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Abstract

Relational datasets are being generated at an alarmingly rapid rate across organizations and 

industries. Compressing these datasets could significantly reduce storage and archival costs. 

Traditional compression algorithms, e.g., gzip, are suboptimal for compressing relational datasets 

since they ignore the table structure and relationships between attributes.

We study compression algorithms that leverage the relational structure to compress datasets to a 

much greater extent. We develop Squish, a system that uses a combination of Bayesian Networks 

and Arithmetic Coding to capture multiple kinds of dependencies among attributes and achieve 

near-entropy compression rate. Squish also supports user-defined attributes: users can instantiate 

new data types by simply implementing five functions for a new class interface. We prove the 

asymptotic optimality of our compression algorithm and conduct experiments to show the 

effectiveness of our system: Squish achieves a reduction of over 50% in storage size relative to 

systems developed in prior work on a variety of real datasets.

1. INTRODUCTION

From social media interactions, commercial transactions, to scientific observations and the 

internet-of-things, relational datasets are being generated at an alarming rate. With these 

datasets, that are either costly or impossible to regenerate, there is a need for periodic 

archival, for a variety of purposes, including long-term analysis or machine learning, 

historical or legal factors, or public or private access over a network. Thus, despite the 

declining costs of storage, compression of relational datasets is still important, and will stay 

important in the coming future.

One may wonder if compression of datasets is a solved problem. Indeed, there has been a 

variety of robust algorithms like Lempel-Ziv [21], WAH [20], and CTW [17] developed and 

used widely for data compression. However, these algorithms do not exploit the relational 

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first 
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To 
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request 
permissions from permissions@acm.org.

HHS Public Access
Author manuscript
KDD. Author manuscript; available in PMC 2017 February 06.

Published in final edited form as:
KDD. 2016 August ; 2016: 1575–1584. doi:10.1145/2939672.2939867.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structure of the datasets: attributes are often correlated or dependent on each other, and 

identifying and exploiting such correlations can lead to significant reductions in storage. In 

fact, there are many types of dependencies between attributes in a relational dataset. For 

example, attributes could be functionally dependent on other attributes [3], or the dataset 

could consist of several clusters of tuples, such that all the tuples within each cluster are 

similar to each other [8]. The skewness of numerical attributes is another important source of 

redundancy that is overlooked by algorithms like Lempel-Ziv [21]: by designing encoding 

schemes based on the distribution of attributes, we can achieve much better compression rate 

than storing the attributes using binary/float number format.

There has been some limited work on compression of relational datasets, all in the recent 

past [3, 6, 8, 12]. In contrast with this line of prior work, Squish uses a combination of 

Bayesian Networks coupled with Arithmetic Coding [19]. Arithmetic Coding is a coding 

scheme designed for sequence of characters. It requires an order among characters and 

probability distributions of characters conditioned on all preceding ones. Incidentally, 

Bayesian Networks fulfill both requirements: the acyclic property of Bayesian Network 

provides us an order (i.e., the topological order), and the conditional probability distributions 

are also specified in the model. Therefore, Bayesian Networks and Arithmetic Coding are a 

perfect fit for relational dataset compression.

However, there are several challenges in using Bayesian Networks and Arithmetic Coding 

for compression. First, we need to identify a new objective function for learning a Bayesian 

Network, since conventional objectives like Bayesian Information Criterion [15] are not 

designed to minimize the size of the compressed dataset. Another challenge is to design a 

mechanism to support attributes with an infinite range (e.g., numerical and string attributes), 

since Arithmetic Coding assumes a finite alphabet for symbols, and therefore cannot be 

applied to those attributes. To be applicable to the wide variety of real-world datasets, it is 

essential to be able to handle numbers and strings.

We deal with these challenges in developing Squish. As we show in this paper, the 

compression rate of Squish is near-optimal for all datasets that can be efficiently described 

using a Bayesian Network. This theoretical optimality reflects in our experiments as well: 

Squish achieves a reduction in storage on real datasets of over 50% compared to the nearest 

competitor. The reason behind this significant improvement is that most prior papers use 

suboptimal techniques for compression.

In addition to being more effective at compression of relational datasets than prior work, 

Squish is also more powerful. To demonstrate that, we identify the following desiderata for a 

relational dataset compression system:

• Attribute Correlations (AC). A relational dataset compression system must be 

able to capture correlations across attributes.

• Lossless and Lossy Compression (LC). A relational dataset compression system 

must be general enough to admit a user-specified error tolerance, and be able to 

generate a compressed dataset in a lossy fashion, while respecting the error 

tolerance, further saving on storage.
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• Numerical Attributes (NA). In addition to string and categorical attributes, a 

relational dataset compression system must be able to capture numerical 

attributes, that are especially common in scientific datasets.

• User-defined Attributes (UDA). A relational dataset compression system must be 

able to admit new types of attributes that do not fit into either string, numerical, 

or categorical types.

In contrast to prior work [3, 6, 8, 12]—see Table 1—our system, Squish, can capture all of 

these desiderata. To support UDA (User Defined Attributes), Squish surfaces a new class 

interface, called the SquID (short for Squish Interface for Data types): users can instantiate 

new data types by simply implementing the required five functions. This interface is 

remarkably powerful, especially for datasets in specialized domains. For example, a new 

data type corresponding to genome sequence data can be implemented by a user using a few 

hundred lines of code. By encoding domain knowledge into the data type definition, we can 

achieve a significant higher compression rate than using “universal” compression algorithms 

like Lempel-Ziv [21].

The rest of this paper is organized as follows. In Section 2, we formally define the problem 

of relational dataset compression, and briefly explain the concepts of Arithmetic Coding. In 

Section 3 we discuss Bayesian Network learning and related issues, while details about 

Arithmetic Coding are discussed in Section 4. In Section 5, we prove the asymptotic 

optimality of the compression algorithm. In Section 6, we conduct experiments to compare 

Squish with prior systems and evaluate its running time and parameter sensitivity. We 

describe related work in Section 7. All our proofs can be found in our technical report [7], 

along with a brief review of Bayesian Networks and illustrative examples of our 

compression algorithm.

