially resolved
transcriptomics data in R using Bioconductor. Preprint at BioRxiv https://doi.
org/10.1101/2021.01.27.428431 (2021).

	11.	Pham, D. et al. stLearn: integrating spatial location, tissue morphology and
gene expression to find cell types, cell–cell interactions and spatial trajectories
within undissociated tissues. Preprint at BioRxiv https://doi.org/10.1101/
2020.05.31.125658 (2020).

	12.	Bergenstråhle, J., Larsson, L. & Lundeberg, J. Seamless integration of image
and molecular analysis for spatial transcriptomics workflows. BMC Genomics
21, 482 (2020).

	13.	Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of
spatial expression data. Genome Biol. 22, 78 (2021).

	14.	Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace.
Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00935-2 (2021).

	15.	Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. in Medical Image
Computing and Computer Assisted Intervention – MICCAI 2018 265–273
(Springer International Publishing, 2018).

Nature Methods | VOL 19 | February 2022 | 171–178 | www.nature.com/naturemethods 177

https://doi.org/10.1038/s41592-021-01358-2
https://doi.org/10.1038/s41592-021-01358-2
http://github.com/spacetx/starfish
https://doi.org/10.1101/2021.02.13.431099
https://doi.org/10.1101/2021.02.13.431099
https://doi.org/10.1038/s41587-021-01044-w
https://doi.org/10.1101/2021.01.27.428431
https://doi.org/10.1101/2021.01.27.428431
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1038/s41587-021-00935-2
http://www.nature.com/naturemethods

Articles Nature MetHodS

	16.	Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist
algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

	17.	Solorzano, L., Partel, G. & Wählby, C. TissUUmaps: interactive visualization
of large-scale spatial gene expression and tissue morphology data.
Bioinformatics 36, 4363–4365 (2020).

	18.	Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nat. Methods 17, 261–272 (2020).

	19.	Dask Development Team. Dask: library for dynamic task scheduling. https://
docs.dask.org/en/stable (2016).

	20.	Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15 (2018).

	21.	van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2,
e453 (2014).

	22.	Sofroniew, N. et al. napari/napari: 0.4.4rc0. https://doi.org/10.5281/
zenodo.4470554 (2021).

	23.	Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue
sections by spatial transcriptomics. Science 353, 78–82 (2016).

	24.	10X Genomics. Visium spatial gene expression reagent kits user guide.
https://support.10xgenomics.com/spatial-gene-expression/library-prep/doc/
user-guide-visium-spatial-gene-expression-reagent-kits-user-guide (2021).

	25.	Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic
barcoding in tissue. Cell 183, 1665–1681 (2020).

	26.	Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by
RNA seqFISH. Nature 568, 235–239 (2019).

	27.	Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA
imaging. Spatially resolved, highly multiplexed RNA profiling in single cells.
Science 348, aaa6090 (2015).

	28.	Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular
resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

	29.	Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular
phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).

	30.	Lin, J.-R., Fallahi-Sichani, M., Chen, J.-Y. & Sorger, P. K. Cyclic
immunofluorescence (CycIF), a highly multiplexed method for single-cell
imaging. Curr. Protoc. Chem. Biol. 8, 251–264 (2016).

	31.	Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link
subcellular organization to cellular states. Science 361, eaar7042 (2018).

	32.	Alexandrov, T. Spatial metabolomics and imaging mass spectrometry in the
age of artificial intelligence. Annu. Rev. Biomed. Data Sci. 3, 61–87 (2020).

	33.	Lohoff, T. et al. Integration of spatial and single-cell transcriptomic data
elucidates mouse organogenesis. Nat. Biotechnol. https://doi.org/10.1038/
s41587-021-01006-2 (2021).

	34.	Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of
the hypothalamic preoptic region. Science 362, eaau5324 (2018).

	35.	Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular
resolution with Slide-seqV2. Nat. Biotechnol. https://doi.org/10.1038/
s41587-020-0739-1 (2020).

	36.	Jackson, H. W. et al. The single-cell pathology landscape of breast cancer.
Nature 578, 615–620 (2020).

	37.	Hoyer, S. & Hamman, J. J. xarray: N-D labeled arrays and datasets in Python.
J. Open Res. Softw. https://doi.org/10.5334/jors.148 (2017).

	38.	McQuin, C. et al. CellProfiler 3.0: next-generation image processing for
biology. PLoS Biol. 16, e2005970 (2018).

	39.	Biancalani, T. et al. Deep learning and alignment of spatially
resolved single-cell transcriptomes with Tangram. Nat. Methods 18,
1352–1362 (2021).

