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Abstract

We present SquiggleNet, the first deep-learning model that can classify nanopore reads

directly from their electrical signals. SquiggleNet operates faster than DNA passes
through the pore, allowing real-time classification and read ejection. Using 1 s of

sequencing data, the classifier achieves significantly higher accuracy than base calling

followed by sequence alignment. Our approach is also faster and requires an order of

magnitude less memory than alignment-based approaches. SquiggleNet distinguished

human from bacterial DNA with over 90% accuracy, generalized to unseen bacterial

species in a human respiratory meta genome sample, and accurately classified

sequences containing human long interspersed repeat elements.
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Background

Oxford Nanopore sequencers, such as MinION or PromethION, determine the nucleo-

tide sequence of a DNA or RNA molecule by measuring changes in electrical cur-

rent (called “squiggles”) as the molecule translocates through a protein nanopore. This

approach is fundamentally different from the widely-used Illumina platform and provides

several benefits: theMinION is small, fast, and portable, making it ideal for rapid diagnos-

tics and field work. Because it does not rely upon synchronized nucleotide addition (the

heart of the Illumina sequencing-by-synthesis technology), MinION also produces much

longer reads. To our knowledge, the longest published MinION read is around 2 Mbp

[1], though even longer reads have been reported anecdotally. The changes in electrical

current induced by a DNA or RNA molecule depend on the specific chemical properties

of the nucleotides, including secondary structure interactions and epigenomic modifica-

tions such as methylation. Additionally, the nanopore sequencer can stream the squiggle

data to a computer in real time.

The nanopore sequencer can also eject a partially sequenced molecule, a capability

referred to as “Read-Until”. In principle, this enables targeted sequencing without the
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need for biochemical enrichment. The Read-Until capability allows selective sequencing

of molecules by reversing the voltage across individually selected nanopores, ejecting the

unwanted molecules. The unoccupied nanopores can then sequence different molecules

of interest.

Such computational enrichment of target sequences holds great promise for clinical

diagnostics and field research, but realizing this potential requires fast and accurate

approaches for identifying molecules of interest. For example, identifying pathogenic

DNA in a patient lung fluid sample requires bypassing human DNA—which often rep-

resents > 99% of the sequences—to find the pathogen sequences. Biochemical methods

for target sequence enrichment, such as PCR [2–5], hybrid capture [6], or CRISPR/Cas9

enrichment [7, 8] require much more time, expertise, and equipment. In contrast, a com-

putational approach to enriching target sequences provides clear savings of time, labor,

and cost.

Previous computational approaches for this problem include (a) perform standard

base calling followed by sequence alignment as in [9] and (b) perform rough base call-

ing to identify and align k-mers [10]. The first approach requires significant computing

resources—such as a graphics processing unit (GPU) and a large genome index database

for the sequence aligner. The second approach also requires a large genome index and

multiple CPU cores and can map only non-repetitive references smaller than ∼ 100 Mbp.

Both approaches are based on sequence alignment and thus are limited by sequencing

errors, their reliance on genome indexes, and their inability to capture non-sequence

information such as DNA methylation.

To address these limitations, we developed SquiggleNet, the first deep-learning-based

approach for classifying DNA sequences directly from electrical signals. SquiggleNet is

fast, accurate, memory-efficient, and robust to unknown species. It requires only 3000

signals—less than the amount of data generated in one second of sequencing—to clas-

sify the species of a DNA molecule with over 90% accuracy, significantly higher than the

best alignment-based methods. The model requires only 304 KB of RAM and no exter-

nal reference database. SquiggleNet is faster than or on par with the competitors and can

run in real time on a single core of a standard laptop. When tested on a human respira-

tory metagenome sample with a majority of unseen species, our approach achieves >90%

overall accuracy.

Results

SquiggleNet: a convolutional neural network for classifying nanopore signals

SquiggleNet is a deep neural network that classifies molecules of interest based on

statistical patterns in nanopore conductivity, which are often hard for humans to iden-

tify by eye, automatically extracted from the input data. The overall workflow for

using SquiggleNet to enrich sequences of interest is shown in Fig. 1a. The network

is first trained to recognize certain classes of sequences, such as human vs. bacte-

rial DNA, using labeled examples. Then, as the nanopore sequencer generates raw

electrical signals from a new and unseen sample, SquiggleNet rapidly classifies each

molecule to determine whether it is a sequence of interest. Molecules not of inter-

est are ejected from the nanopore, freeing the pore to sequence a different molecule.

In contrast, targeted molecules are sequenced to full length and used for downstream

analysis.
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Fig. 1 Read-until pipeline overview. a A DNA molecule translocates through a nanopore, generating electric

signals (squiggles). SquiggleNet rapidly classifies the molecule to determine whether it is a sequence of

interest. If the molecule is accepted by the classifier, it is sequenced to full length. Otherwise, the molecule is

ejected from the pore, freeing the pore to sequence another molecule. b SquiggleNet employs

1D-ResNet-styled bottleneck blocks with increasing numbers of filters. Average pooling and a final fully

connected layer are performed after the last convolutional block

SquiggleNet (Fig. 2b) employs a convolutional architecture, using residual blocks mod-

ified from ResNet [11] to perform one-dimensional (time-domain) convolution over

squiggles. The architecture consists of four blocks with increasing numbers of chan-

nels; each block includes two 1D-ResNet Bottleneck units. Mean pooling followed by a

fully-connected layer with softmax activation allows SquiggleNet to classify sequences

based on the convolutional filters in the last ResNet block. The final output is a con-

ditional probability on the sequence labels, which is then used to make the final class

prediction. We experimented with several other approaches, including a recurrent neu-

ral network (RNN) with long short-term memory (LSTM) blocks; gated recurrent units

(GRUs); other types of convolutional blocks; a combination of RNN and convolution;

different convolutional window sizes; and differing model hyperparameters. However,

we found that approaches based on convolution outperformed models using LSTM

blocks, suggesting that local features are sufficient for this problem, and long-range

time-dependent relationships do not add much information. Convolutional architec-

tures without LSTM blocks are also faster to train. Our final architecture gave the

best classification accuracy of any approach we tried and could not be made signif-

icantly smaller without sacrificing performance. Additional details about the model

architecture and hyperparameter choices can be found in the Method section and

Additional file 1.

