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Abstract—Recent technological advancements have enabled
proliferated use of small embedded and IoT devices for
collecting, processing, and transferring the security-critical
information and user data. This exponential use has acted as
a catalyst in the recent growth of sophisticated attacks such as
the replay, man-in-the-middle, and malicious code modification
to slink, leak, tweak or exploit the security-critical information
in malevolent activities. Therefore, secure communication and
software state assurance (at run-time and boot-time) of the
device has emerged as open security problems. Furthermore,
these devices need to have an appropriate recovery mechanism
to bring them back to the known-good operational state.
Previous researchers have demonstrated independent methods
for attack detection and safeguard. However, the majority of
them lack in providing onboard system recovery and secure
communication techniques. To bridge this gap, this manuscript
proposes SRACARE - a framework that utilizes the custom
lightweight, secure communication protocol that performs
remote/local attestation, and secure boot with an onboard
resilience recovery mechanism to protect the devices from
the above-mentioned attacks. The prototype employs an ef-
ficient lightweight, low-power 32-bit RISC-V processor, secure
communication protocol, code authentication, and resilience
engine running on the Artix 7 Field Programmable Gate Array
(FPGA) board. This work presents the performance evaluation
and state-of-the-art comparison results, which shows promising
resilience to attacks and demonstrate the novel protection
mechanism with onboard recovery. The framework achieves
these with only 8% performance overhead and a very small
increase in hardware-software footprint.

Index Terms—Secure-boot, Remote attestation, Embedded
System Architecture, IoT devices, Attack resilience, Fault Tol-
erant and Trusted Embedded Systems, Intelligent Embedded
Systems

I. INTRODUCTION

The recent technological advancement has
catastrophically increased the utilization of small embedded
and IoT devices in applications ranging from industrial
control systems, vehicular systems, and home automation
systems. Attack [1] has demonstrated that the software on
these devices can be compromised even when powered off.
Remote malware attacks such as Stuxnet [2] and Jeep [3]
can modify the firmware or software of the device. Other
attacks such as man-in-the-middle [4], record & replay [5]
have shown that the security-critical information of the
device can be leaked, modified, and utilized for malevolent
activities. Attacks such as Denial of Service (DoS) [6]
can flood the communication interface of an application
to disrupt or damage its normal operation. Therefore,
secure communication and software state assurance (at

run-time and boot-time) has become paramount essential
for the system’s security assurance. Unfortunately, the
small embedded and IoT systems are computationally weak
and do not have in-built security and integrity checking
primitives. Hence, they are an active substrate for cyber-
attacks that violates software integrity or use the leaked
critical information in malicious activities.

Secure boot is a process of measuring the boot-time
integrity and authenticity of the software running on the de-
vice. It assures that the device boots up with an untampered
and authorized software provided by a legitimate vendor.
Thus, a secure boot process becomes a critical step in the
device firmware and software security at boot-time. The
Remote Attestation (RA) is a popular method of detecting
the malicious code presence on the device. RA is a client-
server protocol between an untrusted Prover (Pr) and a
remote trusted Verifier (Vr) devices. The Vr requests the Pr
for the proof of integrity and/or authenticity of the current
state of the device software at run-time, Pr performs the
appropriate checks and sends the report to the Vr. The Vr
validates the integrity and authenticity of the current state
of the software on the Pr. Previous work has demonstrated
RA’s utility for software updates [7] and deletion [8]. The
conventional secure boot and RA systems often stop or reset
the device upon detecting the malevolent code presence.
The device requires the code reflash to restore it to the
normal operational state. These brings the requirement of
recovery/reflash logic.

While conventional RA systems provide run-time detec-
tion of corrupted software state, it suffers from the following
limitations:

• It does not provide an efficient recovery mechanism.
• It is used for detecting the integrity and authenticity of

the system’s software state at run-time and not at boot-
time. The system needs a secure boot for boot-time
software state assurance.

• The majority of conventional RA systems did not have
the secure communication protocol between the RA
devices, which can result in leakage of cryptographic
keys, information, or reports and potential misuse by
the adversaries.