The source code of Squish is available on GitHub: https://github.com/Preparation-

Publication-BD2K/db_compress

2. PRELIMINARIES

In this section, we define our problem more formally, and provide some background on 

Arithmetic Coding.

2.1 Problem Definition

We follow the same problem definition proposed by Babu et al. [3]. Suppose our dataset 

consists of a single relational table T, with n rows and m columns (our techniques extend to 

multi-relational case as well). Each row of the table is referred to as a tuple and each column 

of the table is referred to as an attribute. We assume that each attribute has an associated 

domain that is known to us. For instance, this information could be described when the table 

schema is specified.

The goal is to design a compression algorithm A and a decompression algorithm B, such 

that A takes T as input and outputs a compressed file C(T), and B takes the compressed file 
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C(T) as input and outputs T′ as the approximate reconstruction of T. The goal is to 

minimize the file size of C(T) while ensuring that the recovered T′ is close enough to T.

The closeness constraint of T′ to T is defined as follows: For each numerical attribute i, for 

each tuple t and the recovered tuple t′, , where ti and  are the values of attribute 

i of tuple t and t′ respectively, and εi is error threshold parameter provided by the user. For 

non-numerical attributes, the recovered attribute value must be exactly the same as the 

original one: . Note that this definition subsumes lossless compression as a special case 

with εi = 0.

2.2 Arithmetic Coding

Arithmetic coding [19, 11] is a state-of-the-art adaptive compression algorithm for a 

sequence of dependent characters. Arithmetic coding assumes as a given a conditional 

probability distribution model for any character, conditioned on all preceding characters. If 

the sequence of characters are indeed generated from the probabilistic model, then 

arithmetic coding can achieve a near-entropy compression rate [11].

Formally, arithmetic coding is defined by a finite ordered alphabet , and a probabilistic 

model for a sequence of characters that specifies the probability distribution of each 

character Xk conditioned on all precedent characters X1, . . . , Xk−1. Let {an} be any string of 

length n. To compute the encoded string for {an}, we first compute a probability interval for 

each character ak:

We define the product of two probability interval as:

The probability interval for string {an} is the product of probability intervals of all the 

characters in the string:

Let k be the smallest integer such that there exists a non-negative integer 0 ≤ M < 2k 

satisfying:

Then the k-bit binary representation of M is the encoded bit string of {an}.

An example to illustrate how arithmetic coding works can be found in Figure 1. The three 

tables at the right hand side specify the probability distribution of the string a1a2a3. The 

blocks at the left hand show the associated probability intervals for the strings: for example, 
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“aba” corresponds to [0.12, 0.204] = [0, 0.4] ○ [0.3, 1] ○ [0, 0.3]. As we can see, the 

intuition of arithmetic aoding is to map each possible string {an} to disjoint probability 

intervals. By using these probability intervals to construct encoded strings, we can make sure 

that no code word is a prefix of another code word.

Notice that the length of the product of probability intervals is exactly the product of their 

lengths. Therefore, the length of each probability interval is exactly the same as the 

probability of the corresponding string Pr({an}). Using this result, the length of encoded 

string can be bounded as follows:

3. STRUCTURE LEARNING

The overall workflow of Squish is illustrated in Figure 2. Squish uses a combination of 

Bayesian networks and arithmetic coding for compression. The workflow of the 

compression algorithm is the following:

1. Learn a Bayesian network structure from the dataset, which captures the 

dependencies between attributes in the structure graph, and models the 

conditional probability distribution of each attribute conditioned on all the parent 

attributes.

2. Apply arithmetic coding to compress the dataset, using the Bayesian network as 

probabilistic models.

3. Concatenate the model description file (describing the Bayesian network model) 

and compressed dataset file.

In this section, we focus on the first step of this workflow. We focus on the remaining steps 

(along with decompression) in Section 4.

Although the problem of Bayesian network learning has been extensively studied in 

literature [9], conventional objectives like Bayesian Information Criterion (BIC) [15] are 

suboptimal for the purpose of compressing datasets. In Section 3.1, we derive the correct 

objective function for learning a Bayesian network that minimizes the size of the 

compressed dataset and explain how to modify existing Bayesian network learning 

algorithms to optimize this objective function.

The general idea about how to apply arithmetic coding on a Bayesian network is 

straightforward: since the graph encoding the structure of a Bayesian Network is acyclic, we 

can use any topological order of attributes and treat the attribute values as the sequence of 

symbols in arithmetic coding. However, arithmetic coding does not naturally apply to non-

categorical attributes. In Section 3.2, we introduce SquID, the mechanism for supporting 

non-categorical and arbitrary user-defined attribute types in Squish. SquID is the interface 

for every attribute type in Squish, and example SquIDs for categorical, numerical and string 

attributes are demonstrated in Section 3.3 to illustrate the wide applicability of this interface. 

We describe the SquID API in Section 3.4.
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3.1 Learning a Bayesian Network: The Basics

Many Bayesian network learning algorithms search for the optimal Bayesian network by 

minimizing some objective function (e.g., negative log-likelihood, BIC [15]). These 

algorithms usually have two separate components [9]:

• A combinatorial optimization component that searches for a graph with optimal 

structure.

• A score evaluation component that evaluates the objective function given a graph 

structure.

The two components above are independent in many algorithms. In that case, we can modify 

an existing Bayesian network learning algorithm by changing the score evaluation 

component, while still using the same combinatorial optimization component. In other 

words, for any objective function, as long as we can efficiently evaluate it based on a fixed 

graph structure, we can modify existing Bayesian network learning algorithms to optimize it.

In this section, we derive a new objective function for learning a Bayesian network that 

minimizes the size of compressed dataset. We show that the new objective function can be 

evaluated efficiently given the structure graph. Therefore existing Bayesian Network 

learning algorithms can be used to optimize it.