SquiggleNet accurately classifies species directly from squiggles

To test the performance of SquiggleNet, we generated four experimental datasets con-

taining a mixture of human and bacterial DNA. The first dataset, HeLa&Zymo, con-

tains 8 bacterial species from the Zymo mixture [12] and HeLa cells. The species
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Fig. 2 Overall performance across five test datasets: accuracy, true positive rate (TPR, RECALL), true negative

rate (TNR), precision, and the AUROC score of the model trained on the HeLa&Zymo training set, and tested

on five test sets with bacterial sequences as the target

labels were obtained through Minimap2 [13] alignment. The other three datasets

(Human&Zymo_b12, Human&Zymo_b34, and Human&Zymo_b56) contain a mixture of

humanGM12878DNA andDNA fromZymoHighMolecularWeightmixture with 7 bac-

terial species [14]. To avoid systematic error from the alignment algorithms, we obtained

reliable ground-truth species labels for these three datasets by attaching a nucleotide

sequence barcode to each DNAmolecule indicating whether the molecule is from human

or bacteria. Note that our direct biochemical labeling strategy allows us to independently

assess the accuracy of species determination from base calling followed by read align-

ment; this is important for our application, since we expect that SquiggleNet may be able

to outperform purely sequence-based approaches by leveraging other information from

the electrical signals. Further dataset details can be found in the Method section and

Additional file 1.

We trained SquiggleNet using more than two million reads from the first dataset

(HeLa&Zymo), which contains equal proportions of HeLa and bacterial sequences. We

used 3000 signals from each read, the equivalent of about 300 nucleotides. We discarded

the first 1500 signals of each read (an overestimation of the adapter length), to remove

potential pore noise and adapter sequences, which could confound training. Thus Squig-

gleNet requires a total of 4500 signals, which is equivalent to about 1 second of sequencing

time. (The exact time and number of nucleotides depends on the translocation speed,



Bao et al. Genome Biology          (2021) 22:298 Page 5 of 16

which varies per pore and molecule over the course of the sequencing experiment.) How-

ever, using this exact amount of signal is not crucial; we verified that using fewer signals

did not significantly change the results (see below). Our best-performing model was

trained on the HeLa&Zymo dataset, which contains the largest number of sequenced

reads. This dataset also lacks species-specific barcodes, and we were careful to remove

the sequencing adapters and species barcodes before extracting the 3000 signals used

for classification (Methods). Thus, there is no way that the classifier could “cheat” by

using the barcodes to classify the species. When we instead trained the model on the

Human&Zymo datasets and tested on HeLa&Zymo, the model accuracy was nearly iden-

tical but slightly lower, possibly due to the smaller number of training samples (see

Additional file 1: Figure S1).

Overall, the model classifies each molecule as bacterial or human with over 90% accu-

racy across different test datasets using only 3000 signals per read (see Fig. 2). The clas-

sifier generalizes well to different lab preparations, flow cells and proportions of species.

For the first three datasets (HeLa&Zymo, Human&Zymo_b12, Human&Zymo_b34), the

true positive rates (TPR, also Recall) and the true negative rates (TNR) are all above or

around 90%. The precision and AUROC scores are all about 90% as well. Even for samples

with significantly more human than bacterial DNA (Human&Zymo_b56 and Respiratory

Metagenome), the accuracy and recall both remain high.

We used the method of integrated gradients (IG) [15] to investigate the features influ-

encing SquiggleNet’s classification decisions. The IG method computes the amount of

gradient change for each corresponding input, and by doing so, offers interpretation

on which part of the input contributes the most to the model’s decision. Inspecting

these IG results (Additional file 1: Figure S2) shows that SquiggleNet predictions are

most strongly influenced by positions where the signal changes direction, changes by

a large amount, and/or changes from one nucleotide to another. This suggests that

SquiggleNet has learned filters related to the nucleotide composition of the signal and

uses the results to make classification decisions. Further details are contained in the

Additional file 1.

To demonstrate that the results are robust to the amount of signal removed from

the beginning of the read at test time, we also tested our pre-trained model on the

Human&Zymo_b34 dataset with only the first 1000 signals per read removed. We chose

the number 1000 because this is a closer estimation of the adapter length [16], and at

test time, we would like to make the decision as soon as possible to enable real-time

read selection. When testing the model on sequences with the first 1000 signals removed,

the results were nearly identical to those obtained from conservatively removing 1500

signals: 89.35% accuracy, 90% true positive rate, and 86.9% true negative rate. Thus it

appears that, as long as the initial pore noise, adaptors, and barcodes are removed from

the training sequences, the model is able to make an accurate and fast decision at test

time. This robustness also allows flexibility if, for example, different sequencing datasets

use sequencing adapters of different lengths.

Remarkably, we find that SquiggleNet achieves significantly higher accuracy from 3000

signals than base calling followed by sequence alignment using the same amount of sig-

nal. This result gives crucial context for interpreting the accuracy of our model and

suggests that the convolutional filters may detect some non-sequence features that help

with species classification, such as chemical modification of nucleotides by methylation.



Bao et al. Genome Biology          (2021) 22:298 Page 6 of 16

Indeed, we found that the bacterial and human DNA sequences in our dataset show sig-

nificant methylation differences, with significantly more methylated cytosines in human

sequences and significantly more methylated adenines in bacterial sequences (see Addi-

tional file 1: Table S2 for details).

For the Human&Zymob_56 dataset, the target to non-target sequence ratio is 1 to

99. The overall accuracy, TNR, and AUROC score are around 90%. The TPR (Recall) is

closely following, above 87%. The precision, however, is about 1/10 of the other cases.