The conventional secure boot and RA devices perform the
recovery either by reflashing the application code memory
over-the-air or manually. The former method is prone to
man-in-the-middle [4] and replay [5] type of attacks. A smart
attacker can corrupt the networking stack to fail the over-
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the-air code reflash. These necessitates manual intervention
for the recovery of the device. Currently used embedded
and IoT devices have a wide variety of applications ranging
from ships, industrial plants, CCTV cameras, and distributed
network sensors (such as dust nodes). These applications
require the placement of these devices into the locations
that are relatively hard to access for performing device
maintenance. Therefore, those devices require an onboard
recovery mechanism to reduce the downtime and mainte-
nance cost. Recent implementations such as [9] and [10]
attempt to provide recovery methods to the affected devices.
However, they lack in providing either the secure boot or
RA implementation.

To address these limitations, the proposed work presents
SRACARE a framework that uses a custom communication
protocol to measure (run-time and boot-time) integrity and
authenticity of the device’s software. It also presents a novel
resilience and onboard recovery method to protect the device
from the malicious code modification attacks.

Fig. 1. Highlights the proposed SRACARE system design flow and key
contributions. It represents the lightweight authenticated secure communi-
cation protocol, and a new remote attestation and secure boot architecture
using custom CARE module.

Fig 1 provides a high-level design overview of the
proposed framework. The SRACARE system operation is
categorized into two sub-tasks: A Authenticating the trusted
Vr and un-trusted Pr using lightweight, secure communi-
cation protocol and B Based on the result of task A , it
performs either remote (run-time) or secure-boot (boot-time)
attestation with onboard recovery by using the prototype
CARE module. It sends the final computed result to the
Vr, as depicted in step 6 of Fig 1. The authentication of
the Vr and Pr are performed by sending nonces both ways
and computing HMAC (Hash based Message Authentication
Code) using a prototyped communication protocol (as shown
in steps 1 to 4 ). The novelty of this approach resides
in the lightweight design of the nonce (n2) generation
mechanism at the Pr side, without requiring the resource
heavy nonce generation techniques such as True Random
Number Generator (TRNG), details of which are covered in
section §IV-A and section §IV-B. If the authentication check
fails the SRACARE system sends Flag (C==0) to the Vr as an

attack indicator and Vr closes the communication between
the devices. Upon authentication passing, the Pr sends Flag
(C==1) and the Vr continues the next step by sending Flag
(F) and associated payload to the Pr device. The Pr system
performs either secure boot with CARE or remote attestation
based on the value of Flag (F) (as shown in steps 5 and 6 ).
The (highlighted) prototype CARE module provides novel
malicious code modification attacks detection, protection and
onboard recovery mechanism for small embedded and IoT
devices.
Research Contributions: The design and implementation
of the proposed SRACARE framework presents the following
research contributions:

• Secure Communication Protocol: It demonstrates the
prototype implementation of a lightweight secure au-
thenticated communication protocol between the trusted
Vr and untrusted Pr.

• Nonce Generation Technique: It provides a
lightweight novel nonce (n2) generation technique that
ensures freshness for the Pr device without requiring
substantial system resources.

• Remote Attestation Tools: It provides the tools to
verify the integrity and authenticity of the state of the
software on the device at run-time by the remote Vr.

• Secure Boot: SRACARE presents lightweight, secure
boot (boot-time attestation) architecture prototype for
RISC-V based small embedded and IoT devices.

• Resilience Engine: It demonstrates the first imple-
mentation of the novel resilience engine that provides
onboard recovery and protection method to recover the
Pr device after malicious code modification attack.

• Prototype SRACARE Implementation: It presents the
prototype implementation of SRACARE framework on
FPGA, which can be used as a standalone microcon-
troller or as a secure boot co-processor such as the
Trusted Platform Module (TPM) in large devices.

