
Squidy: A Zoomable Design
Environment for Natural User
Interfaces

Werner A. Konig

Human-Computer Interaction Group

University of Konstanz

Universiti:itsstrasse 10, Box 073

78457 Konstanz, Germany

Wemer.Koenig@uni-konstanz.de

Roman Radle

Human-Computer Interaction Group

University of Konstanz

Universiti:itsstrasse 10, Box 073

78457 Konstanz, Germany

Roman.Raedle@uni-konstanz.de

Harald Reiterer

Human-Computer Interaction Group

University of Konstanz

Universiti:itsstrasse 10, Box 073

78457 Konstanz, Germany

Harald.Reiterer@uni-konstanz.de

Abstract

We introduce the interaction library Squidy, which

eases the design of natural user interfaces by unifying

relevant frameworks and toolkits in a common library.

Squidy provides a central design environment based on

high-level visual data flow programming combined with

zoomable user interface concepts. The user interface

offers a Simple visual language and a collection of

ready-to-use devices, filters and interaction techniques.

The concept of semantic zooming enables nevertheless

access to more advanced functionality on demand.

Thus, users are able to adjust the complexity of the

user interface to their current need and knowledge.

Keywords

Natural user interface, design environment, zoomable

user interface, multi modal interaction, Squidy

ACM Classification Keywords
H.S.2 [Information Interfaces and Presentation]: User

Interfaces - Graphical user interfaces, Input devices

and strategies, Interaction styles, Prototyping; 0.2.2
[Software Engineering]: Design Tools and Techniques -

User interfaces.

4561

Publ. in: CHI 2009 Proceedings of the 27th international conference extended abstracts on Human factors in computing systems, pp. 4561-4566, doi>10.1145/1520340.1520700

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-144090

http://nbn-resolving.de/urn:nbn:de:bsz:352-144090

Figure 1: Digital pens benefit from

users' pre-existing knowledge and

thus offer a very natural mode of

interaction e.g. for digital sketching

and prototyping.

Introduction

One of the emerging research fields in Human

Computer Interaction is concerned with the design and

development of so-called post-WIMP user interfaces

[8], such as tangible interaction, surface computing,

gaze-based interaction as well as gestural and voice

input (see Fig. 1-3). These technologies provide a

richer set of interaction modalities than traditional

mouse and keyboard input and break up with standard

WIMP-based user interface concepts (Window, Icon,

Menu, Pointing device). The recently coined term

"Natural User Interfaces" (NUl) highlights the intention

behind these novel interaction styles: they build upon

users' pre-existing knowledge of the everyday, non

digital world [4] and hence lead to a more natural and

reality -based interaction.

However, the design and development of NUls is not

only conceptually but also practically a very challenging

task. In contrast to the design of traditional graphical

user interfaces, it involves both software and hardware

components [2]. Yet, conventional development

environments (e.g. MS Visual Studio/.Net, Adobe Flash,

Java) fall short of supporting uncommon input devices

and appropriate data processing (e.g. computer vision)

as well as the handling of multi point and multi -user

applications (e.g. for multi-touch interaction). To

address this issue, a broad variety of heterogeneous

and very specialized toolkits and frameworks have

evolved over the last few years (e.g. Apple iPhone SDK,

Microsoft Surface SDK, NUIGroup Touchlib, GlovePIE).

Researchers and interaction designers therefore have to

choose between these different tool kits, depending on

the compatibility with the specific hardware being in

use. This situation makes the design and development

of NUIs a lot more demanding. Particularly, researchers

and interaction designers have to face the following

challenges:

They need practical knowledge on different layers,

ranging from hardware prototyping, drivers,

protocols and signal processing, to application

programming interfaces and the final application.

They have to deal with different more or less

monolithic tools as well as the according program

ming language and development environment.

The resulting complexity restricts rapid prototyping

and fast design iteration processes. This may also

reduce comparability of the realized interaction

techniques and concepts.

Few development environments are available which

address these issues by supporting some novel input

devices (e.g. physical turntables, mixing desks, multi

touch surfaces and simple vision tracking). Two

examples are MAX/MSP [5] and vvvv [9]. Both are

graphical development environments for music and

video synthesis and are widely used by artists to realize

interactive installations. Using the concept of visual

dataflow programming both tool kits provide a simple

way of defining and organizing the desired function

alities. However, the visual representation of each

primitive variable, parameter, connection, and low-level

instruction (e.g. matrix multiplication) lead to complex

and scattered user interfaces, even for small projects.