This is due to the extremely low concentration of the target sequences (Zymo bacterial

species), and the precision calculation is diluted by the overwhelming number of false

positive reads. Nevertheless, this is acceptable, since we want to preserve as many tar-

geted reads as possible (high recall) due to the low target read concentration. All true

positives and false positives will be sequenced to full length, and thus can be further pro-

cessed in the downstream analysis. Considering that the Human&Zymo_b56 dataset has

99× more non-targeted reads than targeted, whereas only ∼10× more reads were falsely

identified as positive compared to the HeLa&Zymo dataset, this model demonstrated

strong ability to filter out non-targeted reads, and has high potential to improve through-

put (see below). Overall, the model that was trained on only the HeLa&Zymo dataset

yields high performance across different testing datasets, highlighting the robustness of

the model.

Interestingly, SquiggleNet performance varies systematically across bacterial taxa. The

network classifies human vs. bacterial DNAwith 90% accuracy, but some bacterial species

are easier to distinguish from human sequences than others. The eight bacterial species

in the Zymo mixture are related according to the taxonomy tree shown in Fig. 3. The top

three species—Pseudomonas aeruginosa (Pse), Salmonella enterica (Sal), and Escherichia

coli (Esc)—are gram-negative bacteria and are most easy to identify, while the bottom five

species are gram-positive bacteria and are harder to distinguish from human DNA. It is

not clear what specific features of the gram-negative bacteriamake them easier to identify,

but this behavior may be related to species differences in GC-content or the amount of

methylation.

SquiggleNet identifies species not seen during training

In real-world applications, samples may contain species whose genomes are not in the

training samples. We thus investigated whether the model can identify unseen species.

To do this, we performed a leave-one-out analysis, removing each of the bacterial species

Fig. 3 Taxonomy tree and accuracy per species. Taxonomy tree for the eight species in our dataset grouped

in color and their corresponding accuracy breakdown per species. The accuracy for distinguishing bacterial

sequences from human was highest for the red branch, intermediate for the blue group, and lowest for the

brown group
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separately during training, then putting it back during testing to challenge SquiggleNet’s

generalization ability. For the held-out species comparisons, we used 400k and 20k reads

from the HeLa&Zymo dataset for training and testing, respectively.

During each training run, we removed one of the eight Zymo bacterial species from

the training dataset. We then compared the test accuracy from the classifier trained

on seven bacterial species plus human with the performance of the same model on

two different testing sets containing the eighth held-out species. The dataset we call

Test-Uniform/HeLa includes all eight species (including the one held out during train-

ing), evenly distributed, and balanced to contain equal numbers of HeLa and bacterial

molecules. The dataset we refer to as Test-One/HeLa includes only the single held-out

species and HeLa, in equal proportions.

The unknown species identification results can be found in Fig. 4. The red bars are

the test accuracy results without held-out species. The left-most column is the perfor-

mance of a training run with all 8 bacterial species as a reference for cross-testing run

performance comparison.

Across different runs, the test accuracies, not including held-out species, are around

84–86%. For each Test-Uniform/HeLa experiment, accuracy of classifying the held-out

species was ∼ 83–85%, only about 1% lower compared to when the species was seen

during training. This shows that the model was able to accurately identify sequences

from bacterial species that were not seen during training. For the Test-One/HeLa

experiment, the test performance is more influenced by the taxonomic position of the

held-out species. Since the testing datasets only include human DNA and the one species

that was held out, we expected performance to drop even more than the previous

Test-Uniform/HeLa experiment. However, the test accuracies of the first three gram-

negative bacterial species, Pseudomonas aeruginosa (Pse), Salmonella enterica (Sal), and

Fig. 4 Performance of SquiggleNet on unseen species. Each column (except “All”) is a model trained on a

Zymo/HeLa 1:1 mix without the held-out species. For each species, the red bar shows the test accuracy on all

species minus the held-out species; this number provides a baseline against which to compare performance

on the held-out species. Blue bars show the accuracy of each trained model on Test-Uniform/HeLa, a test set

with all eight Zymo bacterial species included and HeLa in a 1:1 ratio. Brown bars show the accuracy of each

model on Test-One/HeLa, a test set with only the single unseen species and HeLa in a 1:1 ratio
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Escherichia coli (Esc) actually increased by ∼ 1–4% compared to their validation accu-

racies. The remaining four gram-positive species had a minor performance increase or

drop within 4%. Staphylococcus aureus had the largest performance drop among all, but

the accuracy was still above 75%.

In summary, these two sets of experiments show that even when one species was not

seen during training time, SquiggleNet was still able to identify it with high confidence.

SquiggleNet identifies bacterial DNA in a human respiratory metagenome sample

To further test the generalizability and practicality of SquiggleNet, we tested the best

performing model (trained on the Hela&Zymo dataset) on a dataset collected from sev-

eral clinical human samples. We collected the data following the procedures in [17].

The ground-truth labels were obtained using our previously published read alignment

pipeline[18]. The dataset includes 324,526 human reads and 341 bacteria and other (less

than 0.6%), a human:bacterial ratio of 951:1. Some of the dominant bacteria groups

include Prevotella (29%), Neisseria (20%), and Rothia (11%). However, less than 3% of the

bacterial species overlap with the training dataset. The full taxonomic composition can

be found in Fig. 5 and [17].

Fig. 5 SquiggleNet accuracy by species in human respiratory metagenome sample[19]. Some of the

dominant bacterial groups include Neisseria (23%), Bacteriodales (21%), and Firmicutes (20%). Less than 3% of

the bacterial species overlap with the training dataset
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Even though the model was trained on dataset Hela&Zymo, it achieved 90.8% overall

accuracy in the Respiratory Metagenome dataset, 72.5% true positive rate, and 90.9% true

negative rate (Fig. 2). The AUROC score is 0.817. The precision is about 1/5 of that in

dataset Human&Zymo_b56. As with the unbalanced Human&Zymo dataset, the preci-

sion is diluted by the extremely low concentration of bacteria, but the model still achieves

high recall—which is critical to retrieve all the bacterial reads for downstream analysis.

