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Abstract: Microprocessors use static random-access memory (SRAM) cells in the cache memory
design. As a part of the central computing component, their performance is critical. Modern system-
on-chips (SoC) escalate performance pressure because only 10–15% of the transistors accounts for
logic, while the remaining transistors are for the cache memory. Moreover, modern implantable,
portable and wearable electronic devices rely on artificial intelligence (AI), demanding an efficient
and reliable SRAM design for compute-in-memory (CIM). For performance benchmark achievements,
maintaining reliability is a major concern in recent technological nodes. Specifically, battery-operated
applications utilize low-supply voltages, putting the SRAM cell’s stability at risk. In modern devices,
the off-state current of a transistor is becoming comparable to the on-state current. On the other
hand, process variations change the transistor design parameters and eventually compromise design
integrity. Furthermore, sensitive information processing, environmental conditions and charge
emission from IC packaging materials undermine the SRAM cell’s reliability. FinFET-SRAMs, with
aggressive scaling, have taken operation to the limit, where a minute anomaly can cause failure. This
article comprehensively reviews prominent challenges to the SRAM cell design after classifying them
into five distinct categories. Each category explains underlying mathematical relations followed by
viable solutions.

Keywords: 6T-SAM; low power; leakage current; process variations; soft errors; fault-tolerant;
reliability; multi-threshold; noise margins; assist circuits

1. Introduction

As an indispensable part of a computing system, memory dominates the semicon-
ductor industry. According to the world semiconductor trade statistics (WSTS), memory
held 27% (USD117 bn) and 28% (USD154 bn) of the total semiconductor industry mar-
ket share in 2020 and 2021, respectively. By the end of 2024, the semiconductor memory
market is expected to surpass USD730 bn [1]. The ever-increasing demand for fast data
processing necessitates memory integration within the processor in contemporary artificial
intelligence (AI) and internet-of-things (IoT) capable edge devices. Machine learning (ML)
is in dire need of such devices to perform compute-in-memory (CIM) for the energy and
performance-efficient algorithms implementations [2,3].

Memory holds data either temporarily or permanently while processing. Two im-
portant parameters, access time and data retention, determine a memory hierarchy; faster
memory placement will be closer to the processing unit. Figure 1 shows memory clas-
sifications. Several emerging nonvolatile memory cells, such as MRAM, FRAM, RRAM,
PCM-RAM and FLASH, are appealing because of their improved retention time, density
and performance [4–7]. However, lower latency and push-rule-based manufacturing [8]
have made the SRAM cell a suitable choice for cache memory.

Technological scaling has aggressively improved SRAM performance and density. Cur-
rently, a modern SoC contains about 90% of the transistors that account for the memory [9].
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However, technological scaling is also rendering a confluence of challenges. Short chan-
nel effects (SCE) [10] affect performance and enhance the leakage current. Consequently,
a transistor structural shift from planer to 3D-CMOS [11] and silicon on insulator (SOI) [12]
technologies mitigates the SCE and junction leakage. A FinFET-SRAM cell provides better
control over the conduction channel. Thus, FinFET is inevitable in modern deep-submicron
nodes. Nevertheless, the lower supply voltage poses severe threats to the SRAM cell
stability. The leakage current is similarly accelerating the power budget [13]. Furthermore,
variations in the threshold voltage (Vth) have made non-erroneous SRAM cell operation
alarming [14]. The reliability is a direct implication of process variations [15]. Besides
the aforementioned issues, SRAM soft errors and data security are emerging areas [16].
Researchers have proposed many solutions to overcome these issues as a tradeoff for
performance parameters [17–19]. Additionally, recent trends in CIM need reliable SRAM
performance when multiple memory locations are simultaneously accessed. Therefore,
a comprehensive review as a guideline for SRAM limitations and state-of-the-art solutions
is essential.
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Figure 1. Computer memory classifications based on data retention.

This article reviews SRAM cell design obstacles and workarounds (Figure 2). Section 2
introduces the conventional 6T-SRAM cell architecture and associated performance mea-
surement parameters. Section 3 presents the low-voltage operation issues and available
remedies. Section 4 highlights the leakage current’s significance and minimization tech-
niques. Next, Section 5 details process variations’ impact on SRAM cell performance.
Section 6 explains soft errors’ occurrence and solutions. Then, Section 7 overviews security-
aware SRAM cell designs. Section 8 discusses current and future research trends. Finally,
Section 9 concludes this article.
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Figure 2. Overview of the SRAM challenges and potential solutions.

2. SRAM Cell

The conventional SRAM cell consists of six transistors, as shown in Figure 3. The
internal nodes, Q and Qb, hold the bit value and its inverse, respectively. PMOS transistors,
PU1 and PU2, pull up these nodes. Similarly, NMOS transistors, PD1 and PD2, pull down
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the internal nodes. The pass transistors, PG1 and PG2, provide access for the read and
write operations.
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An SRAM cell can operate in three modes: hold, read and write. During the hold
mode, the wordline (WL) signal is low; thus, the cell keeps the internal bit value. Before
a read or write operation, an initial conditioning circuit pre-charges the bitlines (BL and
BLB). During the read operation, the WL signal activates both PG transistors, providing
access to the stored value. One of the BLs is consequently discharged through its respective
PG and PD transistors, while the other BL remains high. In this way, the SRAM cell puts
the stored bit and its inverse on the BLs. To discharge a BL, the corresponding PD transistor
must be stronger than its respective PG transistor, known as read stability. Equation (1)
shows the relative strength of these transistors. CR values should be greater than one to
ensure the read operation. Since a BL connects numerous cells, it has a high capacitive
value. Accordingly, discharging takes a considerable time. Hence, a sense amplifier is used
to magnify the small differential voltage between the BLs and transfers the bit value to the
external circuitry.

Cell Ratio (CR) =
(W/L)PD1
(W/L)PG1

=
(W/L)PD2
(W/L)PG2

(1)

During the write operation, a strong write driver pulls one of the BLs down depending
on which value is to be written onto the cell. The WL assertion takes time, as the increased
design density has put more capacitance on it. The BL Instantly pulls the storage node
down via a PG transistor, but a PU transistor opposes it. This imposes a constraint known
as writability. The PG transistor must be stronger than the corresponding PU transistor to
copy the BL value into the SRAM cell. Equation (2) shows that the value of PR should be
less than one for the write operation.