Suppose our dataset D consists of n tuples, and each tuple ti contains m attributes ai1, 

ai2, . . . , aim. Let ℬ be a Bayesian network that describes a joint probability distribution over 

the attributes. Clearly, ℬ contains m nodes, each corresponding to an attribute.

The total description length of D using ℬ is S(D|ℬ) = S(ℬ) + S(Tuples|ℬ), where S(ℬ) is the 

size of description file of ℬ, and S(Tuples|ℬ) is the total length of encoded binary strings of 

tuples using arithmetic coding. For the model description length S(ℬ), we have 

, where m is the number of attributes in our dataset, and ℳ1, . . . , ℳm 

are the models for each attribute in ℬ. The expression S(Tuples|ℬ) is just the sum of the S(ti|

ℬ)s (the lengthes of the encoded binary string for each ti).

We have the following decomposition of S(ti|ℬ):

where parent(aij) is the set of parent attributes of aij in ℬ, num(a) is the indicator function of 

whether a is a numerical attribute or not, and εj is the maximum tolerable error for attribute 

aij. We will justify this decomposition in Section 3.3, after we introduce the encoding 

scheme for numerical attributes.

Therefore, the total description length S(D|ℬ) can be decomposed as follows:
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Note that the term in the second line does not depend on either ℬ or ℳi. Therefore we only 

need to optimize the first summation. We denote each term in the first summation on the 

right hand side as objj :

For each objj, if the network structure (i.e., parent(aij)) is fixed, then objj only depends on 

ℳj. In that case, optimizing S(D|ℬ) is equivalent to optimizing each objj individually. In 

other words, if we fix the Bayesian network structure in advance, then the parameters of 

each model can be learned separately.

Optimizing objj on ℳj is exactly the same as maximizing like-lihood. For many models, a 

closed-form solution for identifying maximum likelihood parameters exists. In such cases, 

the optimal ℳj can be quickly determined and the objective function S(D|ℬ) can be 

computed efficiently.

Structure Learning—In general, searching for the optimal Bayesian network structure is 

NP-hard [9]. In Squish, we implemented a simple greedy algorithm for this task. The 

algorithm starts with an empty seed set, and repeatedly finds new attributes with the lowest 

objj, and adds these new attributes to the seed set. The pseudo-code can be found in our 

technical report [7].

The greedy algorithm has a worst case time complexity of O(m4n) where m is the number of 

columns and n is the number of tuples in the dataset. For large datasets, even this simple 

greedy algorithm is not fast enough. However, note that the objective values objj are only 

used to compare different models. So we do not require exact values for them, and some 

rough estimation would be sufficient. Therefore, we can use only a subset of data for the 

structure learning to improve efficiency.

3.2 Supporting Complex Attributes

Encoding and Decoding Complex Attributes—Before applying arithmetic coding on 

a Bayesian network to compress the dataset as we stated earlier, there are two issues that we 

need to address first:

• Arithmetic Coding requires a finite alphabet for each symbol. However, it is 

natural for attributes in a dataset to have infinite range (e.g., numerical attributes, 

strings).

• In order to support user-defined data types, we need to allow the user to specify a 

probability distribution over an unknown data type.
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To address these difficulties, we introduce the concept of SquID, short for Squish Interface 

for Data types. A SquID is a (possibly infinite) decision tree [18] with non-negative 

probabilities associated with edges in the tree, such that for every node v, the probabilities of 

all the edges connecting v and v’s children sum to one.

Figure 3 shows an example infinite SquID for a positive numerical attribute X. As we can 

see, each edge is associated with a decision rule and a non-negative probability. For each 

non-leaf node v2k−1, the decision rules on the edges between v2k−1 and its children v2k and 

v2k+1 are x ≤ k and x > k respectively. Note that these two decision rules do not overlap with 

each other and covers all the possibilities. The probabilities associated with these two rules 

sum to 1, which is required in SquID. This SquID describes the following probability 

distribution over X:

In Section 4, we will show that we can encode or decode an attribute using Arithmetic 

Coding if the probability distribution of this attribute can be represented by a SquID.

As shown in Figure 3, a SquID naturally controls the maximum tolerable error in a lossy 

compression setting. Each leaf node v corresponds to a subset Av of attribute values such 

that for every a ∈ Av, if we start from the root and traverse down according to the decision 

rules, we will eventually reach v. As an example, in Figure 3, for each leaf node v2k we have 

Av2k = (k − 1, k]. Let av be the representative attribute value of a leaf node v, then the 

maximum possible recovery error for v is:

Let Ti be the SquID corresponding to the ith attribute. As long as for every v ∈ Ti, εv is less 

than or equal to the maximum tolerable error εi, we can satisfy the closeness constraint 

(defined in Section 2.1).

Using User-defined Attributes as Predictors—To allow user-defined attributes to be 

used as predictors for other attributes, we introduce the concept of attribute interpreters, 

which translate attributes into either categorical or numerical values. In this way, these 

attributes can be used as predictors for other attributes.

The attribute interpreters can also be used to capture the essential features of an attribute. 

For example, a numerical attribute could have a categorical interpreter that better captures 

the internal meaning of the attribute. This process is similar to the feature extraction 

procedure in many data mining applications, and may improve compression rate.

3.3 Example SquIDs

In Squish, we have implemented models for three primitive data types. We intended these 

models to both illustrate how SquIDs can be used to define probability distributions, and 
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also to cover most of the basic data types, so the system can be used directly by casual users 

without writing any code.

We implemented models for the following types of attributes:

• Categorical attributes with finite range.

• Numerical attributes, either integer or float number.

• String attributes

Categorical Attributes—The distribution over a categorical attributes can be represented 

using a trivial one-depth SquID.