	40.	Kleshchevnikov, V. et al. Comprehensive mapping of tissue cell architecture
via integrated single cell and spatial transcriptomics. Preprint at bioRxiv
https://doi.org/10.1101/2020.11.15.378125 (2020).

	41.	Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic
T cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0651-8 (2020).

	42.	Anderson, A. & Lundeberg, J. sepal: identifying transcript profiles with spatial
patterns by diffusion-based modeling. Bioinformatics https://doi.org/10.1093/
bioinformatics/btab164 (2021).

	43.	Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R.
CellPhoneDB: inferring cell–cell communication from combined
expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15,
1484–1506 (2020).

	44.	Türei, D. et al. Integrated intra‐ and intercellular signaling knowledge for
multicellular omics analysis. Mol. Syst. Biol. 17, e9923 (2021).

	45.	Dimitrov, D. et al. Comparison of resources and methods to infer cell-cell
communication from single-cell RNA data. Preprint at bioRxiv https://doi.
org/10.1101/2021.05.21.445160 (2021).

	46.	Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: a 3D
probabilistic atlas of the human brain’s cytoarchitecture. Science 369,
988–992 (2020).

	47.	Ortiz, C., Carlén, M. & Meletis, K. Spatial transcriptomics: molecular maps of
the mammalian brain. Annu. Rev. Neurosci. https://doi.org/10.1146/
annurev-neuro-100520-082639 (2021).

	48.	Kandel, E., Koester, J. D., Mack, S. H. & Siegelbaum, S. Principles of Neural
Science 6th edn (McGraw-Hill Education, 2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

Nature Methods | VOL 19 | February 2022 | 171–178 | www.nature.com/naturemethods178

https://docs.dask.org/en/stable
https://docs.dask.org/en/stable
https://doi.org/10.5281/zenodo.4470554
https://doi.org/10.5281/zenodo.4470554
https://support.10xgenomics.com/spatial-gene-expression/library-prep/doc/user-guide-visium-spatial-gene-expression-reagent-kits-user-guide
https://support.10xgenomics.com/spatial-gene-expression/library-prep/doc/user-guide-visium-spatial-gene-expression-reagent-kits-user-guide
https://doi.org/10.1038/s41587-021-01006-2
https://doi.org/10.1038/s41587-021-01006-2
https://doi.org/10.1038/s41587-020-0739-1
https://doi.org/10.1038/s41587-020-0739-1
https://doi.org/10.5334/jors.148
https://doi.org/10.1101/2020.11.15.378125
https://doi.org/10.1038/s41587-020-0651-8
https://doi.org/10.1093/bioinformatics/btab164
https://doi.org/10.1093/bioinformatics/btab164
https://doi.org/10.1101/2021.05.21.445160
https://doi.org/10.1101/2021.05.21.445160
https://doi.org/10.1146/annurev-neuro-100520-082639
https://doi.org/10.1146/annurev-neuro-100520-082639
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturemethods

ArticlesNature MetHodS

Methods
Infrastructure. Spatial graph. The spatial graph is a graph of spatial neighbors with
cells (or spots in case of Visium) as nodes and neighborhood relations between
spots as edges. We use spatial coordinates of spots to identify neighbors among
them. Different approaches of defining a neighborhood relation among spots are
used for different types of spatial datasets.

Visium spatial datasets have a hexagonal outline for their spots (each spot has
up to eight spots situated around it). For this type of spatial dataset the parameter
n_rings should be used. It specifies for each spot how many hexagonal rings of
spots around it will be considered as neighbors.

sq.gr.spatial_neighbors(adata, coord_type=“grid”,
n_neigh=6, n_rings=<int>)

It is also possible to create other types of grid-like graphs, such as squares, by
changing the n_neigh argument. For a fixed number of the closest spots for each
spot, it leverages the k-nearest neighbors search from Scikit-learn49 and n_neigh
must be used to set the number of neighbors.

sq.gr.spatial_neighbors(adata, coord_type=“generic”,
n_neigh=<int>)

To get all spots within a specified radius (in units of the spatial coordinates)
from each spot as neighbors, the parameter radius should be used.

sq.gr.spatial_neighbors(adata, coord_type=“generic”,
radius=<float>)

Finally, it is also possible to compute a neighbor graph based on Delaunay
triangulation50.

sq.gr.spatial_neighbors(adata, coord_type=“generic”,
delaunay=True)

The function builds a spatial graph and saves its adjacency and weighted
adjacency matrices to adata.obsp[‘spatial_connectivities’] in either Numpy51 or
Scipy sparse arrays18. The weights of the weighted adjacency matrix are distances
in the case of coord_type = ‘generic’ and ordinal numbers of hexagonal rings in
the case of coord_type = ‘grid’. Together with the connectivities, we also provide a
sparse adjacency matrix of distances, saved in adata.obsp[‘spatial_distances’] We
also provide spectral and cosine transformation of the adjacency matrix for uses in
graph convolutional networks52.