Pull Ratio (PR) =
(W/L)PU1
(W/L)PG1

=
(W/L)PU2
(W/L)PG2

(2)

The noise tolerance level, without upsetting the undergoing operation, defines the
noise margin for that particular operation. The cell and pull ratios affect the read and write
noise margins, respectively. Stronger PD and weaker PG transistors ensure a higher read
margin, whereas stronger PG and weaker PU transistors improve the write margin. This
conflicting device sizing results in a tradeoff between the read and write noise margins. In
FinFET technology, the device sizing is more challenging, as transistors’ width, represented
by the number of fins, is quantized.

To measure static noise margins, the butterfly curve plot is used [20]. Since the butterfly
curve method is incapable of fast and automated measurements, industrial designers rely
on N-curves [21]. In N-curves, supply-read retention voltage (SRRV) and wordline-read
retention voltage (WRRV) render the read noise margin measurements. For the write noise
margin, bitline-write trip voltage (BWTV) and wordline-write trip voltage (WWTV) furnish
the write noise margin measurements [22]. Table 1 mentions details of key performance
evaluation parameters of an SRAM cell.
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Table 1. Performance evaluation parameters for SRAM cells.

S. No. Parameters Explanation

1 Read Access Time WL activation (50%) to 50–200 mV differential bitline voltage
2 Write Access Time WL activation (50%) to 90%/10% of rising/falling internal node
3 Read/Write Power Power consumption during read/write access time
4 Leakage Power Power consumption during standby or hold mode
5 Cell Area Layout area of the one SRAM cell
6 Noise Margins SRAM noise tolerance under hold/read/write mode
7 Reliability Performance under process/voltage/environmental variations
8 Soft Error Critical charge accumulation to flip the internal node value

The aforementioned conventional 6T-SRAM cell necessitates the peripheral circuitry
for operational procedures. Figure 4 presents the main peripheral components: row and
column decoders, sense amplifiers, bitline conditioning and write drivers. The exter-
nal components’ performance plays a crucial role in the overall memory design. For
example, amortization reduces the number of sense amplifiers required for an SRAM
cell array design [22]. Hence, an SRAM array achieves efficiency in design density and
power consumption.
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3. Low Voltage Operation

Dynamic power contributes a major constituent in the total power consumption of
a digital circuit. The integrants’ composition (αCfV2

DD) is switching activity (α), switch-
ing frequency (f), node capacitance (C) and supply voltage (VDD). The supply voltage is
a squared term that indicates the highest contribution. The tuning of parameters α and f af-
fects the SRAM cell performance but increases the power budget. Technology advancement
reduces capacitances (C), but the improved design density diminishes overall returns.

Transistor downsizing leads to scale-downs in the supply voltage. T.H. Bao et al. [23]
reports feature sizes down to 5 nm as workable at the commercial scale. The international
roadmap for devices and systems (IRDS 2022) predicts transistor scaling down to the 0.7 nm
node by 2034. However, size minimization brings forward obstacles such as degraded
sub-threshold slopes (SSs) and increased drain-induced barrier lowering (DIBL) [24]. The
SRAM cell design has consequently shifted from planar devices to fully depleted silicon-on-
insulator (FDSOI) [25], which permits an acceptable performance, as shown in Figure 5a. In
the future, sheet or gate-all-around (GAA) transistors [26] will replace the current FinFET
in the SRAM cell design.

Figure 5b explains the compromise on noise margins as the supply voltage reduces.
An SRAM cell can initially operate at a VDD of 0.9 V and then a decreasing trend continues
to 0.5 V. The threshold voltage (Vth) could not comparatively follow this trend at the
same pace.
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3.1. Alternate Cells

To overcome the low supply voltage challenge, designers have put forward multiple
SRAM cell designs [26–31]. Primarily, alternate SRAM cells aim to improve the noise
margins. Enhanced noise margins ensure a particular SRAM cell has sufficient stability
room at a decreased supply voltage.

Figure 6 highlights different SRAM cells and associated control signals. Without loss
of generality, the basic operation is similar in essence, as explained in Section 2. A 7T-SRAM
cell, as seen in Figure 6a, has a single read-bitline (RBL) and read-wordline (RWL) for the
read operation. The newly added transistor M4 breaks the back-to-back inverters’ feedback
through the WL signal and improves the write noise margin. An 8T-SRAM cell, as seen
in Figure 6b, separates the read-port (M7 and M8) to avoid device size conflict and thus,
this cell can independently tune the read noise margin. Furthermore, a 9T-SRAM cell, as
seen in Figure 6c, has a separate read and write port (M7, M8 and M9). Additionally, this
cell has wordline pull-up (WLPU) and wordline pull-down (WLPD) transistors for the
power gating to save power. Next, 10T-SRAM cells, as seen in Figure 6d, manifest the
separate read and write port concepts as the same as 8T-SRAM cells. But the M7, M8 and
M9 transistors’ buffer provides strong logic for the 0 or 1 value. The addition of M2, M5 and
M7, as seen in Figure 6e, is an alternate way to furnish the strong logic value. Transistors
(M9 and M10) in an 11T-SRAM cell remove interdependency between the read and write
noise margins. Tri-state buffers for the read and write operations in a 12T-SRAM cell, as
seen in Figure 6f, improve the read- and write-energy per cycle while the read or write
operation is in progress.

Table 2 reports the performance parameters analysis among Figure 6 cells. It is noted
that the proposed SRAM-design cells, with the extra transistors, enhance the area and put
stringent requirements on the layout regularity. Although the alternate cell designs show
better read and write ability as compared with their counterparts, this is at the expense of
more control signals and increased area. Adaptability and flexibility to other components
determine the overall efficiency of the specific SRAM cell design.

3.2. Assist-Circuits

A lower supply voltage improves dynamic power but makes read and write operations
challenging. Therefore, assist-circuits ensure an SRAM cell operations’ reliability. Two
circuit-level choices for a low voltage operation are the use of assist-circuits and adaptation
to alternate SRAM cells. Both options have tradeoffs at the cost of extra hardware and
control signals. In FinFET technologies, the 6T-SRAM cell utilization alongside assist-
circitry is inescapable to guarantee the high design density.
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the separate read and write port concepts as the same as 8T-SRAM cells. But the M7, M8 
and M9 transistors’ buffer provides strong logic for the 0 or 1 value. The addition of M2, 
M5 and M7, as seen in Figure 6e, is an alternate way to furnish the strong logic value. 
Transistors (M9 and M10) in an 11T-SRAM cell remove interdependency between the read 
and write noise margins. Tri-state buffers for the read and write operations in a 12T-SRAM 
cell, as seen in Figure 6f, improve the read- and write-energy per cycle while the read or 
write operation is in progress. 