MAX/MSP and vvvv offer the possibility to encapsulate

consecutive instructions in so-called "abstractions" or

"subpatches". This approach helps to reduce the size of

the visual dataflow graph, but introduces additional

complexity by the hierarchical organization. Moreover,
the multiplicity of the provided tools and add-ons as

well as the tight coupling with visual interface

4562

Figure 2: Mult i-touch surface
augmented with physical tokens
reduces the gap between real-world
and digital-world interaction .

~ .

~ ' ~ ..
~ .. /' ~ ...-:

.-.~ "

Figure 3: Well-known devices such
as an omnipresent laser pointer
enhanced with button module, LEDs
and vibration motor provide flexible
input from any distance. Users
benefit from a more natural and
convenient point ing experience.

components and rendering further increase the

complexity that users have to deal with. ICON Input

Configurator [1], its successor MaggLite [3] and the

Openlnterface Framework [7] are further development

environments for post-WIMP user interfaces. They also

employ the concept of visual dataflow programming

and share the complexity issues with the frameworks

described above. They partially reduce the visual

complexity by encapsulating advanced functionalities in

pre-defined modules which are textually developed with

a conventional programming language. Thus, the user

can apply these "black-box" modules in the visual user

interface. However, one has to leave the environment

in order to develop or change a module in source code.

The user is therefore fo rced to switch between multiple

development envi ronments in favor of a decreased

visual comp lexity.

To sum up, all of these development environments

ease the implementation of NUls by supporting some

hardware devices and by provid ing a visual user

interface to design and realize the desired interaction

techniques . However, the comp lexity caused by

crowded user interfaces (Iow-level v isual dataflow

programming) or by the need of additional tools,

programming languages and compilers is still a major

research issue. Furthermore, the demands on the

designers' expertise are still very high, since they have

to understand and route each prim itive variable/ data

even when using " black-box" modules.

Squidy - Zoomable Design Environment

We address these issues with our interaction library

" Squidy" which unifies various device toolkits and NUl

frameworks in a com mon library and provides a central

user interface for v isua l dataflow management as well

as device and data f ilter configuration. Squidy thereby

hides the complexity of the technical implementation

from the user by providing a simple v isual language

and a collection of ready-to-use devices, filters and

interaction techniques. This faci litates rapid prototyping

and fast iterations. However, if more functional ity and

profound custom izations are requ ired, the v isua l user

interface provides these on demand by using the

concept of semantic zooming . Thus, users are able to

adjust the complexity of the user interface to their

current need and knowledge (ease of learning).

User Interface Concept

The basic concept which enables the visual definition of

the dataflow between the input and output is based on

the pipe-and-filter concept (Fig. 6) . This offers a very

simple, yet powerfu l visual language to design the

interaction log ic. The user thereby selects the input

dev ice or hardware prototype of choice as " source",

e.g . a laser pOinter, connects it successively with filter

nodes for data processing such as compensation of

hand tremor or gesture recognition and routes the

refined data to the " sink". The filter nodes may

transmit, change, delete data objects, or generate

add it ional ones (e.g. if a gesture is recognized). The

"sink" can be any output modality or device such as a

vibrating motor for tactile stimulation or LEDs for visual

feedback. Squidy also provides a mouse emulator as an

output node to offer the possibility of controlling

standard WIMP-appl ications with unconventional input

devices. Multipoint applications (e.g. for mult i-touch

surfaces or multi-user environments) and remote

connections are supported by an output node which

transmits the interaction data either as TUIO messages

or as basic OSC messages over the network. TUIO is a

widely used protocol for multipo int interaction based on

4563

Figure 4: Squidy data type

hierarchy based on prim itive virtual

devices [10].

~ ,
Figure 5: In order to reduce visual

complexity the node-specific
functions (active/inactive, delete,

duplicate, publish to knowledge
base) and the unconnected in and

out ports are only shown if the

cursor is inside the node.

the more general OpenSound Control protocol (OSC).

The internal dataflow between the nodes in Squidy

consists of a stream of sing le or multiple grouped data

objects of well-defined data types (Fig. 4) based on the

prim itive virtual devices introduced by Wallace [10]. In

contrast to the low-level approaches used in related

work, such abstracting and routing of higher-level

objects has t he advantage that not every single

variable has to be routed and completely understood by

the user.

EJ [!] ~[!JB [!J [!]
Figure 6: View of a zoomed pipeline in the Squidy Design

Environment. The pipel ine receives posit ion, button and inertial

data from a laser pointer, appl ies a Kalman filter, a filter for

change recognition and a filter for selection improvement and

finally emulates a standard mouse to interact with conventional

WIMP-applications. The data is altematively sent via TUIO to

listening appl ications. The pipel ine-specific functions and

breadcrumb navigation are positioned on top. The zoomable

knowledge base with a selection of recommended input

devices, filters, and output devices are located at the bottom.