II. BACKGROUND AND RELATED WORK

This section defines essential concepts used and refer-
enced by the proposed framework, followed by exploring
related state-of-the-art works. Measured boot [11] is a pro-
cess of verifying the integrity of the software running on
a system. Authenticated boot [12] verifies that the software
running on the system is coming from an authorized ven-
dor. The majority of the conventional secure boot and RA
techniques perform either measured boot or authenticated
boot, and very few support both. The onboard recovery and
secure RA communication will be the requirement of the
next-generation embedded and IoT devices, as discussed in
section §I. Previous researchers have implemented secure
boot and/or RA techniques that can be classified into hard-
ware, software, and hybrid approaches:
Hardware-Based: One of the popular methods of secure
boot and RA uses a discrete co-processor called the Trusted
Platform Module (TPM) [13] recommended by the Trusted
Computing Group (TCG). TPM has a special purpose
registers called Platform Configuration Registers (PCRs),



which cannot be overwritten. However, it can only be
extended by hashing the software measurements together
with the previous PCR values. The TPM can sign the
PCRs with a private attestation key to generate a piece of
attestation evidence. The TPM provides hardware root-of-
trust. However, it is not suitable for small embedded or
IoT devices due to space, size, and cost constraints. Some
researchers have used the Trusted Execution Environment
(TEE) [14], Keystone [15], or proprietary implementation
of Arm TrustZone [16] for runtime attestation. TrustZone
uses two virtual processors called the secure and normal
world to enforce the hardware-based isolation. Microsoft’s
fTPM [17] provides a use-case of TrustZone for secure
boot and attestation. Intel’s SGX [18] provides instruction
and memory access features that can be used to instantiate
protected containers referred to as enclaves by using special
instructions and processor extensions. TrustZone and TEE
increases the design complexity and cost associated with
exclusive licensing. Other secure boot architectures have
used complex Unified Extensible Firmware Interface (UEFI)
[19] design or utilize heavy resources [20], which makes
them unsuitable for small embedded and IoT devices.
Software-Based: Researchers have used simulated or soft-
ware TPM implementations like simTPM [21] or IBM’s
software TPM [22] for secure boot and RA. RISC-V based
implementation Sanctum [23] uses software-based enclaves
for attestation. The implementation presented in [24] has
used cryptographic software core and hash engine for attes-
tation.
Hybrid: SMART [25] is a dynamic root-of-trust architecture
for low-end devices at runtime. SPM/Sancus: SPM [26]
and Sancus [27] present a security architecture that pro-
vides isolation of software modules using additional CPU
instructions. TrustLite/TyTAN: TrustLite [28] and its suc-
cessor TyTAN [29] provide flexible, hardware-enforced iso-
lation of software modules using Execution-Aware Memory
Protection Unit (EA-MPU). Google’s latest implementation
Opentitan [30] provides a secure boot based hardware root
of trust. Other RISC-V based secure boot and attestation
architecture Shakti-T [31] uses base and bounds concept
to secure the pointer’s access to the valid memory regions.
The existing secure boot and RA architectures are complex
[12], require more resources [21], [14], [16], or have been
compromised by attacks such as [32] and [33].

Moreover, none of the available solutions provide the
recovery and they use conventional message authentication
protocols, which are resource heavy and not suitable for
small embedded and IoT devices. Recently implementation
Healed [9] presents the first recovery mechanism using
Merkle Hash Tree (MHT). It assumes that at least one node
in the network is untempered, and firmware of that node is
used to reflash the corrupted node. Another implementation
[10] uses a method of putting software receiver-transmitter
code into trusted ROM to connect the device to a recovery
server. It requires additional ROM storage, processor, and
internal communication bus to be part of Trusted Comput-

ing Base (TCB). The proposed SRACARE method uses a
different approach of storing the recovery data in a secure
backup ROM, and it does not require processor and internal
communication bus to be part of TCB to reduce the attack
surface.