WWL

GND

W
BL

WL
___

RWL
VDD

R
B

L

M1

M2

M3

M4

M5

M6M7

 

WL

GNDW
B

L
T

WL
VDD

W
B

L
C

M1

M2

M3

M4

M6M5

M8

M7RWL

GND R
B

L

 

WWL

GND
VSS

VDD

M1

M2

M3

M4

M7

WLPD

WLPU

M9

M8

WL

BL

M5

M6

 
(a) (b) (c) 

Vo
lta

ge
 (V

)

Micromachines 2022, 6, x FOR PEER REVIEW 6 of 23 
 

 

WL

GNDW
B

L
T

WL
VDD

W
B

L
C

M1

M2

M3

M4

M6M5

M9
GND

R
B

L

M10
M7

VDD

M8

RWL

 

WL

GND

SB
L

VDD

B
L

M1

M3

M4

M5

M6
M11

M7

M2
WL

M8

M9

M10
WWLVSS

 

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

VDD

GND

RWL_B

RWL

WWL

WWL_B

WWL_B

WWL

Shared

Shared

 
(d) (e) (f) 

Figure 6. Alternate SRAM cell designs for low voltage operation using feedback break, isolated port, 
power-gating, buffered values, read or write independency and concurrent read or write strategies. 
(a) 7T-SRAM cell [26], (b) 8T-SRAM cell [27] (c) 9T-SRAM cell [28], (d) 10T-SRAM cell [29], (e) 11T-
SRAM cell [30], (f) 12T-SRAM cell [31]. 

Table 2 reports the performance parameters analysis among Figure 6 cells. It is noted 
that the proposed SRAM-design cells, with the extra transistors, enhance the area and put 
stringent requirements on the layout regularity. Although the alternate cell designs show 
better read and write ability as compared with their counterparts, this is at the expense of 
more control signals and increased area. Adaptability and flexibility to other components 
determine the overall efficiency of the specific SRAM cell design. 

Table 2. Performance analysis of 6T-12T SRAM cells. (Simulation in 65 nm CMOS at nominal voltage). 

S. No Parameter 6T 7T [26] 8T [27] 9T [28] 10T [29] 11T [30] 12T [31] 
1 Area Overhead * 0% 16% 30% 43% 58% 71% 89% 
2 Read Dynamic Power (µW) 16.85 25.48 18.14 18.96 23.73 58.15 73.1 
3 Write Dynamic Power (µW) 24.31 7.5 26.52 8.19 27.49 50.83 69.1 
4 Leakage Power (nW) 5.6 5.3 5.98 6.13 5.99 2.26 7.69 
5 Read Access Time (ps) 3.06 9.18 16.04 17.23 36.9 91.2 103.5 
6 Write Access Time (ps) 33.53 27.96 37.93 36.7 41.83 61.06 118.3 

7 Sensing Method Differential Single 
Ended 

Single 
Ended 

Single 
Ended 

Single 
Ended 

Single 
Ended 

Single 
Ended 

* Area estimation using 65 nm design rules. 

3.2. Assist-Circuits 
A lower supply voltage improves dynamic power but makes read and write opera-

tions challenging. Therefore, assist-circuits ensure an SRAM cell operations’ reliability. 
Two circuit-level choices for a low voltage operation are the use of assist-circuits and ad-
aptation to alternate SRAM cells. Both options have tradeoffs at the cost of extra hardware 
and control signals. In FinFET technologies, the 6T-SRAM cell utilization alongside assist-
circitry is inescapable to guarantee the high design density. 

As illustrated in Figure 3, the conventional 6T-SRAM cell is connected to three types 
of control signals: voltage supplies (VDD and GND), BLs and WLs. An assist-circuit raises 
or lowers the signal voltage level as per the operational mode. Table 3 shows eight differ-
ent possible combinations of assist schemes [32]. 

Table 3. Summary of assist scheme for read and write at the low voltage. 

S. No. Assist Scheme Type Overhead 
1 Negative BL (NBL) Write Coupling capacitor 
2 Suppressed BL (SBL) Read Discharge devices 
3 WL overdrive (WLOD) Write Charge pump and level shifter 
4 WL under-drive (WLUD) Read PMOS devices and bias current 
5 VDD boosting Read Column MUX 
6 VDD lowering Write Pull-up and pull-down devices 
7 GND boosting Write External level shifter 
8 GND lowering Read External level shifter 

Figure 6. Alternate SRAM cell designs for low voltage operation using feedback break, isolated
port, power-gating, buffered values, read or write independency and concurrent read or write
strategies. (a) 7T-SRAM cell [26], (b) 8T-SRAM cell [27] (c) 9T-SRAM cell [28], (d) 10T-SRAM cell [29],
(e) 11T-SRAM cell [30], (f) 12T-SRAM cell [31].

Table 2. Performance analysis of 6T-12T SRAM cells. (Simulation in 65 nm CMOS at nominal voltage).

S. No Parameter 6T 7T [26] 8T [27] 9T [28] 10T [29] 11T [30] 12T [31]

1 Area Overhead * 0% 16% 30% 43% 58% 71% 89%
2 Read Dynamic Power (µW) 16.85 25.48 18.14 18.96 23.73 58.15 73.1
3 Write Dynamic Power (µW) 24.31 7.5 26.52 8.19 27.49 50.83 69.1
4 Leakage Power (nW) 5.6 5.3 5.98 6.13 5.99 2.26 7.69
5 Read Access Time (ps) 3.06 9.18 16.04 17.23 36.9 91.2 103.5
6 Write Access Time (ps) 33.53 27.96 37.93 36.7 41.83 61.06 118.3
7 Sensing Method Differential Single Ended Single Ended Single Ended Single Ended Single Ended Single Ended

* Area estimation using 65 nm design rules.

As illustrated in Figure 3, the conventional 6T-SRAM cell is connected to three types
of control signals: voltage supplies (VDD and GND), BLs and WLs. An assist-circuit raises
or lowers the signal voltage level as per the operational mode. Table 3 shows eight different
possible combinations of assist schemes [32].

Table 3. Summary of assist scheme for read and write at the low voltage.