ImageContainer. ImageContainer is an object for microscopy tissue images
associated with spatial molecular datasets. The object is a thin wrapper of an
xarray.Dataset37 and provides efficient access to in-memory and on-disk images.
On-disk files are loaded lazily using dask19, meaning content is only read in
memory when requested. The object can be saved as a zarr53 store. This allows
handling of very large files that do not fit in the memory. The images represented
by ImageContainer are required to have at least two dimensions, x and y, with an
optional z dimension and a variable channels dimension.

ImageContainer is initialized with an in-memory array or a path to an image
file on disk. Images are saved with the key layer. If lazy loading is desired, the lazy
parameter needs to be specified.

sq.im.ImageContainer(PATH, layer=<str>, lazy=<bool>)

More image layers with the same spatial dimensions x, y and z such as
segmentation masks can be added to an existing ImageContainer.

img.add_img(PATH, layer=<str>)

ImageContainer is able to interface with Anndata objects to relate any
pixel-level information to the observations stored in Anndata (such as cells and
spots). For instance, it is possible to create a lazy generator that yields image crops
on-the-fly corresponding to locations of the spots in the image:

spot_generator = img.generate_spot_crops(adata)
lambda x: (x for x in spot_generator) # yields crops
at spots location

This of course works for both features computed at crop-level but also at
segmentation-object level. For instance, it is possible to get centroid coordinates
as well as several features of the segmentation object that overlap with the
spot capture area.

Napari for interactive visualization. Napari is a fast, interactive, multi-dimensional
image viewer in Python22. In Squidpy, it is possible to visualize the source image
together with any Anndata annotation with napari. Such functionality is useful for
fast and interactive exploration of analysis results saved in Anndata together with

the high-resolution image. If multiple z dimensions are available, the
individual z layers that can be interactively scrolled through. Furthermore,
leveraging napari functionalities, it is possible to manually annotate tissue
areas and assign underlying spots to annotations saved in the Anndata
object. Such ability to relate manually defined tissue areas to observations in
Anndata is particularly useful in settings where there is a pathologist annotation
available and it needs to be integrated with analysis at gene expression or image
level. All the steps described here are performed in Python, therefore available
in the same environment where the analysis is performed (it does not require an
additional tool).

img = sq.im.ImageContainer(PATH, layer=)
img.interactive(adata)

Graph and spatial patterns analysis. Neighborhood enrichment test. The
association between label pairs in the connectivity graph is estimated by
counting the sum of nodes that belong to classes i and j (for example cluster
annotation) and are proximal to each other, noted xij. To estimate the deviation
of this number versus a random configuration of cluster labels in the same
connectivity graph, we scramble the cluster labels while maintaining the
connectivities and then recount the number of nodes recovered in each iteration
(1,000 times by default). Using these estimates, we calculate expected means (µij)
and standard deviations (σij) for each pair and a z score as,

Zij =
(

xij − μij

)

/σij

The z score indicates if a cluster pair is over-represented or over-depleted for
node–node interactions in the connectivity graph. This approach was described by
Schapiro et al.54. The analysis and visualization can be performed with the analysis
code shown below.

sq.gr.nhood_enrichment(adata, cluster_key=“<cluster_
key>”)
sq.pl.nhood_enrichment(adata,
cluster_key=“<cluster_key>”)

Our implementation leverages just-in-time compilation with Numba55 to
achieve greater performances in computation time (Supplementary Fig. 1).

Ligand–receptor interaction analysis. We provide a re-implementation of
the popular CellphoneDB method for ligand–receptor interaction analysis43.
In short, it is a permutation-based test of ligand–receptor expression across
cell-type combinations. Given a list of annotated ligand–receptor pairs, the
test computes the mean expression of the two molecules (ligand, receptor)
between cell types and builds a null-distribution based on n permutations
(default 1,000). A P value is computed based on the proportion of the permuted
means against the true mean. In CellphoneDB, if a receptor or ligand is
composed of several subunits, the minimum expression is considered for the
test. In our implementation, we also include the option of taking the mean
expression of all molecules in the complex. Our implementation also employs
Omnipath44 as ligand–receptor interaction database annotation. A larger database
that contains the original CellphoneDB database together with five other
resources44. Finally, our implementation leverages just-in-time compilation
with Numba55 to achieve greater performances in computation time
(Supplementary Fig. 1).