III. SECURITY MODEL

A. Security Properties
SRACARE has derived eight (A1-A8) security properties

(from [34]) for the secure boot and remote attestation system
design, which are broadly classified into three main domains,
namely: Secure Communication, Key Protection, and Safe
Execution.
1) Secure Communication: The communication protocol
between the Vr and Pr devices should be resilient to
wiretapping and flooding types of attack. A1. Eavesdrop
Protection: The devices should have wiretapping and eaves-
dropping protection to prevent attacks such as [35], [5], or
[4] which can cause security-critical information leakage or
misuse. A2. Flooding Protection: It also requires protection
from attacks such as [6] DoS and [36] DDoS, which can fail
the application.
2) Key Protection: The shared cryptographic secret key (K)
and device secrets should not be exposed to the adversary
and stored in protected memory with no unauthorized access.
A3. Key Confidentiality: The secure key (K) must be
stored in protected memory or ROM. A4. Access Control
Enforcement: It requires proper access control policies
to prevent unauthorized read-write access to the protected
memory.
3) Safe Execution: The design should have an error-free, un-
interrupted, and leak-proof implementation and execution of
all the system modules. A5. Correct Implementation: The
implementation of all the submodules should be untempered
and correct. A6 Atomicity: Once triggered, the code execu-
tion should not be interrupted. A7. Error Free Execution:
All the hardware (IPs) and software submodules should have
error-free execution. A8. Controlled Invocation: The sys-
tem requires proper code triggering and execution sequence,
with no privilege escalation or interruption.

B. Adversary and Threat Model
The adversary:
• has full control over the firmware and software of the

device.
• can perform an unauthorized read or write to the flash

memory.
• can modify existing code by re-arranging, flipping the

bits, buffer-over-flow, or fault injection attacks.
• cannot attack protected ROM.
The side-channel attack, physical access, damaging de-

vice, and control flow integrity attacks are out of scope for
the proposed work.

C. Design Choices
SRACARE system incorporates the following design

choices to satisfy the security properties discussed in sub-
section §III-A.



Secure Storage: SRACARE uses separate ROM for
storing the device information such vendor ID, Unique De-
vice Identification (UUID), firmware revision, the symmetric
cryptographic shared key (K) and extends the layout of the
secure ROM to store a trusted recovery image.

Frame Data Structure and Internal Communication:
The conventional secure boot and RA systems uses an
internal system bus for communication between the trusted
and untrusted hardware-software modules. Attack [37] has
demonstrated that it can boot the device through malicious
hardware connected to the same interconnect bus. There-
fore, the proposed framework uses a dedicated SPI bus
for communication between the ROM, flash, and prototype
CARE module. Moreover, the conventional system computes
the digest over the entire firmware image and transfers the
results via a universal interconnect bus. Since SRACARE
uses the SPI bus, if the SPI tool’s hardware or software gets
corrupted, it can send occasionally corrupted bits or wrong
data. Therefore, the proposed design divides the flash image
into 1 KB chunks. Section §IV-B covers the details of the
frame data structure. This design choice is used for Proof
Of Concept (POC) implementation only, and the user can
parameterize frame size to optimize the performance.

Code Integrity & Authentication (CA) Unit: Most
modern secure boot architecture uses two crypto-cores -
one for the digest computation and others for code signing.
After performing speed, resource, and cost evaluation of
various crypto-cores such as AES, RSA, ECDSA, SHA3,
SHA256, SHA384, and HMAC-SHA256, the design choice
of using single hardware implementation of the crypto-core
HMAC-SHA256 is made for digest computation and code
authentication. This hardware reuse makes the proposed
solution lightweight and suitable for the targeted small
embedded and IoT devices.

Resilience Engine (RE): RE provides the ability to
recover the device from memory modification attacks by
reflashing the affected flash memory region using onboard
recovery (backup) code, It also applies the access control
policies to protect the device from future attacks.

Trusted Execution: SRACARE provides trusted execution
environment by isolating the TCB and processor, and using
a dedicated SPI bus for internal communication.

Secure Communication Protocol: SRACARE uses the
proposed lightweight, secure communication protocol to
satisfy the secure RA properties A1 and A2 from subsec-
tion §III-A by leveraging existing hardware resources and
following steps 1 to 12 from Fig 2. It also demonstrates a
custom nonce generation technique for small embedded and
IoT devices.

IV. SRACARE FRAMEWORK

A. System Design

Fig 2 shows the top-level design overview of the
SRACARE framework, highlighted are two main security-
enhancing techniques proposed by this work: 1) Lightweight,
secure communication protocol and 2) Secure boot with
CARE and RA architecture for the Pr device. The notations

and definitions used for the communication are listed in
Table I. SRACARE establishes lightweight, secure communi-
cation protocol between the trusted Vr and un-trusted Pr by
following steps 1 to 12 from Fig 2, and the detailed working
is explained in subsection §IV-B.