S. No. Assist Scheme Type Overhead

1 Negative BL (NBL) Write Coupling capacitor
2 Suppressed BL (SBL) Read Discharge devices
3 WL overdrive (WLOD) Write Charge pump and level shifter
4 WL under-drive (WLUD) Read PMOS devices and bias current
5 VDD boosting Read Column MUX
6 VDD lowering Write Pull-up and pull-down devices
7 GND boosting Write External level shifter
8 GND lowering Read External level shifter

In a negative bitline (NBL), a coupling capacitor (CC) generates the negative voltage
on a BL to aid in flipping the cell value. However, the charging and discharging of CC
as an additional component raises the overall power consumption [32]. Recently, TSMC
proposed the design technology and co-optimization (DTCO) [33] for the generation of CC
using the BL-length adjustment, optimizing the operational voltage by 300 mV at the 5 nm
node. Next, the suppressed bitline (SBL), instead of pre-charging BLs to the VDD level,
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discharges BLs to the intermediate voltage. The lower voltage level discharge ascertains
read operation assistance. Furthermore, wordline over-drive (WLOD) needs to use a charge
pump and biasing circuitry to achieve a higher voltage level. The PG transistors become
stronger and assist in the write operation. However, the gate oxide comes under stress
because of the high voltage level. Opposite to WLOD, wordline under-drive (WLUD) assists
by weakening the PG transistors (WL voltage lowering). For boosting VDD, a column MUX
helps to choose the desired level. Extra power line grids and pads incur more area and delay
penalty. Enhanced VDD aids in putting the internal node value onto BLs faster, whereas the
VDD lowering helps in flipping the stored value of the SRAM cell. PMOS devices along
biasing current circuits achieve adjustments in the dynamic supply voltage. The last two
schemes in Table 3 raise or lower the ground level, but the GND rail sharing among all of
the SRAM cells is challenging.

Researchers have also used combinations of multiple assist schemes such as SBL and
NBL; and dual-transient wordline (DTWL) [34]. The underlying strategy is to segregate each
control signal (WL, BL, VDD and GND) and then apply an increased or decreased voltage
level on each of these signals to perform low power read and write operations [35,36].
Transient voltage collapse (TVC) (VDD lowering) [37,38], stepped WL (WLUD) [37] and
dual write driver [39] assist low voltage operations. Before target application information,
low power (LP), high density (HD) or high performance (HP) enables circuit designers to
set the transistors’ strength to effectively achieve the design’s goal.

3.3. Device Structure

Innovation in device structure is another option to operate SRAM cells at a lower
voltage. Two classes of device structure modifications are available: the back end of line
(BEOL) and front end of line (FEOL). Figures 7 and 8 show one structure from each class as
a representative model.
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Negative capacitance (NC) [40] in FinFET-SRAM cells provides better noise margins.
Insertion of the ferroelectric material between two gate metal layers, as shown in Figure 7,
creates NC. The applied gate voltage polarizes the ferroelectric dielectric that amplifies
the gate voltage at the second gate metal layer underneath the dielectric material. This
improves the ION/IOFF ratio, leading to better SS and DIBL. The thickness and composition
of the dielectric material are a tradeoff with the read and write performance.

The second type of device structure is illustrated in Figure 8. It is a tunnel FinFET
(TFET) with both terminals, source and drain, joined through an intrinsic channel [41] and
has a doping of opposite polarities. Such transformation improves the sub-threshold factor
(KT/q) and gate-work function to support the low voltage operation down to 0.3 V.
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4. Leakage Current

Technological node scaling has improved the design density; subsequently, a greater
number of transistors on the same IC area result in a considerable increase in leakage power.
Now leakage current constitutes a significant portion of the overall power budget.

A modern transistor exhibits three leakage currents: the tunneling current between
conduction channel and gate, PN junction or body leakage current between source and
drain and body interface, and the sub-threshold conduction current between the source
and drain under sub-threshold voltages due to DIBL and GIDL [10]. However, the body
leakage current is no longer a serious concern in modern technologies, as SOI [11] has
reduced the junction leakage magnitude. Considering Figure 3, assume the SRAM cell
stores ‘1’, meaning the node Q is at a logic of ‘1’, whereas the node Qb is at a logic of ‘0’, and
both BLs are pre-charged. Under this condition, transistors (PU1, PG1 and PD2) suffer from
sub-threshold leakage. Three transistors (PU2, PG2 and PD1) will face the sub-threshold
leakage in case an internal node stores the ‘0’ value, thus confirming unavoidable leakage
in either case.

4.1. Bitline Leakage

Bitlines leak current through PG transistors. An approach to reduce this leakage is
by the BLs’ initial condition. The assist-circuits presented in Section 3, such as NBL and
SBL, reduce the leakage as well [42]. In both assist schemes, the voltage on BL is less than
VDD; hence, the leakage current subsides. Likewise, the WLUD-assist scheme reduces the
leakage current from the internal nodes towards BLs. VDD lowering similarly decreases
both power consumption components, i.e., dynamic and leakage. The assist schemes in
Table 3 minimize leakage currents except in the lowering of GND, boosting of the VDD
and WLOD schemes. These schemes widen the rail-to-rail potential difference, eventually
increasing the leakage current.

4.2. Asymmetric Cells

The multi-threshold SRAM cell design minimizes the leakage current by choosing
‘0’ or ‘1’ as the preferential state. Each logic state associated with a leakage current has
already been explained above (Section 4). Leaky transistors are set to a high threshold
value (hvt) to reduce the leakage [43]. This approach, as seen in Figure 9a, reduces the
leakage about 70 times by choosing ‘1’ as its preferential state, but at the cost of a degraded
read ability. The SRAM cell in Figure 9b provides 1.6 and 70 times less leakage current for
selecting ‘1’ and ‘0’, respectively, as preferential states. This asymmetry causes an increase
in write delay. Next, the SRAM cell in Figure 10c reduces the leakage current about seven
times for the ‘0’ state but compromises the read and write noise margins.
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Ghasem et al. [44] proposed the SRAM cell size variation in combination with multi-
threshold voltage designs at the architectural level. SRAM cells in the same row exhibit
multiple delays, i.e., cells farther from the row driver have more delays and vice versa.
A row decoder drives longer wires and more capacitance for the SRAM cells placed towards
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the end of a row. Hence, the speed of cells located towards the end of the row is slower.
The use of multi-Vth has improved not only the delay but also the leakage of the overall
SRAM array.
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4.3. Alternate SRAM Cells

The conventional 6T-SRAM cell suffers from stability issues, especially in FinFET tech-
nology. Researchers have explored more than 6T-SRAM cells to reduce the leakage current.
We have already illustrated some configurations in Figure 6. Table 2 provides details of each
SRAM cell leakage power. The 7T-SRAM and 8T-SRAM cells show comparable leakage
power to the 6T cell since transistor stacking reduces the leakage current. In the case of
11T-SRAM cells, the leakage value significantly reduces due to transistor stacking in both
feedback inverters.