Ripley’s spatial statistics. Ripley’s spatial statistics is a family of spatial
analysis methods used to describe whether points with discrete annotation
in space follow random, dispersed or clustered patterns. Ripley’s statistics can
be used to describe the spatial patterning of cell clusters in the area of interest.
In Squidpy, we re-implemented three of Ripley’s statistics: F, G and L functions.
Ripley’s L function is a variance-stabilized transformation of Ripley’s K function,
defined as

K (t) = A
n

∑

i=1

n
∑

j=1
I
(

di,j < t
)

(1)

Where I(di,j < t) is the indicator function that sets whether the operand is 1 or 0
based on the (Euclidean) distance di,j evaluated at search radius t, A is the average
density of point in the area of interest. Therefore, the Ripley’s L function is
defined as:

L (t) =

(

K (t)
π

)1/2
(2)

The Ripley’s F and G functions are defined as:

P
(

di,j ≤ t
)

(3)

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

Articles Nature MetHodS

Where di,j is the distance of the point to a random points for a spatial Poisson
point process for F and the distance to any other point of the dataset for G. They
can be easily computed with:

sq.gr.ripley(adata, cluster_key=“<cluster_key>”,
mode=“<F|G|L>”)
sq.pl.ripley(adata, cluster_key=“<cluster_key>”,
mode=“<F|G|L>”)

Cluster co-occurrence ratio. Cluster co-occurrence ratio provides a score on the
co-occurrence of clusters of interest across spatial dimensions. It is defined as

p (exp|cluster)
p (exp)

(4)

where cluster is the annotation of interest to be used as conditioning for the
co-occurrence of all clusters. It is computed across n radius of size d across the
tissue area. It was inspired by an analysis performed by Tosti et al. to investigate
tissue organization in the human pancreas with spatial transcriptomics56.

sq.gr.co_occurrence(adata, cluster_key=“<cluster_key>”)
sq.pl.co_occurrence(adata, cluster_key=“<cluster_key>”)

Spatial autocorrelation statistics. Spatial autocorrelation statistics are widely used
in spatial data analysis tools to assess the spatial autocorrelation of continuous
features. Given a feature (gene) and spatial location of observations, it evaluates
whether the pattern expressed is clustered, dispersed or random57. In Squidpy, we
implement two spatial autocorrelation statistics: Moran’s I and Geary’s C.

Moran’s I is defined as:

I = n
W

∑n
i=1

∑n
j=1 wi,jzizj

∑n
i=1 z2i

(5)

and Geary’s C is defined as:

C =
(n − 1)

∑

i,j wi,j
(

xi − xj
)2

2W
∑

i (xi − x̄)2
(6)

where zi is the deviation of the feature from the mean
(

xi − X̄
)

, wi,j is the spatial
weight between observations, n is the number of spatial units and W is the sum of
all wi,j. Test statistics and P values (computed from a permutation-based test or via
analytic formulation, similar to libpysal58 and further FDR-corrected) are stored in
adata.uns[‘moranI’] or adata.uns[‘gearyC’].

sq.gr.spatial_autocorr(adata,
cluster_key=“<cluster_key>”,mode=“<moran|geary>”)

Sepal. Sepal is a recently developed method for spatially variable genes
identification42. It simulates a diffusion process and evaluates the time it takes to
reach a uniform state (convergence). It is a formulation of Fick’s second law to a
regular graph (grid). It is defined as:

u (x, y, t + dt) = u (x, y, t) + DΔu (x, y, t) dt (7)

Where u(x,y,t) is the concentration (for example gene expression on a node in x,y
coordinates), D is the diffusion coefficient, t is the update time and ∆(u(x,y,t)dt)
is the laplacian on the graph (see elsewhere42 for an extended formulation).
Convergence is reached if the change in entropy is below a given threshold:

H (u (t)) − H (u (t − 1)) < ϵ (8)

The time t the gene takes to reach consensus is then used a ‘Sepal score’ and
indicates the degree of spatial variability of the gene. It can be computed with:

sq.gr.sepal(adata)

Our re-implementation in Numba achieves greater computational efficiency
(Supplementary Fig. 1).