The Zymo community of the dataset on which the model was trained has very little

overlap (< 3%) with the bacterial species found in the Respiratory Metagenome dataset.

The genome information in this testing dataset was mostly unseen and unknown for the

trained model. However, it still achieved a true positive rate of 72.5%. This shows that

SquiggleNet is able to extract common bacterial genome features and distinguish them

from the human genome sequencing raw signals. The generalizability of SquiggleNet sig-

nificantly increases the potential applications of our method. As shown in Fig. 5, different

species were classified with different accuracy. The model is therefore, expected to be

even more accurate if it can be fine-tuned in a dataset with closer range of species.

SquiggleNet is more accurate and efficient than previous approaches

We next compared the performance and efficiency of SquiggleNet against the current

state-of-the-art methods: Guppy+Minimap2 and UNCALLED. This experiment was con-

ducted on dataset Human&Zymo_b34 with 1:4 Human and Zymo mix. All the analysis

was done on a single-usage Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz machine with

a single TITAN Xp GPU.

We benchmarked the running time required to classify 712,000 reads (178 fast5 files

with 4000 sequences each and 3000 signals per read, adapters and barcodes removed).

SquiggleNet took 806.74 s (13 min 27 s) to finish processing all on GPU (Fig. 6). When

tested on a 3.5-GHz Dual-Core Intel Core i7 Macbook Pro, SquiggleNet finished pro-

cessing all the files in 2630.58 s (43 min 51 s). With the Guppy+Minimap2 method [9],

sequences were base called using Guppy [20] with 4 callers and 4 runners/GPU, and we

used 32 threads for sequence alignment with Minimap2 [13]. It took 742.602 s (12 min

23 s) for Guppy to finish base calling 3000 signals and another 25.673 s for Minimap2

to finish the alignment, about the same amount of time as SquiggleNet. The accuracy

Fig. 6 Processing time and accuracy comparison. The processing time of SquiggleNet with 300 bp of input is

among the lowest, and yet the accuracy is the highest among the three methods. For the other two

alignment-based methods, with longer input length, the processing time grows drastically, whereas the

accuracy gain is limited
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of Guppy+Minimap2, however, was 79%, more than 10% lower than SquiggleNet. Using

the full length of the input sequence increased the accuracy of Guppy+Minimap2 to 91%,

but the processing time increased dramatically. With UNCALLED, 32 threads were used

to process 3000 signals, 6000 signals, and full-length reads respectively. It took at least

1277.28 seconds (21 min 17 s) to finish the 3000 signals, but the accuracy was below 50%.

With longer input length, the accuracy increased to 60% (82% for full-length), but the full

length accuracy was still lower than SquiggleNet with 3000 signals. Meanwhile, the pro-

cessing time grows drastically as well. SquiggleNet is, therefore, faster and more accurate

than either Guppy+Minimap2 or UNCALLED.

Note that the accuracy values that we report take into account all reads, including

those that Minimap2 could not align. In contrast, the UNCALLED paper reported that

the method was able to recover 94% of the alignments identified by Minimap2, but

this number does not take into account the reads that Minimap2 failed to align. Cru-

cially, our datasets have molecular barcodes, allowing us to determine the true species

even for reads that Minimap2 failed to align. Furthermore, the 94% accuracy reported

by the UNCALLED paper is based on using the entire sequence, whereas we only used

significantly less information (3000 signals) to classify the reads.

We also observed that over 90% of the SquiggleNet processing time on GPU and over

40% of the processing time on CPU is spent on loading data from the disk. The actual

classification time for a batch of 500 reads is about 0.06 seconds on GPU and about 0.8

seconds on CPU (one thread). When streaming directly from the nanopore sequencer in

real time, this loading time can be significantly reduced.

SquiggleNet also offers significant advantages in terms of space requirements (Table 1),

requiring only 304 KB to store the model parameters. The run-time space usage is dom-

inated by the storage required for each mini-batch of sequences, rather than the model

parameters. Guppy, however, is a much larger deep-learning model, and the smallest

pre-trained option available through Oxford Nanopore Community [20] is 5.5MB. On

top of that, however, the Guppy+Minimap2 method also requires a customized database

for Minimap2 reference. In this experiment, the human and Zymo reference database

takes 3.2GB. UNCALLED is currently operational only on CPU. Similarly, it also takes

a reference database to build a Burrows-Wheeler index, which is an extra 3.2 GB in

this experiment. Therefore, SquiggleNet requires much less space than the other two

methods.

SquiggleNet identifies reads containing human long interspersed repeat elements

Classifying species is useful for many applications, but distinguishing among different

loci from the same species would significantly expand the settings in which Squig-

gleNet can be applied. To investigate whether SquiggleNet can be used to enrich loci

of interest within a single species, we analyzed data from a recently published protocol

Table 1Method requirement comparison

SquiggleNet SquiggleNet Guppy+Minimap2 UNCALLED

Equipment (t = thread) GPU CPU (t = 1) GPU+CPU (t = 32) CPU (t = 32)

Space requirement↓ ≤GPUMax ≤MemMax ≤ GPU Max + 3.2GB ≤ MemMax + 3.2GB

Model size↓ 304 KB 304 KB 5.5/40/116 MB
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[21] that enriches specific families of interspersed repeat elements using Cas9-directed

adapter ligation (Fig. 7a). This experimental enrichment is effective, but still fewer

than 50% of reads contain the repeats of interest [21]. As previously described [22],

we used BLASTn [23] on the base-called sequence of each read to label the reads as

target (repeat-containing) or non-target (no repeat). We focused specifically on a sin-

gle class of interspersed repeats, human-specific long interspersed elements (L1Hs),

which was the family most effectively enriched by the Cas9-directed ligation protocol.