4.4. Power Control

Additional transistors along the control signals in an SRAM cell can cut off the power.
One approach is to power-gate a few transistors in a cell, as shown in Figure 6c. Two
other mechanisms are controlling the ground node through internal components [45] and
external signals [46]. Architectural level power gating reduces leakage drastically [47].

Figure 10a demonstrates the first mechanism; the WL signal controls the connection to
the ground through transistor N5, and the internal diode prevents internal node flipping
by raising the ground node level. Figure 10b, as representative of the second mechanism,
provides a stringent grip over the leakage as compared with Figure 10a. High Vth and
ground-level control transistors manage the leakage current but cost extra signals.

4.5. Body Biasing

To improve the performance and leakage currents, two prevalent body biasing mecha-
nisms are forward body biasing (FBB) and reverse body biasing (RBB). The SRAM cell [48]
shown in Figure 11 exploits both techniques through N5 and N6 transistors with the ex-
ternal control signal ‘ctrl.’ Two transistors, N5 and N6, select voltage levels of ‘-1′ and ‘0’,
respectively, to utilize RBB. In modern FinFET technology, SOI has eliminated body biasing.
However, FinFET-independent gates (IG) biasing IGFET [49] offers a modulation of the
threshold voltage to subside the leakage current.

4.6. Novel Devices

First, graphene nano-ribbon FET (GNRFET) holds excellent conducting properties [50]
due to un-doped GNR channels underneath the gate (reduces leakage) and highly doped
GNR channels between the gate and source and drain terminals. Figure 12 (FEOL) shows
the ribbon-shape structure of the GNRFET.
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Another device structure [51], shown in Figure 13, shows improved off-state perfor-
mance for the correlated-material (CM) (or hyper FET) SRAM cell. CM-FET performs the
transition from the insulator to metal (ITM) and then back from the metal to insulator
(MTI). The hysteresis curve in Figure 14 demonstrates the transitions of ITM and MTI
from 0.20 V to 0.27 V. Th on-current of CM-FET and FinFET are comparable; however, the
off-current of CM-FET is substantially lower.
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5. Process and Environmental Variations
5.1. Process Variations

In modern technology, variations in parameters characterizing the device performance
are comparable with their nominal values. Some device instances show different perfor-
mances, and they sometimes are unable to meet specifications. Nevertheless, a degree of
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uncertainty in performance exists. FinFET smaller size affects manufacturing yield owing
to the process variations.

Figure 15 presents categories of process variations: lot-to-lot (L2L), wafer-to-wafer
(W2W), die-to-die (D2D) and inter- or within-die (WID) variations. The L2L and W2W
variations prevail within different lots of the cylindrical silicon boules and circular silicides
of the same boule, respectively. The L2L and W2W effects on the circuit performance
are generally minute; therefore, they are ignored quite often. However, D2D variations
influence device parameters on different dies belonging to the same wafer.
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The systematic (WID) variations [52] are usually caused by some anomaly in the
system during the mass production process, while the random (WID) variations are a direct
result of the random behaviors in recent technological nodes. These variations are in-
scrutable and require statistical distribution for their characterization. First, dopant atoms
give rise to the phenomenon of random dopant fluctuation (RDF). Second, the gate pattern-
ing has not been smooth and straight in modern feature-length sizes, referred to as the line
edge roughness (LER). Equation (3) shows variations in the threshold voltage, where q is
the charge; εsi and εox are the permittivity values of silicon and gate oxide, respectively;
Na is the dopant concentration; ΦB is the energy level of inter-potential bands; tox is the
gate oxide thickness; W and L are the channel width and length, respectively.

σVth =

(
4
√

2q3εsiNaΦB

)
tox

εox

1√
3WL

(3)

FinFET technology with moderate doping inside the channel shows fewer
Vth variations [53]. But Fin geometrical dimensions and quantized natures still show
the Vth variations for the SRAM cell design. Figure 16 [54] shows variations in DIBL, whose
sequel is the Vth variations. Equation (4) describes the interdependency of DIBL and Vth.
The parameter Vth∞ represents the intended value of the threshold voltage, whereas Vth is
the actual value.

Vth = Vth∞ − SCE−DIBL (4)

Process variations pose challenges to reduced noise margins, stability and malfunc-
tioning. Solutions such as assist-schemes, alternate cell designs and novel device structures
are not sufficient. Hence, architectural level remedies substitute the faulty SRAM cells to
ensure a workable memory array.

A. Redundant rows and columns: The introduction of extra SRAM cells avoids failure
because of the process variations. Faulty cells can be replaced in two ways. One way is to
switch from a failed SRAM sub-array to a redundant sub-array, irrespective of the number
of defective rows and columns. Otherwise, an extra row and column of cells can substitute
only failed rows and columns. However, the re-routing of redundant SRAM cells needs
complex control signals and address generations that boost the area overhead, the faulty
cells recovery yield, and the switching timing penalty.
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The technique proposed in [55] uses a master-slave latch instead of extra rows of
SRAM cells. Figure 17 illustrates the flip-flop redundancy technique. Here, the redundant
row of flip-flops, a comparator and MUX are the extra hardware components. During
an operation, a comparator compares both addresses, i.e., regular and faulty. If they match,
then the control signals divert the path to the redundant flip-flops to avoid faulty cells.
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B. Dynamic cache resizing: Built-in-self-tests (BISTs) together with dynamic caches
bypass the faulty locations [56]. Defective-cell-avoidance improves the SRAM chip yield
and tradeoffs with the performance. Figure 18 shows the architecture of a re-sizable cache.
Data arrays contain a sea of SRAM cells. A tag-array-block determines the location of
the SRAM data array (hit way) to be accessed, using the tag and index information. In
addition, the state array validates a particular tag. The resizable architecture contains
an extra masking bit in the state array, providing information on whether an accessed
location is faulty or not.

Moreover, BIST architecture tests the whole data array and retrieves the faulty SRAM
cells. To maintain a cache’s performance, the system immediately performs BISTs after
turning on the power. Once the number of faulty cells exceeds the threshold value, the
cache becomes unusable.