Fig. 2. Highlights the system design and key contributions of SRACARE:
1) Novel lightweight, secure authenticated communication protocol (steps
1 to 12), and 2) Secure boot with CARE and remote attestation architecture
for the Pr device (steps 13 to 20)).

TABLE I
NOTATIONS AND DESCRIPTION

Notation Description
n1 Vr’s nonce for freshness
n2 Pr’s nonce for freshness

n2 = Hmac(K, T)
T = hash(CHIP INFO.) ⊕ n1

K Symmetric key for HMAC
Hmac(K, m) H((K′ ⊕ 0x5C5C) || H((K′ ⊕ 0x3636) || m))
A A = Hmac(K, n1) >> n2
B B = Hmac(K1, n2)
C C is a true or false result of the validation of B.
D D consists of parameters Saddr and L as payload

for attestation
F Reset Flag
Saddr Start address of flash memory for hashing
L Lenth of the memory region to be hashed
R Final Result

K′
{

H(K) K is larger than the block size
K otherwise

m Memory region to be attested, derived from Saddr,
L

H Cryptographic hash function
K′ Key derived from the secret key K
K1 K1= (Hmac(K, n1) ⊕ n1 ⊕ n2))
|| Denotes concatenation
⊕ Denotes bitwise exclusive or (XOR)
CA Code Authentication
RE Resilience Engine
RA Remote Attestation

The proposed secure communication protocol has two
advantages over conventional authenticated communication



protocols: (1) It authenticates both end devices (the Pr and
Vr) in the communication and provides resilience from
[4], [5], and [6] attacks. (2) It does not require additional
computationally heavy system resources such as TRNG,
Authenticated Encryption with Associated Data (AEAD),
Elliptic Curve Digital Signature Algorithm (ECDSA) or
complex Message Authentication Code (MAC) to satisfy
A1 & A2 security properties listed in section §III-A. To

Fig. 3. Shows the architecture design of SRACARE based Pr system,
highlighted are the key design modules. The pass arrows indicate that only
the known good code will be allowed to be executed on the RISC-V core
at any given time.

satisfy all the security properties from A3 to A8 discussed
in section §III-A, SRACARE based Pr system follows design
choices to listed in section §III-C, as highlighted in
Fig 3. The Pr performs either the RA or secure boot with
CARE by following steps 13 to 20 from Fig 2. The detailed
working of the system is covered in section §IV-B.

B. System Operation
The working of SRACARE system is divided into four

main steps: 1) Secure Communication Protocol, 2) Secure
Boot, 3) Resilience and Recovery, and 4) Remote Attesta-
tion.
1) Secure Communication Protocol: The communication
starts by the Vr sending nonce n1 to the Pr. The Pr computes
Hmac(K, n1) using the crypto-core and generates n2 by
performing Hmac(K, T).

n2 = Hmac(K,T )

T = hash(CIstart, 16) xor n1 (1)

Where T is calculated by taking the hash of the first 16
Bytes of the secure chip information memory and xor it
with the received value of n1 (for freshness). The chip
information (CHIP INFO) memory consists of the device
specific information such as device serial number, firmware
version, and UUID as depicted in Fig 3. Term CIstart in
equation 1 points the starting location of Chip Info (CI)
memory. This novel approach gives unique n2 each time
without requiring resource-heavy salt generation techniques