Centrality scores. Centrality scores provide a numerical analysis on node patterns
in the graph, which helps to better understand complex dependencies in large
graphs. A centrality is a function C which assigns every vertex v in the graph a
numeric value C(v) ∈ R. It therefore gives a ranking of the single components
(cells) in the graph, which simplifies to identify key individuals. Group centrality
measures have been introduced by Everett and Borgatti59. They provide a
framework to assess clusters of cells in the graph (a specific cell type more central
or more connected in the graph than others). Let G = (V,E) be a graph with nodes
V and edges E. Additionally, let S be a group of nodes allocated to the same cluster
cS. Then N(S) defines the neighborhood of all nodes in S. The following four

(group) centrality measures are implemented. Group degree centrality is defined by
the fraction of noncluster members that are connected to cluster members, so

Cdeg (S) =
|N (S) − S|
|V| − |S|

∈ [0, 1]

Larger values indicate a more central cluster. Group degree centrality can help
to identify essential clusters or cell types in the graph. Group closeness centrality
measures how close the cluster is to other nodes in the graph and is calculated by
the number of nongroup members divided by the sum of all distances from the
cluster to all vertices outside the cluster, so

Cclos (S) =
|V − S|

∑

v∈VS
dS,v

∈ [0, 1]

where dS,v = minu∈S du,v is the minimal distance of the group S from v. Hence, larger
values indicate a greater centrality. Group betweenness centrality measures the
proportion of shortest paths connecting pairs of nongroup members that pass
through the group. Let S be a subset of a graph with vertex set VS. Let gu,v be the
number of shortest paths connecting u to v and gu,v(S) be the number of shortest
paths connecting u to v passing through S. The group betweenness centrality is
then given by

Cbetw (S) =
∑

u<v

gu,v (S)
gu,v

for u, v /∈ S.

The properties of this centrality score are fundamentally different from
degree and closeness centrality scores, hence results often differ. The last measure
described is the average clustering coefficient. It describes how well nodes in a
graph tend to cluster together. Let n be the number of nodes in S. Then the average
clustering coefficient is given by

Ccluster (S) =
1
n
∑

v∈S

2T (v)
deg (v) (deg (v) − 1)

with T(v) being the number of triangles through node v and deg(v) the degree
of node v. The described centrality scores have been implemented using the
NetworkX library in Python50.

sq.gr.centrality_scores(adata, cluster_key=“<cluster_
key>”)
sq.pl.centrality_scores(adata, cluster_key=“<cluster_
key>”, selected_score=“<selected_score>”)

Interaction matrix represents the total number of edges that are shared between
nodes with specific attributes (such as clusters or cell types).

sq.gr.interaction_matrix(adata, cluster_key=“<cluster_
key>”, normalized=True)
sq.pl.interaction_matrix(adata,
cluster_key=“<cluster_key>”)

Python implementations rely on the NetworkX library50.

Image analysis and segmentation. Image processing. Before extracting features
from microscopy images, the images can be preprocessed. Squidpy implements
functions for commonly used preprocessing functions like conversion to grayscale
or smoothing using a Gaussian kernel. In addition, custom processing functions
can be used by passing a function to the method argument.

sq.im.process(img, method=“gray”)
img.show()

Implementations are based on the Scikit-image package21 and allow lazy
processing of very large images through tiling the image into smaller crops and
processing these by using Dask. When using tiling, image crops are slightly
overlapping, to reduce border effects.

Image segmentation. Nuclei segmentation is an important step when analyzing
microscopy images. It allows the quantitative analysis of the number of nuclei,
their areas and morphological features. There are a wide range of approaches for
nuclei segmentation, from established techniques such as thresholding to modern
deep-learning-based approaches.

A difficulty for nuclei segmentation is to distinguish between partially
overlapping nuclei. Watershed is a classic algorithm used to separate overlapping
objects by treating pixel values as local topology. For this, starting from points of
lowest intensity, the image is flooded until basins from different starting points
meet at the watershed ridge lines.

sq.im.segment(img, method=“watershed”)
img.show()

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNature MetHodS

Implementations in Squidpy are based on the original Scikit-image Python
implementation21.