• X UJ El eJ ~-c:.= IIeclia Aocm / laserp<>nte" Ii P""""",,,

~ oorn Pc __ _

001--
001 ",""""RatA!

001 m-Ncise

001 p-I'bse

001 pv-No.se

001 -. [];Sc. Singie Point;

001 ~ Ois~ Wti POne

OOI -.r""""",

~ - "-

u.-c i:!

, --Y- SO fps

0.[1)3

Dum

IIJ.D

50%

25%

1[0) ms

, ~

~

~
f.~ . -~:.

Figure 7: View of a zoomed Kalman filter node with table of

parameters. Changes of parameters are immediately applied.

Spatia l scrolling with overview window (right) and temporal

scrolling of last changes (bottom) is visually provided. The user

can access further information (Fig . 8), the filter source code

(Fig. 11) and node-specific logging by automatic zooming.

Know/edge Base

Squidy provides a wide range of ready-to-use device

and filter nodes in an online knowledge base. An

assortment of them is directly offered at the bottom of

the pipel ine view (Fig. 6). The selection and

arrangement of the nodes depend on t he statistics of

previous usage and thus suggest su itable partners to

the currently focused device or filter. This dynamic

suggestion may lead to a higher efficiency but also

helps nov ice users to limit the number of available

nodes to a relevant subset. The user can directly drag a

desired node from the selection (bottom) to the design

space of t he pipeline (center) . If the desired node is not

part of t he suggested collection, the user has the

4564

: O .tl/'ofr>.X.01
; _/ Fb.n.;I...;o"o,.Pl'I ~~.,oUI/~'

KaOnal

Ihr ,..,...".._ .. ;,>l!f'l"oll"t.'to..r'lIM.'l'I:\a':;.;,.x;~a... ~_ ..•.

!ot.allftl~~w..t,(m!'t_ . _dl"Ol'Oo.!-.u-_c... I :;>- '\.'.: :."-'"

1Jl<'VI1t1 _.;o\,oO~!lt;Jl)<r.t~,lta" . ~~.~_.

~tt. __ ~~cavr:J/J"_(tQ::l.noe"-'

flrte"tt.W1eiT~"""~a....,ttot __ ..q..o,U"~

~ ~r.o..,....::rI.t>:d.l.".U1!~r~
1I'~r.~\J"«nj.

.,~-.....,~ ~ T ' " _ i
VC<">lloEnr_~ _

dr;n>JJl;;a1.uu;ttotpa'ilU;rl.n)_ I . lil' I
:""o::"=-.=!":_ . , . : i
~NI:f\dU'>m~~ ... ~ • - . I

=~~::: ~-=~?:~ !
__ ~~r.<D1Vgll:ToI!ICnllf;l .__ j

Figure 8: Zoomed information view
of the Kalman filter node. The user
gets illustrated (also images and
videos) descriptions to the general
functionalities. There are similar
information views for each filter
parameter located at the first table
row (Fig. 7) .

"

: A-o,.a.~RIur>

: ~~

r'T1 D~ ~ --~

0'=l1.'l
bd ld

0710 bJ ---

0, O' 00' OOEJ 2" 2 _ 2 2· 2 _ 2 Q Q 9"" Q .-.•• ;:: _ .~ __ . . ' _ __ _ _ .1

Figure 9: Project perspective

overviews all pipelines within the

project and offers vast possibi lities in

combining fragmented pipelines to

sophisticated concepts (e.g.

combination of eye-gaze, laser

pOinter and speech recognition to

multi modal interaction).

possibility to access all nodes of the knowledge base by

zooming into the corresponding view which is also

located at the bottom.

Semantic Zooming

According to the assumption that navigation in

information spaces is best supported by tapping into

our natural spatial and geographic ways of thinking [6]

we use a zoomable user interface concept to navigate

inside the Squidy Design Environment. When zooming

into a node, additional information and corresponding

functionalities appear, depending on the real estate

available (semantic zooming). Thus, the user is able to

gradually define the level of detail (complexity)

according to the current need for information. In

contrast to the related work the user does not have to

leave the visual interface and to switch to additional

programming environments in order to generate,

change or just access the source code of device drivers

and filters. In Squidy, zooming into a node reveals all

parameters and enables the user to interactively adjust

the values at run-time (Fig. 7). This is highly beneficial

for empirically finding su itable parameters for the

current environment setting (e.g. Kalman filter: noise

levels). Furthermore, the user can zoom into the

information view which provides illustrated information

about the node functionality itself and its parameters

(Fig. 8). The user may even access the source code

(Fig. 11) of the node by semantic zooming. Thus, code

changes can be made in the visual user interface. If the

user zooms out, the code will be compiled and

integrated on the fly . As it is feasible to zoom into the

source code a user may add new input and output

devices or filters by add ing an empty node and

augmenting it with applicable code. In order to share

the new node with the commun ity the user can publish

it into the knowledge base.