C. Reprogrammable Redundancy: The SRAM hardware run-time reconfiguration
makes it robust, as it is applicable even after SRAM-chip testing. Figure 19a [57] shows
dynamic column redundancy (DCR). A spare column is inserted with the SRAM’s data.
A DCR contains two-way multiplexers. A memory controller dynamically assigns them
according to fault occurrence in an SRAM array. Internal redundancy access (RA) re-routes
the redundant column cell to the faulty location. Tag SRAM cells hold RA information
and subsequently share across all lines once a fault occurs. DCR offers minimum area
and timing overhead as compared with the technique where redundant rows substitute
an entire faulty sub-array.
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Bitline bypass (BB), shown in Figure 19b, repairs faulty SRAM cells through the
redundant rows or columns of SRAM cells. When repairing is complete, row and column
addresses are re-programmed to ensure the correct operation. The timing overheads to
bypass faulty SRAM cells are the setup time during the write operation and the multiplexer
delay in the read operation. Another simpler approach is line disabling (LD), where faulty
lines of SRAM are disabled at the cost of a reduced cache size.

D. Statistical Performance Evaluation of the SRAM Cell: This unique approach discards
SRAM caches showing under-performance during the testing phase. The performance
evaluation against a benchmark is a fair criterion to decide a particular cache’s acceptability.

The corner-case analysis conventionally manifests an SRAM performance evaluation
under extreme scenarios. Recently, increasing WID variability shows variations in the
performance of PMOS and NMOS devices. Thus, uncertainty in SRAM cell performance
increases. Monte Carlo (MC) simulations lay out the statistical performance with random
variations. The probability of a certain event, E, is accomplished through the unknown
random variable X distribution. The randomization produces a huge sample space with N
number of samples. Equation (5) describes the probability of an interest event [58].

P̂MC =
1
N ∑N

i=1 1(Xi ∈ E) (5)

In some cases, the number of samples is effectively reduced by employing the concept
of importance sampling (IS) [58]. A careful analysis provides a relationship function
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f between random variable X and event of interest E. Equation (6) sets forth the probability
distribution through IS.

P̂IS =
1
N ∑N

i=1 f(Xi)1(Xi ∈ E) (6)

The efficacy of sampling can be improved by utilizing the algorithms such as
norm-minimization [58], loop-flattening, spherical [58] and Gibbs sampling [59].

5.2. Environmental Variations

The temperature is a paramount factor in environmental variations. Any variation in
the temperature affects the charges’ transportation in a device and accordingly impacts
the circuit performance. At low temperatures, SRAM performance is better due to the
high ION/IOFF current ratio. Increasing the design density shows more leakage current
on the same footprint, which appears in the form of heat dissipation and, hence, raises
the temperature. Therefore, modern technologies’ performance suffers more due to the
improved design density.

Temperature control mechanisms are either internal or external to a chip. External
mechanisms include heat sinks, fans and liquid nitrogen. Internal mechanisms control the
temperature at the circuit or architecture level. During the circuit design, minimizing the
leakage current helps in limiting the temperature rise.

The throttling mechanism [18] prohibits the temperature elevation at the architecture
level, resulting from operational conditions and process variations. The throttling method
continuously tracks the temperature value. As the value crosses the critical level, control
circuitry lowers the operational frequency and voltage. The system restores nominal opera-
tional parameters provided that the temperature has returned to an appropriate range.

Besides the control of the supply voltage and operational frequency, temperature-
aware perspective methods are (1) body biasing, (2) BL sensing and (3) WL voltage. These
methods maintain the SRAM cell performance despite the temperature variations.

Body biasing voltage tuning shows improved performance despite temperature
fluctuations [60]. Performance is sustained on a chip by the generation of multiple volt-
ages and then switching to a suitable level. Another challenge is the BLs’ sensing margin
reduction. The leakage current is more dominant at high temperatures because of charge
scattering. In the SRAM design, the leakage current flows from BL to the access transistor.
As currents flow through the BLs’, the voltage level is reduced, which is an issue in a read
operation. A temperature controller tracks the leakage current and compensates for any
deficient voltage level to restore the BL voltage [61]. Similarly, the WL voltage lowering [62]
in a higher temperature enhances the read performance while maintaining the operational
frequency. The temperature compensation circuit [61] regulates the WL voltage. Similarly,
a circuit-level modification [63] where a buffer replaces the access transistor and sense
amplifier demonstrates a reliable operation up to 275 ◦C in SOI technology.

6. Soft Errors

Environmental conditions can cause the emission of alpha particles, high-energy
neutrons and muons from a packaging material [64]. These particles possess sufficient
energy to alter the SRAM storage node. Scaling has lowered the critical charge on recent
technological nodes; hence, expediting the internal state logic inversion. However, FinFET
reduced geometry and drain-area exposure to the striking of high-energy particles lessens
the soft errors rate [65].

Radiation-induced soft errors can either be a single event upset (SEU) or multiple
events upset (MEU). Regardless, the exposed nodes of the SRAM cell collect the charge (Q).
When a node charge exceeds the critical charge value, it switches a node to the opposite
logic level. Equation (7) models the critical charge [66].

Qcritical = Q
(

1− e
−tf
τ

)
(7)
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The critical charge (Qcritical) is the minimum charge to invert a nodal value. The
charges collected depend on the fall (tf) and rise times of the internal voltage (τ) to change
the internal node state. Equation (8) explicates the number of SEUs. Apart from the
critical (Qcritical) and collected charges (Qcollected), SEU is also dependent on the flux (Φ)
and sensitive areas (A).

NSEU = Φ.Ae
(− Qcritical

Qcollected
)

(8)

Specifically, MEUs are triggered by bipolar amplification and charge sharing [67].
Bipolar amplification is the result of a bipolar transistor formation between the source and
drain, with the body acting as a base. Equation (9) characterizes the number of MEUs
(NMEU), which depends on the occurrence of SEUs (NSEU) and the probability of multiple
upsets (PMEU).

NMEU = NSEU.PMEU (9)

Here in Equation (9), PMEU ≈ 1−Qcritical/Qcollected(x), x represents the relative dis-
tance along the direction of charge collection.

Soft error remedies can be performed at three levels: processing, cell and architecture.
The processing level treatment alters the device structure and doping concentrations.
These modifications either increase the critical charge or make devices less exposed to
radiation. Structural innovations consequently enhance the SRAM cell tolerance against
soft errors. Modern FinFET, PDSOI and FDSOI show fewer error rates due to processing
level modifications [64]. The last two soft error remedies are presented below.