Custom approaches with deep-learning. Depending on the quality of the data,
simple segmentation approaches like watershed might not be appropriate.
Nowadays, many complex segmentation algorithms are provided as pretrained
deep-learning models, such as Stardist15, Splinedist60 and Cellpose16. These
models can be easily used within the segmentation function. We provide
extensive tutorials https://squidpy.readthedocs.io/en/latest/tutorials.
html#external-tutorials, where we show how Stardist15 and Cellpose16 can be
easily interfaced with Squidpy to perform segmentation on both H&E and
fluorescence images.

sq.im.segment(img, method=<pre-trained model>)
img.show()

Image features. Tissue organization in microscopic images can be analyzed
with different image features. This filters relevant information from the
(high-dimensional) images, allowing for easy interpretation and comparison with
other features obtained at the same spatial location. Image features are calculated
from the tissue image at each location (x,y) where there is transcriptomics
information available, resulting in an obs × features matrix similar to the obs × gene
matrix. This image feature matrix can then be used in any single-cell analysis
workflow, just like the gene matrix.

The scale and size of the image used to calculate features can be adjusted
using the scale and spot_scale parameters. Feature extraction can be parallelized
by providing n_jobs (see Supplementary Fig. 1). The calculated feature matrix is
stored in adata[key].

sq.im.calculate_image_features(adata, img,
features=<list>, spot_scale=<float>, scale=<float>,
key_added=<str>)

Summary features calculate the mean, the s.d. or specific quantiles for a color
channel. Similarly, histogram features scan the histogram of a color channel to
calculate quantiles according a defined number of bins.

sq.im.calculate_image_features(adata, img,
features=“summary”) sq.im.calculate_image_
features(adata, img, features=“histogram”)

Textural features calculate statistics over a histogram that describes
the signatures of textures. To grasp the concept of texture intuitively, the
inextricable relationship between texture and tone is considered61; if a small-area
patch of an image has little variation in its gray tone the dominant property
of that area is tone. If the patch has a wide variation of gray-tone features, the
dominant property of the area is texture. An image has a simple texture if it
consists of recurring textural features. For a gray-level image I or for example
a fluorescence color channel, a co-occurrence matrix C is computed. C is a
histogram over pairs of pixels (i,j) with specific values (p,q) ∈ [0,1,…,255]
(https://squidpy.readthedocs.io/en/latest/tutorials.html#external-tutorials) and
a fixed pixel offset:

Cp,q =
∑

i
δI(i),pδI(j),q

with Kronecker delta δ. The offset is a fixed pixel distance from i to j under a
fixed direction angle. Based on the co-occurrence matrix different meaningful
statistics (texture properties) can be calculated that summarize textural pattern
characteristics of the image:
•	 ∑

p,q
Cp,q (p − q)2 contrast

•	 ∑

p,q
Cp,q |p − q| dissimilarity

•	 ∑

p,q

Cp,q
1+(p−q)2 homogeneity

•	 ∑

p,q
C2
p,q angular second moment

•	
∑

p,q
Cp,q

(p−μp)(q−μq)
√

σ2
pσ2

q

 correlation

sq.im.calculate_image_features(adata, img,
features=“texture”)

All the above implementations rely on the Scikit-image Python package21.

Segmentation features. Similar to image features that are extracted from raw
tissue images, segmentation features can be extracted from a segmentation
object. These features allow to get statistics over the number, area and morphology

of the nuclei in one image. To compute these features, the ImageContainer img
needs to contain a segmented image at layer <segmented_img>

sq.im.calculate_image_features(adata,
img,features=“segmentation”,
features_kwargs={“label_layer”:<segmented_img>})

Custom features based on deep-learning models. Squidpy feature calculation
function can also be used with custom user-defined features extraction functions.
This enables the use of for example, pretrained deep-learning models as feature
extractors. We provide tutorials https://squidpy.readthedocs.io/en/latest/tutorials.
html#external-tutorials on how to interface popular deep-learning frameworks
such as Tensorflow62 with ImageContainer, thus enabling users to perform an
end-to-end deep-learning pipeline from Squidpy.

sq.im.calculate_image_features(adata, img,
features=“custom”, features_kwargs={“func”:<pre-trained
keras model>})

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The preprocessed datasets have been deposited at https://doi.org/10.6084/
m9.figshare.c.5273297.v1 and they are all conveniently accessible in Python via the
squidpy.dataset module. The datasets used in this article are the following: Imaging
Mass Cytometry36, seqFISH33, 4i31, MERFISH34, SlideseqV2 (ref. 35), Mibi-tof41
and several Visium24 datasets available from https://support.10xgenomics.com/
spatial-gene-expression/datasets. Information on preprocessing of such datasets
can be found in Online Methods and code to reproduce it is at https://github.com/
theislab/squidpy_reproducibility.