Numerical Attributes—For a numerical attribute, we construct the SquID using the idea 

of bisection. Each node v is marked with an upper bound vr and a lower bound vl, so that 

every attribute value in range (vl, vr] will pass by v on its path from the root to the 

corresponding leaf node. Each node has two children and a bisecting point vm, such that the 

two children have ranges (vl, vm] and (vm, vr] respectively. The branching process stops 

when the range of the interval is less than 2ε, where ε is the maximum tolerable error. 

Figure 4 shows an example SquID for numerical attributes.

Since each node represents a continuous interval, we can compute its probability using the 

cumulative distribution function. The branching probability of each node is:

Clearly, the average number of bits that is needed to encode a numerical attribute depends on 

both the probability distribution of the attribute and the maximum tolerable error ε. The 

following theorem gives us a lower bound on the average number of bits that is necessary for 

encoding a numerical attribute (the proof can be found in our technical report [7]):

Theorem 1: Let X ∈  ⊆ ℝ be a numerical random variable with continuous support  and 

probability density function f(X). Let g :  → {0, 1}* be any uniquely decodable encoding 

function, and h : {0, 1}* →  be any decoding function. If there exists a function ρ :  → 
ℝ+ such that:

(1)

and g, h satisfies the ε-closeness constraint:

Then
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Furthermore, if g is the bisecting code described above, then

where l = minv(vr − vl) is the minimum length of probability intervals in the tree.

Equation (1) is a mild assumption that holds for many common probability distributions, 

including uniform distribution, Gaussian distribution, and Laplace distribution [2].

To understand the intuition behind the results in Theorem 1. Let us consider a Gaussian 

distribution as an example:

In this case,

Substituting into the first expression, we have:

Note that when ε is small compared to σ (e.g., ), the last term is approximately zero. 

Therefore, the number of bits needed to compress X is approximately .

Now consider the second result,

Let l = 2ε, and when , the last term is approximately zero. Comparing the two results, 

we can see that the bisecting scheme achieves near optimal compression rate.

Theorem 1 can be used to justify the decomposition in Section 3.1. Recall that we used the 

following expression as an approximation of len(g(X)):
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Compared to either the upper bound or lower bound in Theorem 1, the only term we omitted 

is the term related to ρ(X). As we have seen in the Gaussian case, this term is approximately 

zero when ε is smaller than  where σ is the standard deviation parameter. The same 

conclusion is also true for the Laplace distribution [2] and the uniform distribution.

String Attributes—The SquID for string attributes can be viewed as having two steps:

1. determine the length of the string

2. determine the characters of the string

The length of a string can be viewed as an integer, so we can use exactly the same bisecting 

rules as for numerical attributes. After that, we use n more steps to determine each character 

of the string, where n is the string’s length. The probability distribution of each character can 

be specified by conventional probabilistic models like the k-gram model.

3.4 SquID API

In Squish, SquID is defined as an abstract class [1]. There are five functions that are required 

to be implemented in order to define a new data type using SquID. These five functions 

allow the system to interactively explore the SquID class: initially, the current node pointer 

is set to the root of SquID; each function will either acquire information about the current 

node, or move the current node pointer to one of its children. Table 2 lists the five functions 

together with their high level description.

We also develop another abstract class called SquIDModel. A SquIDModel first reads in all 

the tuples in the dataset, then generates a SquID instance and an estimation of the objective 

value objj derived in Section 3.1:

There are two reasons behind this design:

• For a parametric SquID, the parameters need to be learned using the dataset at 

hand.

• The Bayesian network learning algorithm requires an estimation of the objective 

value. Although it is possible to compute the objective value by actually 

compressing the attributes, in many cases it is much more efficient to 

approximate it directly.

SquIDModel requires six functions to be implemented. These functions allow the 

SquIDModel to iterate over the dataset and generate SquID instances. The specification of 

these functions and the psuedo-code of their interactions with SquID can be found in our 

technical report [7].
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A SquIDModel instance is initialized with the target attribute and the set of predictor 

attributes. After that, the model instance will read over all tuples in the dataset and need to 

decide the optimal choice of parameters. The model also needs to return an estimate of the 

objective value objj, which will be used in the Bayesian network structure learning algorithm 

to compare models. Finally, SquIDModel should be able to generate SquID instances based 

on parent attribute values.

4. COMPRESSION AND DECOMPRESSION

In this section, we discuss how we can use arithmetic coding correctly for compression and 

decompression given a Bayesian Network. In Section 4.1, we discuss implementation details 

that ensure the correctness of arithmetic coding using finite precision float numbers. In 

Section 4.2 we describe the decompression algorithm.

4.1 Compression

We use the same notation as in Section 3.1: a tuple t contains m attributes, and without loss 

of generality we assume that they follow the topological order of the Bayesian network:

We first compute a probability interval for each branch in a SquID. For each SquID T, we 

define PIT as a mapping from branches of T to probability intervals. The definition is similar 

to the one in Section 2.2: let v be any non-leaf node in T, suppose v has k children u1, … , 

uk, and the edge between v and ui is associated with probability pi, then PIT (v → ui) is 

defined as:

Now we can compute the probability interval of t. Let Tj be the SquID for aj conditioned on 

its parent attributes. Denote the leaf node in Tj that aj corresponds to as vj. Suppose the path 

from the root of Tj to vj is uj1 → uj2 → … → ujkj → vj. Then, the probability interval of 

tuple t is:

where ○ is the probability interval multiplication operator defined in Section 2.2. The code 

string of tuple t corresponds to the largest subinterval of [L, R] of the form [2−kM, 2−k(M 

+1)] as described in Section 2.2.

In practice, we cannot directly compute the final probability interval of a tuple: there could 

be hundreds of probability intervals in the product, so the result can easily exceed the 

precision limit of a floating-point number.
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Algorithm 1 shows the pseudo-code of the precision-aware compression algorithm. We 

leverage two tricks to deal with the finite precision problem: the classic early bits emission 

trick [10] is described in Section 4.1.1; the new deterministic approximation trick is 

described in Section 4.1.2.