-1000

Tlme(ms)

Figure 10: The user is able to visualize the current dataflow of

a pipe by zooming into the el lipse located at it.

In the following list we want to sum up and emphasize

some major characteristics of the Squidy interaction

library and its zoomable design environment:

Multi-threading: The possibility for multiple in

and out connections provides high flexibil ity and the

potential for massive parallel execution by concurrent

nodes. Each node generates its own thread and

processes its data independently as soon as it arrives.

Th is effectively reduces the processing delay that could

have a negative effect on the interaction performance.

Reusability & comparability: Nodes are

complete ly independent components, offer high reuse,

are free f rom side effects, and can be activated

separately e.g. for comparative evaluations.

4565

};'lh",,-'z,!<.·

I !hi,,, ;Wl fL .. ",uf""":.1.~ i-r p<)j~ .. jJ I K."""

Kalman

Figure 11: Source Code of the

corresponding device or filter node

is directly accessible by semantic

zooming. Zooming-out leads to

runtime compilation of the source

code and live integration into the

current pipeline.

Less demanding: Semantic zooming enables

users to adjust the complexity of the user interface to

their current need. Moreover, users may use filters and

devices as "black boxes" without any knowledge of the

technical details and thus concentrate on the design.

Dataflow visualization: The visual inspection of

the current dataflow assists to identify possible issues

and facilitates fast error correction at runtime (Fig. 10).

Interactive configuration: Changes in the

dataflow and configuration of node parameters results

instantly in changes concerning the NUl interaction.

This supports fast and interactive design iterations.

Visual interaction design: The pipe-and-filter

concept augmented with semantic zooming offers a

very simple, but powerful visual language for the

design and development of natural user interfaces.

Conclusion and future work

Squidy combines various input and output devices, data

filters and interaction techniques in a common

interaction library, empowering researchers and

interaction designers to visually design novel

interaction concepts. Up to now, the Squidy Design

Environment does not provide multi-user support. This

and the integration of version controlling will be future

work. Furthermore, we will conduct qualitative usability

tests in order to validate and inform the design of the

Squidy user interface concept. We plan to go open

source. Until then, contact authors for a trial version.

Acknowledgements

This work is supported by DFG GK-l042 "Explorative

Analysis and Visualization of Large Information Spaces"

and the project "Interactive Visualization for Gigapixel

Displays" supported by the "Information Technology

Baden-WOrttemberg (BW-FIT)" program.

References
[1] Dragicevic, P., Fekete, J-D. Input Device Selection
and Interaction Configuration with ICON. In Proc. IHM
HCI 2001, Springer Verlag (2001), 543-558.

[2] Harper, R., Rodden, T., Rogers, Y., Sellen, A.,
Being Human: Human-Computer Interaction in the Year
2020. Microsoft Research Ltd., Cambridge, 2008.

[3] Huot, S., Dumas, c., Dragicevic, P., Fekete, J., and
Hegron, G. The MaggLite post-WIMP toolkit: draw it,
connect it and run it. In Proc. UIST '04, ACM (2004),
257-266.

[4] Jacob, R. J., Girouard, A., Hirshfield, L. M., Horn,
M. S., Shaer, 0., Solovey, E. T., and Zigelbaum, J.
Reality-based interaction: a framework for post-WIMP
interfaces. In Proc. CHI 2008, ACM Press (2008), 201-

210.

[5] Max/MSP/Jitter, Cycling 74.
http://www.cycling74.com/.

[6] Perlin, K. and Fox, D. Pad: an alternative approach
to the computer interface. In Proc. SIGGRAPH '93, ACM

(1993), 57-64.

[7] Serrano, M., Nigay, L., Lawson, J. L., Ramsay, A.,
Murray-Smith, R., and Denef, S. The Openlnterface
Framework: A tool for multimodal interaction. In Proc.
CHI '08 Extended Abstracts, ACM (2008), 3501-3506.

[8] Van Dam, A. Post-WIMP user interfaces. Commun.

ACM 40, 2 (1997), 63-67.

[9] vvvv: a multipurpose tool kit, vvvv group,

http://vvvv .org/tikHndex.php.

[10] Wallace, V. L. The semantics of graphic input

devices. In Proc. SIGGRAPH76, ACM (1976), 61-65.

4566

	20110728_0745051
	20110728_0745251
	20110728_0745252
	20110728_0745253
	20110728_0745254
	20110728_0745471