Code availability
Squidpy is a pip installable Python package and available at the following GitHub
repository: https://github.com/theislab/squidpy, with documentation at: https://
squidpy.readthedocs.io/en/latest/. All the code to reproduce the result of the
analysis can be found at the following GitHub repository: https://github.com/
theislab/squidpy_reproducibility.

References
	49.	Pedregosa, F., Varoquaux, G. & Gramfort, A. Scikit-learn: machine learning

in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
	50.	Hagberg, A., Swart, P. & S Chult, D. Exploring network structure, dynamics,

and function using networkx. https://www.osti.gov/biblio/960616 (2008).
	51.	Harris, C. R. et al. Array programming with NumPy. Nature 585,

357–362 (2020).
	52.	Kipf, T. N. & Welling, M. Semi-supervised classification with graph

convolutional networks. Preprint at arXiv https://arxiv.org/abs/1609.02907
(2016).

	53.	Miles, A. et al. zarr-developers/zarr-python: v2.4.0. (2020). https://doi.
org/10.5281/zenodo.3773450

	54.	Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in
multiplex image cytometry data. Nat. Methods 14, 873–876 (2017).

	55.	Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python JIT
compiler. In Proc. 2nd Workshop on the LLVM Compiler Infrastructure in
HPC 1–6 (Association for Computing Machinery, 2015).

	56.	Tosti, L. et al. Single-nucleus and in situ RNA-sequencing reveal cell
topographies in the human pancreas. Gastroenterology 160, 1330–1344 (2021).

	57.	Getis, A. & Ord, J. K. The analysis of spatial association by use of distance
statistics. Geogr. Anal. 24, 189–206 (2010).

	58.	Rey, S. J. & Anselin, L. PySAL: a python library of spatial analytical methods.
Rev. Reg. Stud. 37, 5–27 (2007).

	59.	Borgatti, S. P., Everett, M. G. & Johnson, J. C. Analyzing Social Networks
(SAGE Publications, 2013).

	60.	Mandal, S. & Uhlmann, V. Splinedist: automated cell segmentation with
spline curves. In 2021 IEEE 18th International Symposium on Biomedical
Imaging (ISBI) 1082–1086 (IEEE, 2021).

	61.	Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image
classification. Stud. Media Commun. SMC 3, 610–621 (1973).

	62.	Abadi, M. et al. TensorFlow: A system for large-scale machine learning. In
12th USENIX symposium on operating system design and implementation
(OSDI 16), 265–283 (2016).

Acknowledgements
We acknowledge L. Zappia, M. Luecken and all members of the Theis laboratory
for helpful discussion. We acknowledge G. Fornons for the Squidpy logo, Scanpy
developers P. Angerer and F. Ramirez for useful discussion and code revision, A. Goeva

Nature Methods | www.nature.com/naturemethods

https://squidpy.readthedocs.io/en/latest/tutorials.html#external-tutorials
https://squidpy.readthedocs.io/en/latest/tutorials.html#external-tutorials
https://squidpy.readthedocs.io/en/latest/tutorials.html#external-tutorials
https://squidpy.readthedocs.io/en/latest/tutorials.html#external-tutorials
https://squidpy.readthedocs.io/en/latest/tutorials.html#external-tutorials
https://doi.org/10.6084/m9.figshare.c.5273297.v1
https://doi.org/10.6084/m9.figshare.c.5273297.v1
https://support.10xgenomics.com/spatial-gene-expression/datasets
https://support.10xgenomics.com/spatial-gene-expression/datasets
https://github.com/theislab/squidpy_reproducibility
https://github.com/theislab/squidpy_reproducibility
https://github.com/theislab/squidpy
https://squidpy.readthedocs.io/en/latest/
https://squidpy.readthedocs.io/en/latest/
https://github.com/theislab/squidpy_reproducibility
https://github.com/theislab/squidpy_reproducibility
https://www.osti.gov/biblio/960616
https://arxiv.org/abs/1609.02907
https://doi.org/10.5281/zenodo.3773450
https://doi.org/10.5281/zenodo.3773450
http://www.nature.com/naturemethods