Using these labels, we trained SquiggleNet on a balanced dataset containing approxi-

mately 170,000 reads from each class. Note that this is about tenfold less training data

than we used in the human vs. bacterial classification experiments above. As with the

species classification experiments, we discarded the first 1500 signals from each read,

then used the next 3000 for training or testing. Despite the smaller training dataset, we

found that SquiggleNet was extremely effective at identifying reads containing L1Hs ele-

ments (Fig. 7b, c). Our model achieved more than 92% accuracy with a true positive

rate above 93%. These results indicate that using SquiggleNet in a read-until setting to

enrich long interspersed repeats would provide a significant benefit compared to Cas9

enrichment only.

SquiggleNet improves throughput by enabling computationally targeted sequencing

To assess the potential improvement in sequencing throughput that SquiggleNet could

provide, we developed a mathematical model to compare the total number of base pairs

and total sequencing time needed to obtain a certain number of targeted sequences with

and without SquiggleNet.

Fig. 7 Identifying reads containing human long interspersed repeat elements. a Diagram of experimental

strategy for enriching human mobile elements, including interspersed repeats. A guide RNA specific to each

repeat class directs Cas9 to cut the DNA and ligate a sequencing adapter. However, adapters are also ligated

to some sequences without repeat elements. Subsequent nanopore sequencing produces both target and

non-target reads. b Pie charts of the proportion of L1Hs repeat elements from Cas9 enrichment only vs.

SquiggleNet classification. c Classification metrics demonstrating SquiggleNet’s ability to distinguish reads

with or without L1Hs repeats
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The detailed derivation of the model can be found in Additional file 1. The most influ-

ential hyper-parameters include average target sequence length z̄, average non-target

sequence length h̄, and target sequence concentration c. Several other tunable hyper-

parameters, including the waiting time to eject one molecule and begin sequencing

another; the total number of active pores in a flow cell; the sequencing speed; and the

total number of targeted sequences, did not significantly influence the predicted increase

in throughput (see Additional file 1). We chose the values for these less influential param-

eters based on the empirical time requirements and accuracy of SquiggleNet and the

sample means from the real sequencing data.

In Fig. 8, we picked the average non-target/target sequence length ratio as one axis,

and the target sequence concentration as the other axis to demonstrate the total number

of base pairs (left) and total sequencing time (right) that a regular nanopore sequenc-

ing pipeline would require, compared to those of a pipeline with SquiggleNet, in order

to obtain a fixed number of targeted reads. Based on the properties of our sequencing

datasets, we set average sequencing speed to be 450 base pairs per second and the total

number of active pores in a flow cell to be 500. We also used the following parameters

based on SquiggleNet’s empirical performance: TPR = 0.9, TNR = 0.9, sequencing time =

1s, and classification decision time = 0.8 s (time required for SquiggleNet on CPU).

We show the predicted gains in throughput and sequencing time for a range of the most

important hyperparameters (Fig. 8). When the average non-target read length is about

20 times longer than the target read length, and the sample contains over 90% non-target

sequences, it would take a nanopore sequencing pipeline ∼ 10 times longer than Read-

Until pipeline with SquiggleNet to achieve a fixed number of targeted reads. The regular

nanopore sequencing pipeline would also have to sequence ∼ 10 times more base pairs

than the Read-Until pipeline. Even if we set these parameters much more pessimistically,

the model still predicts about a 5-fold gain in throughput and time. These numbers are

also in the same ballpark as the 4.5× enrichment reported in the UNCALLED paper [10],

supporting the plausibility of our mathematical model. We therefore conclude that Read-

Until with SquiggleNet holds great promise to improve target read throughput, saving

sequencing time and resources.

Fig. 8 Throughput and sequencing time comparison without/with read-until. When the average non-target

read length is about 20 times longer than the target read length, and sample contains over 90% non-target

reads, a normal sequencing pipeline would have to sequence ∼ 10 times more base pairs (left) than

Read-Until pipeline with SquiggleNet to achieve a fixed number of targeted reads. The ratio is about 10 for

the required sequencing time as well (right)
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Discussion

The success of our approach suggests that the raw sequencing signals generated by

nanopore sequencing contain rich information for identifying target sequences from

background sequences. Such features could include different DNAmodification patterns,

codon frequencies, GC content, or even DNA shape or RNA secondary structure. Fur-

thermore, because these features are primarily local in nature, only a small amount of

sequencing signal is required. In contrast, approaches that rely on sequence information

alone require much more signal (more sequencing time), are susceptible to base-calling

errors, and do not leverage non-sequence information.

We also note that different reads go through the pores at different speeds. Future

work could also include an event detector and a scaler into the classifier, which may fur-

ther improve performance. Additionally, the squiggles from different MinION flow cells

show systematic run-to-run differences. Thus, the data preprocessing and normalization

procedures that we employed are crucial for generalizing across datasets.

We tested the capability of our model to enrich bacterial DNA in the presence of

more abundant humanDNA. Human and bacterial DNA are significantly different, which

makes this classification task feasible. We also demonstrated that SquiggleNet can iden-

tify target sequences in other contexts, such as interspersed repeat elements within

the human genome. This suggests that SquiggleNet could be used for targeted enrich-

ment of other genomic loci, such as commonly mutated cancer genes or regions that

are highly polymorphic across the human population. We also anticipate that Squig-

gleNet will be useful for distinguishing viral DNA or RNA sequences from host molecules

within infected cells. Rapidly identifying targeted sequences could be helpful in numer-

ous clinical settings, including cancer diagnosis, respiratory pathogen identification, and

coronavirus testing.

Methods

Data collection

We generated five datasets using a MinION sequencer (Table 2) for this paper. The first

four datasets used the standard Rapid Sequencing Kit (SQK-RAD004) protocol on a FLO-

106D MinION Flow Cell. The HeLa&Zymo dataset used the ZymoBIOMICS Microbial

Community DNA Standard, and datasets 2–4 used the ZymoBIOMICSHMWDNAStan-

dard with different barcodes specified in Table 2. Details about the dataset composition

can be found in Additional file 1. The Respiratory Metagenome data collection method

can be found in [17].