such as TRNG. The Pr generates A = (Hmac(K, n1) >> n2)
by appending n2 with Hmac(K,n1) and sends it to the Vr.
The Vr validates the authenticity of the Pr by recomputing
Hmac(K, n1) and matching it with the received value. The
Vr derives the new secret key K1, computes Hmac(K1,
n2), and sends the result to the Pr. The Pr follows the
appropriate generation and validation steps to authenticate
the Vr and sends the result Flag C (step 11 from Fig 2)
to the Vr. SRACARE closes the POC UART connection
(it can be Xbee or other) between the Pr and Vr devices
when the Vr receives (C==0) (in step 12 from Fig 2), else
it sends the Flag F defining the next action and associated
payload to the Pr. 2) Secure Boot: If the received Flag (F)
is set (F==1), then the Pr calls system reset function and
performs the secure boot with CARE. Note that steps 4 to
6 in Fig 2 are represented differently to denote that those
steps will be part of both RA or secure boot. However,
the sequence of execution will be different. As depicted
in Fig 3, the secure boot sequence starts with the system
power-on. It locates and executes the First Stage Boot Loader
(FSBL) code from secure ROM to initialize the SPI and
flash controllers, read chip information such as - device
UUID, board version, and symmetric share key, and hand
off the control to the second stage boot code called the
bootstrap. The bootstrapping process divides the flash image
into a 1 KB frame chunks and sends it one at a time to
the host via SPI bus for integrity and authenticity check.
Each frame consists of the header and associated payload,
as indicated in Fig 4. The header contains the digest of the

Fig. 4. Represents the frame data structure. The header contains the digest
of the entire frame, frame number, and flash offset location. The payload
contains corresponding data for each frame.

entire frame, frame number, and the flash offset location. The
offset location is the flash memory offset location used for
the frame reflashing. The payload contains the corresponding
data for each frame. This work has leveraged Hash based
Message Authentication Code’s (HMAC) feature for signing
(authenticating) the data and SHA256 feature for integrity
check for each frame to reduce hardware footprint and cost.
Secure boot follows steps 4-5-15-16-17-18-6 from Fig 2
for each frame, and upon digest mismatch detection, the Pr
triggers the RE else the device will continue the normal boot
process. 3) Resilience Engine: RE follows steps 16-17-18
from Fig 2 to locate the affected memory region, reflash
the corrupted flash memory region with the known good
software code from secure ROM, and lock the unauthorized
access to the flash region using Physical Memory Protection
(PMP) mechanism of the RISC-V processor. 4) Remote
Attestation: If the received Flag (F==0) value is not set, the
Pr performs remote attestation based on the payload provided
by the Vr, which consists of the start location and the length
of the information to be attested. The Pr follows steps 4-5-6



sequence from Fig 2 to compute the digest and it sends the
report to the Vr (steps 19 and 20 from Fig 2).

V. EVALUATION

This section describes the chain-of-trust theory, resource
utilization, and performance analysis for each submodule in
SRACARE framework design, and comparison with state-of-
the-art solutions.

A. Chain-of-Trust

The work presented in [11] defines the secure boot process
as a chain of many small layers of the boot codes executed
in a specific sequence. It requires the boot process to follow
two rules for the integrity measurement assurance: 1) The
integrity is checked for all the lower layers. 2) Transitions
to higher layers occurs-only after integrity checks on all
lower layers are completed. The conventional secure boot
systems measure the integrity of each stage (layer) of the
boot code at the file level. The proposed work uses the same
concept in a different context as it breaks down the entire
image into 1 KB chunks (called frames) and measures code
integrity and authenticity of each frame. Following equation
represents the chain-of-trust for SRACARE system:

I0 = True

I i+1 = Ii & Vi(Li+1) (2)

Ii and & are the boolean value representation of the integrity
of frame i and AND operation respectively. The verification
function associated with the ith layer is represented by
Vi. Vi takes the layer to verify as its only argument and
returns boolean result. It performs a cryptographic hash of
the frame and compares the result with stored digest value.
As explained earlier, this work has divided boot flash data
into 1 KB frame chunks, and hash digest is computed on
each frame for verification. Therefore, the recurrence is
represented by:

I i+1 =

{
Ii=0 = True for i = 0
Ii & Vi(Li+1) for i = 1, 2, 3...n

(3)

Here, I0 is the trusted boot ROM code, and the integrity
of ROM is taken as boolean true. n represents the number
of frames of the flash image. The following equation 4
calculates the estimated increase in boot time (T∆) for a
secure boot with SRACARE.