Algorithm 1

Encoding Algorithm

function ArithmeticCoding([l1, r1], … , [ln, rn])

 code ← θ

 It ← [0, 1]

 for i = 1to n do

  It ← It ⋄ [li, ri]

  while ∃k = 0or 1,  do

   code ← code + k

   It ← [2It.l − k, 2It.r − k]

  end while

 end for

 Find smallest k such that

   ∃M, [2−kM, 2−k(M + 1)] ⊆ It

 return code +M

end function

4.1.1 Early Bits Emission—Without loss of generality, suppose

Define [Li, Ri] as the product of first i probability intervals:

If there exist positive integer ki and non-negative integer Mi such that

Then the first ki bits of the code string of t must be the binary representation of Mi. Define

Then it can be verified that
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Therefore, we can immediately output the first ki bits of the code string. After that, we 

compute the product:

We can recursively use the same early bit emitting scheme for this product. In this way, we 

can greatly reduce the likelihood of precision overflow.

4.1.2 Deterministic Approximation—For probability intervals containing 0.5, we 

cannot emit any bits early. In rare cases, such a probability interval would exceed the 

precision limit, and the correctness of our algorithm would be compromised.

To address this problem, we introduce the deterministic approximation trick. Recall that the 

correctness of arithmetic coding relies on the non-overlapping property of the probability 

intervals. Therefore, we do not need to compute probability intervals with perfect accuracy: 

the correctness is guaranteed as long as we ensure these probability intervals do not overlap 

with each other.

Formally, let t1, t2 be two different tuples, and suppose their probability intervals are:

The deterministic approximation trick is to replace ○ operator with a deterministic operator 

⋄ that approximates ○ and has the following properties:

• For any two probability intervals [a, b] and [c, d]:

• For any two probability intervals [a, b] and [c, d] with b−a ≥ ∈ and d − c ≥ ∈. Let 

[l, r] = [a, b] ⋄ [c, d], then:

In other words, the product computed by ⋄ operator is always a subset of the product 

computed by ○ operator, and ⋄ operator always ensures that the product probability interval 

has length greater than or equal to ∈ after emitting bits. The first property guarantees the 

non-overlapping property still holds, and the second property prevents potential precision 

overflow. As we will see in Section 4.2, these two properties are sufficient to guarantee the 

correctness of arithmetic coding.
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4.2 Decompression

When decompressing, Squish first reads in the dataset schema and all of the model 

information, and stores them in the main memory. After that, it scans over the compressed 

dataset, extracts and decodes the binary code strings to recover the original tuples.

Algorithm 2

Decoding Algorithm

function Decoder.Initialization

 Ib ← [0, 1]

 It ← [0, 1]

end function

function Decoder.GetNextBranch(branches)

 while not ∃br ∈ branches, Ib ⊆ It ⋄ PI(br) do

  Read in the next bit x

   

 end while

 if Ib ⊆ It ⋄ PI(br), br ∈ branches then

  It ← It ⋄ PI(br)

  while ∃k = 0or 1,  do

   It ← [2It.l − k, 2It.r − k]

   Ib ← [2Ib.r − k, 2Ib.r − k]

  end while

  return br

 end if

end function

Algorithm 2 describes the procedure to decide the next branch. The decoder maintains two 

probability intervals Ib and It. Ib is the probability interval corresponding to all the bits that 

the algorithm has read in so far. It is the probability interval corresponding to all decoded 

attributes. At each step, the algorithm computes the product of It and the probability interval 

for every possible attribute value, and then checks whether Ib is contained by one of those 

probability intervals. If so, we can decide the next branch, and update It accordingly. If not, 

we continue reading in the next bit and update Ib.

By calling Algorithm 2 repeatedly, we can gradually decode the whole tuple. The full 

decoding procedure with an illustrative example can be found in our technical report [7].

Notice that Algorithm 2 mirrors Algorithm 1 in the way it computes probability interval 

products. This design is to ensure that the encoding and decoding algorithm always apply 

the same deterministic approximation that we described in Section 4.1.2. The following 

theorem states the correctness of the algorithm (the proof can be found in our technical 

report [7]):
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Theorem 2: Let [l1, r1], … , [ln, rn] be probability intervals with ri − li ≥ ∈ where ∈ is the 

small constant defined in Section 4.1.2. Let s be the output of Algorithm 1 on these 

probability intervals. Then Algorithm 2 can always determine the correct branch from 

alternatives using s as input:

5. DISCUSSION: OPTIMALITY

We can prove that Squish achieves asymptotic near-optimal compression rate for lossless 

compression if the dataset only contains categorical attributes and can be described 

efficiently using a Bayesian network (the proof can be found in [7]):

Theorem 3: Let a1, a2, … , am be categorical attributes with joint probability distribution P 

(a1, … , am) that decomposes as

such that

Suppose the dataset  contains n tuples that are i.i.d. samples from P. Let M = maxi card(ai) 

be the maximum cardinality of attribute range. Then Squish can compress  using less than 

H( ) + 4n + 32mMc+1 bits on average, where H( ) is the entropy [5] of the dataset .

Thus, when n is large, the difference between the size of the compressed dataset using our 

system and the entropy1 of  is at most 5n, that is only 5 bits per tuple. This indicates that 

Squish is asymptotically near-optimal for this setting.

When the dataset  contains numerical attributes, the entropy H( ) is not defined, and the 

techniques we used to prove Theorem 3 no longer apply. However, in light of Theorem 1, it 

is likely that Squish still achieves asymptotic near-optimal compression.

6. EXPERIMENTS

In this section, we evaluate the performance of Squish against the state of the art semantic 

compression algorithms SPARTAN [3] and ItCompress [8] (see Table 1). For reference we 

also include the performance of gzip [21], a well-known syntactic compression algorithm.