Articles Nature MetHodS

and E. Macosko for cell-type annotation of the SlideseqV2 dataset, A. Andersson for
general feedback and pointers to the Sepal implementation, L. Hetzel for draft of the
spatial graph Delaunay method, M. Varrone for fixing a bug in the graph Delaunay
method and G. Buckley for pointers to Dask image functionalities. We thank authors
of original publications and 10X Genomics for making spatial omics datasets publicly
available. S. Richter and G.P. are supported by the Helmholtz Association under the joint
research school Munich School for Data Science. D.S.F. acknowledges support from a
German Research Foundation fellowship through the Graduate School of Quantitative
Biosciences Munich (GSC 1006 to D.S.F.) and by the Joachim Herz Foundation. A.C.S.
has been funded by the German Federal Ministry of Education and Research under
grant no. 01IS18036B. F.J.T. acknowledges support by the BMBF (grant nos. 01IS18036B,
01IS18053A and 031L0210A), the European Union’s Horizon 2020 Research and
Innovation programme under grant agreement no. 874656, the Chan Zuckerberg
Initiative DAF (advised fund of Silicon Valley Community Foundation, grant no. 2019-
207271), the Bavarian Ministry of Science and the Arts in the framework of the Bavarian
Research Association ‘ForInter’ (Interaction of human brain cells) and by the Helmholtz
Association’s Initiative and Networking Fund through Helmholtz AI (grant no.
ZT-I-PF-5-01) and by the Chan Zuckerberg foundation (grant no. 2019-002438, Human
Lung Cell Atlas 1.0) and sparse2big (grant no. ZT-I-007).

Author contributions
G.P., H.S., M.K., D.F. and F.J.T. designed the study. G.P., H.S., M.K., D.F., A.C.S., L.B.K.,
S. Rybakov, I.L.I., O.H., I.V., M.L. and S. Richter wrote the code. G.P., H.S. and M.K.

performed the analysis. F.J.T. supervised the work. All authors read and corrected the
final manuscript.

Funding
Open access funding provided by Helmholtz Zentrum München - Deutsches
Forschungszentrum für Gesundheit und Umwelt (GmbH).

Competing interests
“F.J.T. consults for Immunai Inc., Singularity Bio B.V., CytoReason Ltd, and Omniscope
Ltd, and has ownership interest in Dermagnostix GmbH and Cellarity.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41592-021-01358-2.

Correspondence and requests for materials should be addressed to Fabian J. Theis.

Peer review information Nature Methods thanks Raphael Gottardo and the other,
anonymous, reviewers for their contribution to the peer review of this work. Peer reviewer
reports are available. Lin Tang was the primary editor on this article and managed its
editorial process and peer review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Methods | www.nature.com/naturemethods

https://doi.org/10.1038/s41592-021-01358-2
http://www.nature.com/reprints
http://www.nature.com/naturemethods

1

nature research | reporting sum
m

ary
April 2020

Corresponding author(s): Fabian J Theis

Last updated by author(s): Sep 24, 2021

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection, as publically available datasets were used.

Data analysis Data was preprocessed using the Python software Scanpy (version 1.7.1), available at https://github.com/theislab/scanpy. Main analysis was
done with our new Python software Squidpy (version 1.0.0), available at https://github.com/theislab/squidpy .
Additional software used was the following: anndata>=0.7.4
dask-image>=0.5.0
dask[array]>=2021.02.0
docrep>=0.3.1
leidenalg>=0.8.2
omnipath>=1.0.5
pandas>=1.2.0
scanpy>=1.8.0
scikit-image>=0.17.1
statsmodels>=0.12.0
tqdm>=4.50.2
typing_extensions
xarray>=0.16.1
zarr>=2.6.1

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

2

nature research | reporting sum
m

ary
April 2020

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Pre-processed datasets have been deposited at https://doi.org/10.6084/m9.figshare.c.5273297.v1 and they are all conveniently accessible in Python via the
squidpy.dataset module.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined by the previously published datasets that were used for this study. Datasets were chosen in order to describe the
functionality of the software.

Data exclusions No data were excluded from analysis.

Replication All attempts at replication of data analysis were successful. No replication of experimental data was performed since we did not collect any
experimental data.

Randomization Randomization of samples is not applicable to our study as we do not collect any experimental data.

Blinding Blinding was not relevant to our study as we report an analysis software as main finding

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

	Squidpy: a scalable framework for spatial omics analysis

	Results

	Squidpy provides infrastructure and analysis tools to identify spatial patterns in tissue.
	Squidpy enables analysis and visualization of large images in spatial omics data.
	Squidpy’s workflow enables the integrative analysis of spatial transcriptomics data.

	Discussion

	Online content

	Fig. 1 Squidpy is a software framework for the analysis of spatial omics data.
	Fig. 2 Analysis of spatial omics datasets across diverse experimental techniques using Squidpy.
	Fig. 3 Image analysis and relating images to molecular profiles with Squidpy.
	Fig. 4 Analysis of mouse brain Visium dataset using Squidpy.