Because base calling and sequence alignment of noisy nanopore reads can result in sys-

tematic errors and is not a completely reliable source of ground truth, we used barcodes

to label the sequences in the three Human&Zymo datasets as either bacteria or human

Table 2 Datasets description

Name Ratio Train Validation Test Note

HeLa&Zymo 1:1 2.4M 40k 54k

Human&Zymo_b12 1:1 1.72M 40k 44k Barcode 1 and 2

Human&Zymo_b34 1:4 224k Barcode 3 and 4

Human&Zymo_b56 99:1 100k Barcode 5 and 6

Respiratory Metagenome 951:1 324,867 Real patient samples
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before mixing them together. The labels obtained in this way thus represent reliable

ground truth.

Each extracted signal read was normalized with fast5 scaling and offset. All reads were

also normalized using Z-scored median absolute deviation. The extreme signal values

with a modified z-score larger than 3.5 were replaced by the average of closest neighbors.

Model architecture

SquiggleNet is a 1D-ResNet-based binary classifier (Fig. 1). The first layer of 1D-CNN

is comparable to the first layer of Guppy[20], but with significantly fewer channels (20

instead of 512). After that, there are four layers of 1D-ResNet, and each layer includes two

BottleNeck blocks. The number of channels for each layer increases by a factor of 1.5, and

each BottleNeck block decreases the string size with a stride of 2. We perform average

pooling after the final convolutional layer, followed by a fully connected layer. We also

experimented with other architectures (see Additional file 1).

Training and evaluation

Our best-performing model was trained on the HeLa&Zymo dataset with binary

cross-entropy loss. The dataset was split into training, validation, and testing sets.

The Human&Zymo_b12, Human&Zymo_b34, Human&Zymo_b56, and Respiratory

Metagenome datasets were used to assemble testing sets for the best-performing model.

As a separate analysis, we also trained on the Human&Zymo datasets and tested on the

HeLa&Zymo datasets. The performance of this model was nearly identical but slightly

worse than the model trained on HeLa&Zymo (see Additional file 1 for details).

The Adam optimizer was used for over 6 epochs on each dataset, with a learning rate

of 1e-3 and batch size of 1000. The model was initialized using Kaiming initialization in

fan-out mode. Batch normalization was conducted within each Bottleneck block.

For the human interspersed repeat analysis, we used a balanced training dataset with

equal numbers of reads that contained and did not contain an L1Hs element (about

170,000 reads each). We identified L1Hs elements using BLAST on the base-called reads

with an e-value cutoff of 1 × 10−5, as previously described [21]. We trained for 3 epochs

using the Adam optimizer. Evaluation metrics include overall accuracy, true positive rate

(TPR, Recall), true negative rate (TNR), Precision, and area under receiver operating char-

acteristic curve (AUROC) when running the model on different test datasets. Speed and

memory comparisons were performed on the same Intel(R) Xeon(R) CPU E5-2697 v3 @

2.60 GHz machine with a single TITAN Xp GPU.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02511-y.

Additional file 1: Supplement. Details on data collection, model parameters, hyperparameter tuning, details on the

efficiency comparison experiment method, details on the theoretical throughput estimation model are included in

the Supplement. Additional experiment results, including DNA methylation, model interpretation, model

performance trained on a different dataset, model performance on different test dataset composition ratio and on

odd/even chromosomes, are also presented in the Supplement [24–28].

Additional file 2: Review history.

Acknowledgements

We thank members of the CELab, including Satish Narayanasamy, Reetu Das, and Prof. Jenna Wiens for their helpful

suggestions and advice during this project.

https://doi.org/10.1186/s13059-021-02511-y


Bao et al. Genome Biology          (2021) 22:298 Page 15 of 16

Review history

The review history is available as Additional file 2.

Peer review information

Anahita Bishop was the primary editor of this article and managed its editorial process and peer review in collaboration

with the rest of the editorial team.

Authors’ contributions

YB and JDW conceived the idea of SquiggleNet. YB designed and implemented the model and analyzed the data. JW

generated datasets 1 to 4. JRE, PR, and RPD provided the human-pathogen dataset and generated Fig. 5. YB and JDW

wrote the paper. JRE and DB offered suggestions and advice. TM, WZ, RM, and AB generated and annotated the Cas9

enrichment dataset. All authors read and approved the final manuscript.

Authors’ information

Twitter: @baobaoyaobaobao (Yuwei Bao); @LabWelch (Joshua D. Welch).

Funding

The authors wish to acknowledge support from NIH grants R01HG010883 (JW), R21HG011493 (AB and RM), and

R01HL144599 and R21AI137669 (RD).

Availability of data andmaterials

We have uploaded our data to SRA (SRP296988) [29, 30]. The human metagenome dataset has been previously

published in [17]. The Cas9 enrichment dataset is previously published and available on the SRA (BioProject accession

PRJNA699027)[21]. The code is available at a DOI-assigning repository Zenodo (https://doi.org/10.5281/zenodo.4728278)

and under the MIT license in our Github repository [31]: https://github.com/welch-lab/SquiggleNet.

Declarations

Ethics approval and consent to participate

No ethical approval was necessary for this study.

Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Computer Science and Engineering, University of Michigan, 48109 Ann Arbor, MI, USA. 2Department of

Electrical and Computer Engineering, University of Michigan, 48109 Ann Arbor, MI, USA. 3Division of Pulmonary and

Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 48109 Ann Arbor, MI,

USA. 4Department of Computational Medicine and Bioinformatics, University of Michigan, 48109 Ann Arbor, MI, USA.
5Department of Human Genetics, University of Michigan Medical, 48109 Ann Arbor, MI, USA. 6Department of

Microbiology and Immunology, University of Michigan Medical School, 48109 Ann Arbor, MI, USA. 7Michigan Center for

Integrative Research in Critical Care, 48109 Ann Arbor, MI, USA.