1By Shannon’s source coding theorem [5], there is no algorithm that can achieve compression rate higher than entropy.
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We use the following four publicly available datasets:

• Corel (http://kdd.ics.uci.edu/databases/CorelFeatures) is a 20 MB dataset 

containing 68,040 tuples with 32 numerical color histogram attributes.

• Forest-Cover (http://kdd.ics.uci.edu/databases/covertype) is a 75 MB dataset 

containing 581,000 tuples with 10 numerical and 44 categorical attributes.

• Census (http://thedataweb.rm.census.gov/ftp/cps_ftp.html) is a 610MB dataset 

containing 676,000 tuples with 36 numerical and 332 categorical attributes.

• Genomes (ftp://ftp.1000genomes.ebi.ac.uk) is a 18.2GB dataset containing 

1,832,506 tuples with about 10 numerical and 2500 categorical attributes.2

The first three datasets have been used in previous papers [3, 8], and the compression ratio 

achieved by SPARTAN, ItCompress and gzip on these datasets have been reported in 

Jagadish et al.’s work [8]. We did not reproduce these numbers and only used their reported 

performance numbers for comparison. For the Census dataset, the previous papers only used 

a subset of the attributes in the experiments (7 categorical attributes and 7 numerical 

attributes). Since we are unaware of the selection criteria of the attributes, we are unable to 

compare with their algorithms, and we will only report the comparison with gzip.

For the Corel and Forest-Cover datasets, we set the error tolerance as a percentage (1% by 

default) of the width of the range for numerical attributes as in previous work. For the 

Census dataset, we set all error tolerance to 0 (i.e. the compression is lossless). For the 

Genomes dataset, we set the error tolerance for integer attributes to 0 and float number 

attributes to 10−8.

In all experiments, we only used the first 2000 tuples in the structure learning algorithm to 

improve efficiency. All available tuples are used in other parts of the algorithm.

6.1 Compression Rate Comparison

Figure 5 shows the comparison of compression rate on the Corel and Forest-Cover datasets. 

In these figures, X axis is the error tolerance for numerical attributes (% of the width of 

range), and Y axis is the compression ratio, defined as follows:

As we can see from the figures, Squish significantly outperforms the other algorithms. When 

the error tolerance threshold is small (0.5%), Squish achieves about 50% reduction in 

compression ratio on the Forest Cover dataset and 75% reduction on the Corel dataset, 

compared to the nearest competitor ItCompress (gzip), which applies gzip algorithm on top 

of the result of ItCompress. The benefit of not using gzip as a post-processing step is that we 

can still permit tuple-level access without decompressing a larger unit.

2In this dataset, many attributes are optional and these numbers indicate the average number of attributes that appear in each tuple.
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The remarkable superiority of our system in the Corel dataset reflects the advantage of 

Squish in compressing numerical attributes. Numerical attribute compression is known to be 

a hard problem [14] and none of the previous systems have effectively addressed it. In 

contrast, our encoding scheme can leverage the skewness of the distribution and achieve 

near-optimal performance.

Figure 6 shows the comparison of compression rate on the Census and Genomes datasets. 

Note that in these two datasets, we set the error tolerance threshold to be extremely small, so 

that the compression is essentially lossless. As we can see, even in the lossless compression 

scenario, our algorithm still outperforms gzip significantly. Compared to gzip, Squish 

achieves 48% reduction in compression ratio in Census dataset and 56% reduction in 

Genomes dataset.

6.2 Compression Breakdown

As we have seen in the last section, Squish achieved superior compression ratio in all four 

datasets. In this section, we use detailed case studies to illustrate the reason behind the 

significant improvement over previous papers.

6.2.1 Categorical Attributes—In this section, we study the source of the compression in 

Squish for categorical attributes. We will use three different treatments for the categorical 

attributes and see how much compression is achieved for each of these treatments:

• Domain Code: We replace the categorical attribute values with short binary code 

strings. Each code string has length ⌈log2 N ⌉, where N is the total number of 

possible categorical values for the attribute.

• Column: We ignore the correlations between categorical attributes and treat all 

the categorical attributes as independent.

• Full: We use both the correlations between attributes and the skewness of 

attribute values in our compression algorithm.

We will use the Genomes and Census dataset here since they consist of mostly categorical 

attributes. We keep the compression algorithm for numerical attributes unchanged in all 

treatments. Figure 7 shows the compression ratio of the three treatments:

As we can see, the compression ratio of the basic domain coding scheme can be improved 

up to 70% if we take into account the skewness of the distribution in attribute values. 

Furthermore, the correlation between attributes is another opportunity for compression, 

which improved the compression ratio by 50% in both datasets.

An interesting observation is that the Column treatment achieves comparable compression 

ratio as gzip in both datasets, which suggests that gzip is in general capable of capturing the 

skewness of distribution for categorical attributes, but unable to capture the correlation 

between attributes.

6.2.2 Numerical Attributes—We now study the source of the compression in Squish for 

numerical attributes. We use the following five treatments for the numerical attributes:
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• IEEE Float: We use the IEEE Single Precision Floating Point standard to store 

all attributes.

• Discrete: Since all attributes in the dataset have value between 0 and 1, we use 

integer i to represent a float number in range [ ], and then store each 

integer using its 24-bit binary representation.

• Column: We ignore the correlation between numerical attributes and treat all 

attributes as independent.

• Full: We use both the correlations between attributes and distribution information 

about attribute values.

• Lossy: The same as the Full treatment, but we set the error tolerance at 10−4 

instead.

We use the Corel dataset here since it contains only numerical attributes. The error tolerance 

in all treatments except the last are set to be 10−7 to make sure the comparison is fair (IEEE 

single format has precision about 10−7). All the numerical attributes in this dataset are in 

range [0, 1], with a distribution peaked at 0. Figure 8 shows the compression ratio of the five 

treatments.