T∆ = tfm 0(V0(L1)) + tfm(

n∑
i=1

Vi(Li+1)) (4)

Where tfm 0 is the execution time for the first frame,
and tfm is the execution time for all remaining frames.
The verification time includes the time required to compute
and verify the message digest. By design, SRACARE first
matches the frame number of the received frame and clears
the flash region to reflash it with a trusted code. Therefore,
the first frame processing requires more time (tfm 0) than the
remaining frames.

B. Code Authentication (CA) Unit
The key component of the Code Authentication (CA)

unit is crypto-core (HMAC-SHA256). To estimate the initial
performance, power, and resource utilization, our evaluation
setup uses both hardware and software implementation of

TABLE II
PERFORMANCE ANALYSIS OF CA ON FPGA.

Performance Analysis of crypto-core on FPGA

Parameters Software Hardware

Cycles (c) 47033 2926
Frequency (f)(MHz) 100 100
Block (b) 256 256
Throughput T(Mbps) .54 8.74
Time (usec) 470.33 29.26
Energy Consumption (E) 197.06 12.25
Energy Efficiency 92.68 0.358

the crypto-core running on the baremetal RISC-V processor
to compute the digest of same data size of 256 Bytes.
Table II illustrates a performance increase of 16x and 92%
less power utilization while using the hardware HMAC-
SHA256. Also, software implementation requires 3.6 KB
additional secure storage and assumes the RISC-V core
to be part of TCB. Including the processor in TCB is
not a preferred design choice due to the processor related
vulnerabilities. Therefore, a hardware-based crypto-core is
selected for the CA unit.
C. Resilience Engine (RE)

The Resilience Engine (RE) is implemented in software
for the POC work. For the test application of 5.6 KB, it
requires 61 additional lines of code (C language) in the
secure boot code base and approximately 5 KB of additional
secure ROM to store the golden recovery image data. The
Resilience Engine (RE) requires 968 bytes of recovery data
for every 1 KB of the flash image. The secure ROM size
increases exponentially with the size of the application code
used for recovery. To limit the size of the recovery data
storage, the application developer can select the necessary
code module for the recovery process or use a suitable com-
pression technique, to bring the device to the bare minimum
working state. Although, this feature is not implemented in
the proposed work as the test application uses only 5 KB of
additional ROM for recovery.

D. System Performance
For SRACARE system timing analysis, a test application

of 5.6 KB is divided into six 1 KB chunks and the total
time for the system boot-up with and without the proposed
framework is calculated and presented in Table III. The
framework uses equation (4) to calculate the total execution
time T and equation (5) for time difference D∆. As seen
from Table III, the time difference in the total time D∆ =
.529 milliseconds indicates that proposed SRACARE archi-
tecture requires 8 percent extra boot-time, 5 KB extended
ROM and increases bootstrap code by 61 lines, which are
insignificant in comparison to the level of security, onboard
recovery, and resilience it provides.



TABLE III
TIMING ANALYSIS FOR BOOTSTRAP.

Timing Analysis of secure bootstrap on FPGA

Parameters Without With

Cycles req. for the first frame (c) 553611 576083
Cycles (rest of frames)(c) 103330 133790
Total Cycles 656941 709873
Frequency (f)(MHz) 100 100
Time (T) (usec) 6569.41 7098.73

Time difference D∆ = 529.32 usec
which is 8% more than without secure boot

D∆ = Time(withSRACARE)− Time(withoutSRACARE)
(5)

E. Resource Utilization
Inspired from the googles opentitan [30], the prototype

implementation uses the Ibex RISC-V core for the RTL
design.

TABLE IV
HARDWARE RESOURCE UTILIZATION.

FPGA Hardware Resource Utilization Report

Parameters SRACARE HMAC Ibex %Util.

Slice LUTs 24249 2807 3581 18
LUT as logic 24081 2807 3581 18
LUT as DRAM 168 0 8 1

Slice Registers 19586 2312 2559 7
Register as FF 19581 2312 2559 7
Register as Latch 5 0 0 <1

F7 Muxes 1407 71 265 2
F8 Muxes 196 29 0 1

1) Hardware Resource Utilization on FPGA: Ta-
ble IV depicts resource utilization of (crypto-core) HMAC-
SHA256, Ibex core, complete SRACARE design, and per-
centage utilization of available hardware resource on Artix 7
FPGA. The crypto-core uses 3x less area and operates at 2x
faster speed compared to other implementation from [38].