Received: 5 March 2021 Accepted: 4 October 2021

References

1. Oxford Nanopore: Minion. https://nanoporetech.com/products/minion. Accessed 10 Sept 2019.

2. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C,

Gabriel S, Jaffe DB, Lander ES, Nusbaum C. Solution hybrid selection with ultra-long oligonucleotides for massively

parallel targeted sequencing. Nat Biotechnol. 2009;27(2):182–89. https://doi.org/10.1038/nbt.1523.

3. Kozarewa I, Armisen J, Gardner AF, Slatko BE, Hendrickson CL. Overview of Target Enrichment Strategies. Curr

Protoc Mol Biol. 2015;112:7.21.1–7.21.23. https://doi.org/10.1002/0471142727.mb0721s112.

4. Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B. Mapping dna methylation with

high-throughput nanopore sequencing. Nat Methods. 2017;14(4):411–13. https://doi.org/10.1038/nmeth.4189.

5. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting dna cytosine methylation using

nanopore sequencing. Nat Methods. 2017;14(4):407–10. https://doi.org/10.1038/nmeth.4184.

6. Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, Rae D, Grundy S, Turner DJ, Wain J, Leggett

RM, Livermore DM, O’Grady J. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower

respiratory infection. Nat Biotechnol. 2019;37(7):783–92. https://doi.org/10.1038/s41587-019-0156-5.

7. Gilpatrick T, Lee I, Graham JE, Raimondeau E, Bowen R, Heron A, Sedlazeck FJ, Timp W. Targeted nanopore

sequencing with cas9 for studies of methylation, structural variants, and mutations. bioRxiv. 2019604173. https://doi.

org/10.1101/604173.

8. Gu W, Crawford ED, O’Donovan BD, Wilson MR, Chow ED, Retallack H, DeRisi JL. Depletion of abundant

sequences by hybridization (dash): using cas9 to remove unwanted high-abundance species in sequencing libraries

and molecular counting applications. Genome Biol. 2016;17(1):41. https://doi.org/10.1186/s13059-016-0904-5.

9. Payne A, Holmes N, Clarke T, Munro R, Debebe BJ, Loose M. Readfish Enables Targeted Nanopore Sequencing of

Gigabase-sized Genomes. https://doi.org/10.1038/s41587-020-00746-x.

10. Kovaka S, Fan Y, Ni B, Timp W, Schatz MC. Targeted Nanopore Sequencing by Real-time Mapping of Raw Electrical

Signal with UNCALLED. https://doi.org/10.1038/s41587-020-0731-9.

https://doi.org/10.5281/zenodo.4728278
https://github.com/welch-lab/SquiggleNet
https://nanoporetech.com/products/minion
https://doi.org/10.1038/nbt.1523
https://doi.org/10.1002/0471142727.mb0721s112
https://doi.org/10.1038/nmeth.4189
https://doi.org/10.1038/nmeth.4184
https://doi.org/10.1038/s41587-019-0156-5
https://doi.org/10.1101/604173
https://doi.org/10.1101/604173
https://doi.org/10.1186/s13059-016-0904-5
https://doi.org/10.1038/s41587-020-00746-x
https://doi.org/10.1038/s41587-020-0731-9


Bao et al. Genome Biology          (2021) 22:298 Page 16 of 16

11. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR); 2016.

12. ZymoBIOMICS Microbial Community DNA Standard. https://www.zymoresearch.com/collections/zymobiomics-

microbial-community-standards/products/zymobiomics-microbial-community-dna-standard. Accessed Oct 2019.

13. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100. https://doi.org/

10.1093/bioinformatics/bty191. https://academic.oup.com/bioinformatics/article-pdf/34/18/3094/25731859/

bty191.pdf.

14. ZymoBIOMICS HMW DNA Standard. https://www.zymoresearch.com/collections/zymobiomics-microbial-

community-standards/products/zymobiomics-hmw-dna-standard. Accessed Oct 2019.

15. Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. In: Precup D, Teh YW, editors. Proceedings

of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70.

Sydney: PMLR, International Convention Centre; 2017. p. 3319–28. http://proceedings.mlr.press/v70/

sundararajan17a.html.

16. Oxford Nanopore Technologies ML. Real-Time Selective Sequencing on the MinION. Youtube. https://www.

youtube.com/watch?v=34sWScdYyYQ&t=303s&ab_channel=OxfordNanoporeTechnologies. Accessed 8 Mar 2020.

17. O’Dwyer DN, Ashley SL, Gurczynski SJ, Xia M, Wilke C, Falkowski NR, Norman KC, Arnold KB, Huffnagle GB,

Salisbury ML, Han MK, Flaherty KR, White ES, Martinez FJ, Erb-Downward JR, Murray S, Moore BB, Dickson RP.

Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir

Crit Care Med. 2019;199(9):1127–38. https://doi.org/10.1164/rccm.201809-1650OC.

18. Pendleton KM, Erb-Downward JR, Bao Y, Branton WR, Falkowski NR, Newton DW, Huffnagle GB, Dickson RP.

Rapid Pathogen Identification in Bacterial Pneumonia Using Real-Time Metagenomics. Am J Respir Crit Care Med.

2017;196(12):1610–2. https://doi.org/10.1164/rccm.201703-0537LE.

19. Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a web browser. BMC

Bioinformatics. 2011;12(385):1471–2105.

20. Oxford Nanopore: Guppy. https://community.nanoporetech.com/protocols/Guppy-protocol/v/GPB_2003_v1_

revT_14Dec2018. Accessed 29 Feb 2020.

21. McDonald TL, Zhou W, Castro CP, Mumm C, Switzenberg JA, Mills RE, Boyle AP. Cas9 targeted enrichment of

mobile elements using nanopore sequencing. Nat Commun. 2021;12(1):3586. https://doi.org/10.1038/s41467-021-

23918-y.