As we can see, storing numerical attributes as float numbers instead of strings gives us about 

55% compression. However, the compression rate can be improved by another 50% if we 

recognize distributional properties (i.e., range and skewness). Utilizing the correlation 

between attributes in the Corel dataset only slightly improved the compression ratio by 3%. 

Finally, we see that the benefit of lossy compression is significant: even though we only 

reduced the precision from 10−7 to 10−4, the compression ratio has already been improved 

by 50%.

6.3 Running Time

Table 3 lists the running time of the five components in Squish. All experiments are 

performed on a computer with eight3 3.4GHz Intel Xeon processors. For the Genomes 

dataset, which contains 2500 attributes—an extremely large number—we constructed the 

Bayesian Network manually. Note that none of the previous papers have been applied on a 

dataset with the magnitude of the Genomes dataset (both in number of tuples and number of 

attributes).

As we can see from Table 3, our compression algorithm scales reasonably: even with the 

largest dataset Genomes, the compression can still be finished within hours. Recall that since 

our algorithm is designed for archival not online query processing, and our goal is therefore 

to minimize storage as much as possible, a few hours for large datasets is adequate.

The running time of the parameter tuning component can be greatly reduced if we use only a 

subset of tuples (as we did for structure learning). The only potential bottleneck is structure 

learning, which scales badly with respect to the number of attributes (O(m4)). To handle 

3The implementation is single-threaded, so only one processor is used.
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datasets of this scale, another approach is to partition the dataset column-wise, and apply the 

compression algorithm on each partition separately. We plan to investigate this in future 

work.

We remark that, unlike gzip [21], Squish allows random access of tuples without 

decompressing the whole dataset. Therefore, if users only need to access a few tuples in the 

dataset, then they will only need to decode those tuples, which would require far less time 

than decoding the whole dataset.

6.4 Sensitivity to Bayesian Network Learning

We now investigate the sensitivity of the performance of our algorithm with respect to the 

Bayesian network learning. We use the Census dataset here since the correlation between 

attributes in this dataset is stronger than other datasets, so the quality of the Bayesian 

network can be directly reflected in the compression ratio.

Since our structure learning algorithm only uses a subset of the training data, one might 

question whether the selection of tuples in the structure learning component would affect the 

compression ratio. To test this, we run the algorithm for five times, and randomly choose the 

tuples participating in the structure learning. Table 4 shows the compression ratio of the five 

runs. As we can see, the variation between runs are insignificant, suggesting that our 

compression algorithm is robust.

We also study the sensitivity of our algorithm with respect to the number of tuples used for 

structure learning. Table 5 shows the compression ratio when we use 1000, 2000 and 5000 

tuples in the structure learning algorithm respectively. As we can see, the compression ratio 

improves gradually as we use more tuples for structure learning.

7. RELATED WORK

Although compression of datasets is a classical research topic in the database research 

community [14], the idea of exploiting attribute correlations (a.k.a. semantic compression) is 

relatively new. Babu et al. [3] used functional dependencies among attributes to avoid 

storing them explicitly. Jagadish et al. [8] used a clustering algorithm for tuples. Their 

compression scheme stores, for each cluster of tuples, a representative tuple and the 

differences between the representative tuple and other tuples in the cluster. These two types 

of dependencies are special cases of the more general Bayesian network style dependencies 

used in this paper.

The idea of applying arithmetic coding on Bayesian networks was first proposed by Davies 

and Moore [6]. However, their work only supports categorical attributes (a simple case). 

Further, the authors did not justify their approach by either theoretically or experimentally 

comparing their algorithm with other semantic compression algorithms. Lastly, they used 

conventional BIC [15] score for learning a Bayesian Network, which is suboptimal, and their 

technique does not apply to the lossy setting.

The compression algorithm developed by Raman and Swart [12] used Huffman Coding to 

compress attributes. Therefore, their work can only be applied to categorical attributes and 
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can not fully utilize attribute correlation (the authors only mentioned that they can exploit 

attribute correlations by encoding multiple attributes at once). The major contribution of 

Raman’s work [12] is that they formalized the old idea of compressing ordered sequences by 

storing the difference between adjacent elements, which has been used in search engines to 

compress inverted indexes [4] and also in column-oriented database systems [16].

Bayesian networks are well-known general purpose probabilistic models to characterize 

dependencies between random variables. For reference, the textbook written by Koller and 

Friedman [9] covers many recent developments. Arithmetic coding was first introduced by 

Rissanen [13] and further developed by Witten et al. [19]. An introductory paper written by 

Langdon Jr. [10] covers most of the basic concepts of Arithmetic Coding, including the early 

bit emission trick. The deterministic approximation trick is original. Compared to the 

overflow prevention mechanism in Witten et al.’s work [19], the deterministic 

approximation trick is simpler and easier to implement.

8. CONCLUSION

In this paper, we propose Squish, an extensible system for compressing relational datasets. 

Squish exploits both correlations between attributes and skewness of numerical attributes, 

and thereby achieves better compression rates than prior work. We also develop SquID, an 

interface for supporting user-defined attributes in Squish. Users can use SquID to define new 

data types by simply implementing a handful of functions. We develop new encoding 

schemes for numerical attributes using SquID, and prove its optimality. We also discuss 

mechanisms for ensuring the correctness of Arithmetic Coding in finite precision systems. 

We prove the asymptotic optimality of Squish on any dataset that can be efficiently 

described using a Bayesian Network. Experiment results on two real datasets indicate that 

Squish significantly outperforms prior work, achieving more than 50% reduction in storage.
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Figure 1. 

Arithmetic Coding Example
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Figure 2. 

Workflow of the Compression and Decompression Algorithm
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Figure 3. 

SquID Example
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Figure 4. 

SquID for numerical attributes
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Figure 5. 

Error Threshold vs Compression Ratio
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Figure 6. 

Compression Ratio Comparison
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Figure 7. 

Compression Ratio Comparison
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Figure 8. 