A. Modified SRAM Cells: The SRAM cell hardening either enhances the sensitive-node
critical charge or slows down the transistor response. Figure 20a shows the addition of
an extra inverter in the conventional 6T-SRAM cell [68]. The newly added inverter increases
the critical charge and refreshes the sensitive node value. Similarly, a fully interlocked
SRAM cell cuts off a direct connection to the internal node, i.e., P1 and P2 drains, as shown
in Figure 20b [69]. The nodes connected to the gates of P1 and P2 are passed down to BLs.
This suppresses any external leakage and exposure to the internal nodes. Under normal
circumstances, both BLs are at a logic of zero. Next is the hybrid approach, as demonstrated
in Figure 20c [70]. The presence of the coupling capacitor multiplies the critical charge
value, while resistors slow down the SRAM cell response. The value of coupling capacitors
and resistors decides the degree of soft error tolerance. However, the addition of integrated
components accelerates power exhaustion.

Micromachines 2022, 6, x FOR PEER REVIEW 16 of 23 
 

 

   
(a) (b) (c) 

Figure 20. SRAM cell hardening for soft errors mitigation. (a) Increasing critical charge value [68]; 
(b) indirect connection to internal nodes [69]; (c) external components to slow down response [70]. 

B. Error Correcting Codes: The simpler way to implement error correcting codes 
(ECC) is to add a parity bit to each of the words in an SRAM array. The parity bit is an 
XOR of all the bits in a word. In case a soft error alters an SRAM cell value, the parity bit 
value would be different than the XOR result of the bits in that specific word. But only the 
single soft error detection functions with parity. The basic approach followed for ECC is as 
follows: data bits’ encoding is followed by syndrome calculation using codes already imple-
mented; then, the syndromes’ comparison locates the error bits. Errors correction is the last 
step to complete the rectification. 

Matrix ECCs are appealing because of their low complexity in implementation. They 
divide an SRAM array into the matrix format at the logical level. Each horizontal row and 
vertical column contain the parity bits. Figure 21 shows the logical partitioning of memory 
using matrix codes [71]. In Figure 21, D represents data bits, H is the horizontal parity 
hamming bit, while r is the hidden hamming bit. At the bottom, V shows the vertical par-
ity bit. Taking the XOR of all the data bits in a row produces a horizontal hamming parity 
bit. Hidden hamming (r) bit XORs alternate data bits for the same row. Vertical parity (V) 
bits are the result of alternate hidden hamming bits’ XOR operation. The comparison of 
bits r and V locates data bits containing an error. This way, a matrix code detects and 
corrects multiple errors in a particular SRAM block. 

  
Figure 21. Matrix errors’ correcting codes for error detection and correction [71]. 

Likewise, column line codes (CLC) use extended hamming codes for error detection 
and correction [72]. In addition to parity bits, extended codes enable the detection and 
correction of the maximum number of errors. The number of redundant bits raises to in-
crease the error tolerance. 

However, to ameliorate the hardware redundancy, the single-error-correction dou-
ble-error-detection (SEC-DED) or double-error correction (DEC) offers a solution through 
direct comparison [73]. This incorporation immensely reduces the overhead, whereas the 
cache-hit triggers error-bit detection and correction. 

Figure 20. SRAM cell hardening for soft errors mitigation. (a) Increasing critical charge value [68];
(b) indirect connection to internal nodes [69]; (c) external components to slow down response [70].

B. Error Correcting Codes: The simpler way to implement error correcting codes (ECC)
is to add a parity bit to each of the words in an SRAM array. The parity bit is an XOR of all
the bits in a word. In case a soft error alters an SRAM cell value, the parity bit value would
be different than the XOR result of the bits in that specific word. But only the single soft
error detection functions with parity. The basic approach followed for ECC is as follows:
data bits’ encoding is followed by syndrome calculation using codes already implemented;



Micromachines 2022, 13, 1332 16 of 22

then, the syndromes’ comparison locates the error bits. Errors correction is the last step to
complete the rectification.

Matrix ECCs are appealing because of their low complexity in implementation. They
divide an SRAM array into the matrix format at the logical level. Each horizontal row and
vertical column contain the parity bits. Figure 21 shows the logical partitioning of memory
using matrix codes [71]. In Figure 21, D represents data bits, H is the horizontal parity
hamming bit, while r is the hidden hamming bit. At the bottom, V shows the vertical parity
bit. Taking the XOR of all the data bits in a row produces a horizontal hamming parity bit.
Hidden hamming (r) bit XORs alternate data bits for the same row. Vertical parity (V) bits
are the result of alternate hidden hamming bits’ XOR operation. The comparison of bits
r and V locates data bits containing an error. This way, a matrix code detects and corrects
multiple errors in a particular SRAM block.
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Likewise, column line codes (CLC) use extended hamming codes for error detection
and correction [72]. In addition to parity bits, extended codes enable the detection and
correction of the maximum number of errors. The number of redundant bits raises to
increase the error tolerance.

However, to ameliorate the hardware redundancy, the single-error-correction double-
error-detection (SEC-DED) or double-error correction (DEC) offers a solution through
direct comparison [73]. This incorporation immensely reduces the overhead, whereas the
cache-hit triggers error-bit detection and correction.

7. Security-Aware Design

As part of cache memory, an SRAM cell array might hold sensitive data in an embed-
ded system design. Data attackers can exploit design parameters for the memory envision.
Table 4 provides a summary of such data stealing techniques.

Table 4. Summary of data attack techniques to sneak into the SRAM cell.

S. No. Technique Description

1 Power Analysis (PA) Power consumption information to predict internal data
2 Supply Voltage aging Variation in supply voltage as of NBTI in PMOS device
3 Cold Boot Attack Data retention at lower temperatures
4 Delayering Microscopy Data imprinting effects to guess stored data

A. Data Attacks
1. Power Analysis (PA) Attack [74]: Side channel analysis can trace an SRAM cell’s

content using current characteristics, especially the leakage current. Increasing the design
density increases the leakage current; hence, SRAM cells are more prone to PA attacks.

Figure 22 illustrates the concept of the PA attack by assuming an SRAM cell is storing
a ‘0’. The write ‘0’ operation showed a value of about 160 nA, whereas the write ‘1’
operation showed the current value of 100 µA. Thus, a side attacker can guess internal
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data through the leakage of current information of a write operation. For PA, an attacker
needs knowledge of and access to the internal architecture such as timing control, power
distribution or peripheral circuitry.
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2. Supply Voltage aging [75]: Generally, the supply voltage connection to the circuit is
through PMOS devices. The aging of the gate oxide under negative biasing temperature
instability (NBTI) puts the gate oxide under stress, which leads to the change in characteris-
tics of pull-up PMOS devices in an SRAM cell. The differential change in the Vth of devices
results in distinct power-up levels. Attackers usually perform the read operation alongside
power-up level information to predict the stored data.