2) Software Resource Utilization: The POC work has
implemented the RE submodule and secure communication
protocol in software. It requires 61 additional lines of (C
language) code for RE (which includes cycle calculation and
analysis code for Ibex) and 5 KB of extended ROM storage.It
requires 108 additional lines of code (C language) on the Pr
side for secure RA (UART) protocol and novel n2 generation
logic implementation. SRACARE increases the total software
code base by 10%.

F. Comparison with the State-of-the-art Solutions
Since RISC-V is a relatively new architecture, authors of

this work did not found any secure boot with resilience
or recovery implementation for state-of-the-art comparison.
Therefore, this work compares the proposed SRACARE
framework with other state-of-the-art secure boot and RA
architectures targeting RISC-V based embedded and IoT
systems. The comparison focuses on both qualitative and

quantitative analysis. Table V illustrates the qualitative com-
parison.

TABLE V
QUALITATIVE COMPARISON BETWEEN SECURE BOOT/RA TECHNIQUES

TARGETING LIGHTWEIGHT EMBEDDED DEVICES.

Parameters SRACARE Healed Ref. [10] Ref. [20] Sanctum

Design Type Hybrid SW Hybrid HW Hybrid
Secure RA yes no no no yes
Detection yes yes yes yes yes
Protection yes no yes yes yes
Recovery yes yes yes partial no
Secure boot yes no no yes yes

1) Qualitative Comparison: Table V shows that all
techniques provide memory attack detection methods, and
only SRACARE, Healed, and [10] provides resilience and
recovery techniques. Sanctum [23] uses hybrid secure en-
claves for code execution and RA. [20] uses hardware-based
memory attack detection and protection method. Healed
[9] implements RA with recovery using Markle Hash Tree
(MHT). It assumes that at least one device on the network
is untampered, and the code of that device can be used for
recovery. [10] provides a recovery method using a trusted
ROM to store transmitter and receiver code for associating
with a recovery server. Both [23] and [20] uses Rocket
chip RISC-V core with OS support and complex designing.
However, since [20] provides partial recovery support it is
close candidate for SRACARE comparison.

TABLE VI
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART SECURE

BOOT / REMORT ATTESTATION (RA) TECHNIQUE FOR RISC-V.

Parameters SRACARE HMAC CAU’s ECDSA only

Slice LUTs 24249 2807 27170
LUT as logic 24081 2807 26450
LUT as DRAM 168 0 720

Slice Registers 19586 2312 6722
Register as FF 19581 2312 6722
Register as Latch 5 0 0

Multiplexer
F7 Muxes 1407 71 684
F8 Muxes 196 29 0

2) Quantitative Comparison: Table VI shows that
[20] requires 27170 slice LUTs for hardware crypto-core
module (ECDSA) implementation, which is 14x larger
than SRACARE’s crypto-core hardware requirement. Further-
more, [20] requires two 64 bit the RISC-V cores for Trusted
Execution Environment (TEE) implementation, hardware
SHA3 for hashing, and configurable LFSR-based Physical
Unclonable Function (CoLPUF) for key generation, ECDSA
core for asymmetric signing, boot sequencer, and key man-
agement unit. These make [20] a resource-heavy solution
and unsuitable for small embedded and IoT devices. The
comparison of asymmetric and symmetric cryptographic
hardware requirements provide an initial estimation of the
overall hardware overhead requirements.

VI. CONCLUSION
SRACARE demonstrates the POC framework that per-

forms the run-time and boot-time integrity and authenticity



checks, secure boot with onboard recovery, and remote
attestation on the RISC-V based small embedded and IoT
devices. It implements the novel lightweight, secure authen-
ticated communication protocol. It provides the tools for
the detection, protection and recovery from malicious code
modification attacks. The experimental results show good
protection against malicious code modification attacks, with
only 8% execution time overhead and a tiny increase in
resource footprint.
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