Compression Ratio Comparison
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Table 1

Features of Our System contrasted with Prior Work

System AC NA LC UDA

SQUISH Y Y Y Y

Spartan [3] Y Y Y N

ItCompress [8] Y Y Y N

Davies and Moore [6] Y N N N

Raman and Swart [12] N N N N
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Table 2

Functions need to be implemented for SquID Template

Function Description

IsEnd Return whether the current node is a leaf node.

GenerateBranch Return the number of branches and the probability distribution associated with them.

GetBranch Given an attribute value, return which branch does the value belong to.

ChooseBranch Set the current node to another node at next level according to the given branch index.

GetResult If the current node is a leaf node, return the representative attribute value of this node.
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Table 3

Running Time of Different Components

Forest Cov. Corel Census Genomes

Struct. Learning 5.5 sec 2.5 sec 20 min N/A

Param. Tuning 140 sec 15 sec 100 min 40 min

Compression 48 sec 6 sec 6 min 50 min

Writing to File 7 sec 2 sec 40 sec 7 min

Decompression 53 sec 7.5 sec 6 min 50 min
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Table 5

Sensitivity to Number of Tuples

Number of Tuples 1000 2000 5000

Comp. Ratio 0.0474 0.0460 0.0427
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 contains n tuples that are i.i.d. samples from P. Let M = maxi card(ai) be the maximum cardinality of attribute range. Then Squish can compress 
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 using less than H(
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) + 4n + 32mMc+1 bits on average, where H(
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) is the entropy [5] of the dataset 
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.Thus, when n is large, the difference between the size of the compressed dataset using our system and the entropy11By Shannon’s source coding theorem [5], there is no algorithm that can achieve compression rate higher than entropy. of 
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 is at most 5n, that is only 5 bits per tuple. This indicates that Squish is asymptotically near-optimal for this setting.When the dataset 
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 contains numerical attributes, the entropy H(
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) is not defined, and the techniques we used to prove Theorem 3 no longer apply. However, in light of Theorem 1, it is likely that Squish still achieves asymptotic near-optimal compression.
	Theorem 3: Let a1, a2, … , am be categorical attributes with joint probability distribution P (a1, … , am) that decomposes assuch thatSuppose the dataset 
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 contains n tuples that are i.i.d. samples from P. Let M = maxi card(ai) be the maximum cardinality of attribute range. Then Squish can compress 
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 using less than H(
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) + 4n + 32mMc+1 bits on average, where H(
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) is the entropy [5] of the dataset 
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.Thus, when n is large, the difference between the size of the compressed dataset using our system and the entropy11By Shannon’s source coding theorem [5], there is no algorithm that can achieve compression rate higher than entropy. of 
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 is at most 5n, that is only 5 bits per tuple. This indicates that Squish is asymptotically near-optimal for this setting.When the dataset 
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 contains numerical attributes, the entropy H(
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.331px" height="9.594px" viewBox="6.154 -1.312 9.331 9.594" enable-background="new 6.154 -1.312 9.331 9.594"
xml:space="preserve">
<path d="M15.485,0.904l-0.637,0.319C14.9,1.52,14.926,1.81,14.926,2.094c0,0.727-0.18,1.527-0.538,2.4
c-0.335,0.821-0.751,1.534-1.246,2.139c-0.864,1.043-1.869,1.564-3.017,1.564c-0.307,0-0.656-0.043-1.048-0.127
C8.426,8.21,7.886,8.281,7.456,8.281c-0.868,0-1.303-0.185-1.303-0.552c0-0.185,0.153-0.331,0.46-0.439
C6.85,7.21,7.081,7.17,7.308,7.17c0.401,0,1.055,0.172,1.961,0.517c0.335-0.198,0.625-0.463,0.871-0.793
c0.113-0.156,0.32-0.496,0.623-1.02c0.773-1.345,1.308-2.221,1.6-2.627c0.618-0.85,1.346-1.562,2.181-2.138
c-0.245-1.444-1.057-2.167-2.436-2.167c-1.194,0-2.397,0.765-3.61,2.294c-0.656,0.831-0.984,1.57-0.984,2.216
c0,0.274,0.089,0.492,0.266,0.655c0.177,0.163,0.402,0.244,0.676,0.244c0.831,0,1.551-0.403,2.159-1.21
c0.563-0.75,0.843-1.555,0.843-2.415c0-0.113-0.009-0.248-0.028-0.403l0.248-0.028c0.028,0.156,0.043,0.305,0.043,0.446
c0,0.944-0.3,1.81-0.899,2.598c-0.651,0.85-1.436,1.274-2.351,1.274c-0.453,0-0.808-0.158-1.063-0.474
c-0.227-0.288-0.34-0.666-0.34-1.133c0-0.774,0.363-1.558,1.091-2.351c0.632-0.675,1.353-1.192,2.159-1.551
c0.642-0.278,1.253-0.418,1.834-0.418c0.688,0,1.274,0.208,1.756,0.623c0.467,0.406,0.771,0.951,0.913,1.636
c0.165-0.085,0.358-0.163,0.581-0.233L15.485,0.904z M8.454,7.892C7.898,7.67,7.385,7.56,6.918,7.56
c-0.297,0-0.446,0.057-0.446,0.17c0,0.193,0.385,0.29,1.154,0.29C7.914,8.02,8.191,7.977,8.454,7.892z M14.608,2.037
c0-0.193-0.013-0.408-0.036-0.644c-0.453,0.382-0.856,0.88-1.21,1.494c-0.166,0.288-0.451,0.869-0.857,1.742
c-0.736,1.586-1.699,2.65-2.889,3.193c0.298,0.075,0.55,0.113,0.758,0.113c1.119,0,2.126-0.723,3.023-2.167
C14.203,4.475,14.608,3.231,14.608,2.037z"/>
</svg>
) is not defined, and the techniques we used to prove Theorem 3 no longer apply. However, in light of Theorem 1, it is likely that Squish still achieves asymptotic near-optimal compression.
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