22. Zhou W, Emery SB, Flasch DA, Wang Y, Kwan JM, Kidd KY, Moran JV, Mills RE. Identification and characterization

of occult human-specific line-1 insertions using long-read sequencing technology. Nucleic Acids Res. 2020;48(3):

1146–63. https://doi.org/10.1093/nar/gkz1173.

23. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning dna sequences. J Comput Biol.

2000;7(1-2):203–14. https://doi.org/10.1089/10665270050081478.

24. Oxford Nanopore: Barcoding Kits. https://community.nanoporetech.com/technical_documents/chemistry-

technical-document/v/chtd_500_v1_revw_07jul2016/barcoding-kits. Accessed 25 Jan 2020.

25. Oxford Nanopore: Rapid Sequencing Kit Family. https://community.nanoporetech.com/technical_documents/

chemistry-technical-document/v/chtd_500_v1_revw_07jul2016/rapid-sequencing-kit-family. Accessed 25 Jan

2020.

26. Kriman S, Beliaev S, Ginsburg B, Huang J, Kuchaiev O, Lavrukhin V, Leary R, Li J, Zhang Y. Quartznet: Deep

Automatic Speech Recognition with 1D Time-Channel Separable Convolutions. In: ICASSP 2020 - 2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2020. p. 6124–8. https://doi.org/10.

1109/ICASSP40776.2020.9053889.

27. Bonito. https://github.com/nanoporetech/bonito. Accessed 2 Feb 2020.

28. Integrated Gradient. https://github.com/TianhongDai/integrated-gradient-pytorch. Accessed 23 July 2020.

29. Wadden J. WGS of Human NA12878 and Zymo HMWmixture. Datasets. 2020. https://www.ncbi.nlm.nih.gov/sra/

SRX9818342[accn]. Accessed 11 Jan 2021.

30. Wadden J. WGS of Hela and Zymo Standard mixture. Datasets. 2020. https://www.ncbi.nlm.nih.gov/sra/

SRX9818341[accn]. Accessed 11 Jan 2021.

31. Bao Y. SquiggleNet. Github. 2021. https://doi.org/10.5281/zenodo.5532521. https://github.com/welch-lab/

SquiggleNet.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.zymoresearch.com/collections/zymobiomics-microbial-community-standards/products/zymobiomics-microbial-community-dna-standard
https://www.zymoresearch.com/collections/zymobiomics-microbial-community-standards/products/zymobiomics-microbial-community-dna-standard
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://academic.oup.com/bioinformatics/article-pdf/34/18/3094/25731859/bty191.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/18/3094/25731859/bty191.pdf
https://www.zymoresearch.com/collections/zymobiomics-microbial-community-standards/products/zymobiomics-hmw-dna-standard
https://www.zymoresearch.com/collections/zymobiomics-microbial-community-standards/products/zymobiomics-hmw-dna-standard
http://proceedings.mlr.press/v70/sundararajan17a.html
http://proceedings.mlr.press/v70/sundararajan17a.html
https://www.youtube.com/watch?v=34sWScdYyYQ&t=303s&ab_channel=OxfordNanoporeTechnologies
https://www.youtube.com/watch?v=34sWScdYyYQ&t=303s&ab_channel=OxfordNanoporeTechnologies
https://doi.org/10.1164/rccm.201809-1650OC
https://doi.org/10.1164/rccm.201703-0537LE
https://community.nanoporetech.com/protocols/Guppy-protocol/v/GPB_2003_v1_revT_14Dec2018
https://community.nanoporetech.com/protocols/Guppy-protocol/v/GPB_2003_v1_revT_14Dec2018
https://doi.org/10.1038/s41467-021-23918-y
https://doi.org/10.1038/s41467-021-23918-y
https://doi.org/10.1093/nar/gkz1173
https://doi.org/10.1089/10665270050081478
https://community.nanoporetech.com/technical_documents/chemistry-technical-document/v/chtd_500_v1_revw_07jul2016/barcoding-kits
https://community.nanoporetech.com/technical_documents/chemistry-technical-document/v/chtd_500_v1_revw_07jul2016/barcoding-kits
https://community.nanoporetech.com/technical_documents/chemistry-technical-document/v/chtd_500_v1_revw_07jul2016/rapid-sequencing-kit-family
https://community.nanoporetech.com/technical_documents/chemistry-technical-document/v/chtd_500_v1_revw_07jul2016/rapid-sequencing-kit-family
https://doi.org/10.1109/ICASSP40776.2020.9053889
https://doi.org/10.1109/ICASSP40776.2020.9053889
https://github.com/nanoporetech/bonito
https://github.com/TianhongDai/integrated-gradient-pytorch
https://www.ncbi.nlm.nih.gov/sra/SRX9818342[accn]
https://www.ncbi.nlm.nih.gov/sra/SRX9818342[accn]
https://www.ncbi.nlm.nih.gov/sra/SRX9818341[accn]
https://www.ncbi.nlm.nih.gov/sra/SRX9818341[accn]
https://doi.org/10.5281/zenodo.5532521
https://github.com/welch-lab/SquiggleNet
https://github.com/welch-lab/SquiggleNet

	Abstract
	Keywords

	Background
	Results
	SquiggleNet: a convolutional neural network for classifying nanopore signals
	SquiggleNet accurately classifies species directly from squiggles
	SquiggleNet identifies species not seen during training
	SquiggleNet identifies bacterial DNA in a human respiratory metagenome sample
	SquiggleNet is more accurate and efficient than previous approaches
	SquiggleNet identifies reads containing human long interspersed repeat elements
	SquiggleNet improves throughput by enabling computationally targeted sequencing

	Discussion
	Methods
	Data collection
	Model architecture
	Training and evaluation

	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02511-y.
	Additional file 1
	Additional file 2

	Acknowledgements
	Review history
	Peer review information
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher's Note