3. Cold Boot Attack [76]: We typically assume a volatile memory loses internal
data as power turns off. However, a volatile memory holds data for quite some time
after that. The retention time depends on the device material chemistry. Applying a low
temperature immediately after power loss enhances retention time. Subsequent scanning
of a device through external probes can reveal the stored data contents. Data encryption
and cryptographic keys are among potential candidates to secure against a cold boot attack.

4. Microscopy of de-layering [77]: If an SRAM cell keeps the same data values
for longer, the data imprinting effects change the transistor’s parameters. A technique
known as atomic force microscopy (AFM) can provide layer information to a deeper level.
Extensive analysis of information predicts data stored in the SRAM cells. The modern
FinFET-SRAM cell’s lower dimensions need less area analysis which eases data stealing.

Besides data stealing, an attacker may try to fail SRAM cells. Failure attack could
contain gate resizing, gate oxide thickness alteration or supply voltage variations.

B. Solutions: Power analysis and data-imprinting effects jeopardize data security,
but modifications in the conventional 6T-SRAM cell mitigate them. Figure 23 presents
security-aware SRAM cell designs. [74,78,79].
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The SRAM cell in Figure 23a equates to the current information irrespective of a cell
having a ‘0’ or ‘1’ value. Pre-charge (PC) signal goes low to connect cells to the supply
voltage via transistor P4. As PC goes high, it cuts power off and turns on the P3 transistor
through an inverter, equalizing the voltage level on both internal nodes, i.e., Q and QB.
Any write operation will result in the same current for the ‘0’ or ‘1’ value.

Next, Figure 23b presents an 8T-SRAM cell with additional transistors N5 and N6. The
gates of these transistors are tied to the ground, thus keeping them always off. Regardless



Micromachines 2022, 13, 1332 18 of 22

of internal nodes’ values, the SRAM cell will have the same number of off transistors; so,
an SRAM cell can balance out the leakage current, and this makes tracing unfeasible.

Figure 23c shows the architecture of data toggling to diminish the NBTI aftermath
anytime either an N2 or N3 transistor is on as per the internal node value. Next, as the
M_CLK signal goes high, a ‘0’ value is copied to Q or QB via slave circuit1 or slave circuit2
through an N2 or N3 transistor, respectively. Generally, the master circuit toggles the data
values then the slave circuit copies that specific value. At the same time, the reset circuit
resets the value of Q and QB to ‘1’ and ‘0’, respectively. Nevertheless, frequent data toggling
reduces imprints but suffers from the hardware and power overhead.

8. Discussion

This section discusses prominent challenges related to the SRAM operation and its
application as CIM for AI in brief.

A. Bitline voltage swing: Narrow differential voltage (around 50–200 mV) sensing
ensures low read latency. Accordingly, a quick and reliable sense amplifier design that ac-
curately detects BLs’ differential voltage [17] is challenging. Single-ended sensing schemes
are power hungry; therefore Chandras et al. [80] proposed three single-ended BL-sensing
schemes to optimize power consumption.

B. Biasing temperature instability: PBTI is associated with NMOS, so NBTI is related
to PMOS. The root cause is electron traps (ET) in gate oxide, affecting the Vth of a transistor.
Consequently, SRAM performance degrades or even becomes unacceptable [17].
M. Duang et al. [81] uses cyclic and anti-neutralization models with an appropriate voltage
level and duration to protect against ETs.

C. Half-select SRAM cells: To access a specific SRAM cell, the row driver and column
decoder select one row and column, respectively. Besides a selected cell, SRAM cells in the
same row or column are selected either column-wise or row-wise, but not both. Such cells,
known as half-select cells, suffer from the risk of the storage node value flipping through
BLs. Internal nodes are isolated during the read and write operations and SRAM cell level
alterations can make the SRAM cells half-select free [82].

D. Manufacturing and material issues: Fabrication process imperfections cause short,
void, and open interconnects, referred to as hard errors. Hard fault detection and correction
approaches [83] add significant overhead. Modern 3D monolithic structures for SRAM use
through-silicon vias (TSV) or multiple inter-tier vias (MIV) [84] for inter-tier communication
that exaggerates hard errors’ occurrence.

In addition, material losses become significant in the long run. The performance matrix,
for example, means time to failure (MTTF) [85] predicts SRAM performance expectancy.

E. SRAM-based CIM: Deep neural networks (DNNs) duplicate human brain structure,
enabling them to execute AI tasks with high accuracy and efficiency [86]. However, DNNs
are data-centric and accelerate the data traffic between microprocessor and memory, thus
becoming energy hungry. CIM performs frequent NN computations in or near memory to
reduce the data traffic. SRAM-CIM for content addressable memory (CAM) [87], neuro-
morphic vision [88] and convolution neural networks [86] has proven SRAM as a potential
candidate for AI applications.

SRAM achieves computation operations either inside or at the periphery of memory
using special computational units, known as in/near computations (IMC/NMC). Experts
have explored SRAM-CIM for analog or digital signal domains. Analog CIM solutions
are energy efficient but suffer from non-idealities [89]. Digital CIM accelerators are free
from analog signal precision and margin issues but at the cost of more peripheral circuits.
Among the DNNs, multiply and accumulate (MAC) operations [89] are frequent; hence, it
is focused on quite often. On-chip dedicated arithmetic units complete DNNs’ essential
calculations to reduce off-chip data access and achieve performance efficiency.
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9. Conclusions

Modern deep submicron technological nodes present design and operational hurdles
to SRAMs. We have reviewed the design challenges by keeping the deep sub-micron and
FinFET technologies in focus. This is important in the context of emerging CIM applications
for ML and IoT devices. In this regard, we have introduced the SRAM cell configurations
with performance evaluation parameters. Overall, the SRAM cell’s hurdles can be classified
into five main categories. Each section highlights the mathematical parameters required to
evaluate a particular challenge’s severity, followed by the potential candidates for a solution.
The first two categories–the low voltage operation and leakage current–concentrate on
low power operations. The next two categories–process variations and soft errors–are
salient for the SRAM cell’s operational reliability. The last category is the security-sensitive
design, a major concern in current systems. Alongside the generalization of multiple
state-of-the-art solutions, it explains how to address design roadblocks.

Future SRAM cells should be more robust and performance-efficient to keep up
with the pace of microprocessor requirements. For future research, CIM needs extensive
exploration in the context of the in-memory digital domain computing as part of AI for
miniaturized electronic devices. These devices are power-limited; thus, computing needs
reliable and low-power operations. This study forms a foundation for the understanding
of SRAM challenges before exploring SRAM-based CIM for ML.
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