
2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3032518, IEEE Internet of

Things Journal

1

SRAM-PUF Based Entities Authentication Scheme
for Resource-constrained IoT Devices

Fadi Farha, Huansheng Ning*, Senior, IEEE, Karim Ali, Liming Chen, Senior, IEEE, and Christopher Nugent

Abstract—With the development of the cloud-based Internet
of Things (IoT), people and things can request services, access
data, or control actuators located thousands of miles away.
The entity authentication of the remotely accessed devices is
an essential part of the security systems. In this vein, Physical
Unclonable Functions (PUFs) are a hot research topic, especially
for generating random, stable, and tamper-resistant fingerprints.
This paper proposes a lightweight, robust SRAM-PUF based
entity authentication scheme to guarantee that the accessed end
devices are trustable. The proposed scheme uses Challenge-
Response Pairs (CRPs) represented by re-ordered memory ad-
dresses as challenges and the corresponding SRAM cells’ startup
values as responses. The experimental results show that our
scheme can efficiently authenticate resources-constrained IoT
devices with a low computation overhead and small memory
capacity. Furthermore, we analyze the SRAM-PUF by testing the
PUF output under different environmental conditions, including
temperature and magnetic field, in addition to exploring the effect
of writing different values to the SRAM cells on the stability of
their startup values.

Index Terms—Entity authentication, SRAM-PUF, Physical se-
curity.

I. INTRODUCTION

T
HE Internet of Things (IoT) world and its applications
are growing rapidly, and so is the number of connected

devices [1]. Many people and services access devices and
equipment, which can be thousands of miles far away, in
terms of remote sensing and controlling. Such a remote access
process requires a high degree of trust, which guarantees the
security and authenticity of the accessed devices [2].

For IoT devices, especially the low-cost manufactured de-
vices, security has always been a challenge [3]. In real-world
applications, various reliable and robust cryptographic algo-
rithms can authenticate the devices’ entities, such as the Public
Key based algorithms [4] and asymmetric handshake based
cryptosystem [5]. However, applying these traditional crypto-
graphic algorithms and conventional security solutions to IoT
devices working in the sensing layer faces some hardware-
related difficulties. Firstly, most of these devices are low-cost
and resource-constrained, which affect their processing power

Huansheng Ning, Fadi Farha, and Karim Ali are with the School of
Computer and Communication Engineering, University of Science and
Technology Beijing, Beijing, China. (e-mail: ninghuansheng@ustb.edu.cn,
fadi_farha@xs.ustb.edu.cn, karim_ali_ali@xs.ustb.edu.cn)

Liming Chen and Christopher Nugent are with the School of Com-
puting, Ulster University, Jordanstown, Northern Ireland, UK.(e-mail:
l.chen@ulster.ac.uk, cd.nugent@ulster.ac.uk)

Huansheng Ning is the corresponding author.
Copyright (c) 20xx IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

and storage capacity. Hence, they are unable to run the security
methods that require intensive computational operations [6].
Secondly, many IoT devices do not have Internet access, so
there is no direct connection to the remote authenticator.

Many researchers worked on identity-based cryptosystems
and fingerprint schemes, such as Shamir [7], who built his
scheme using a private key for proving the device/person
identity. Unfortunately, the Public Key Infrastructure (PKI)
based scheme requires computing power, which is unavailable
in the resource-constrained devices. Recently, there were many
proposed schemes, such as identity-Based encryption from
lattices [8], attribute-based encryption for circuits [9], certifi-
cateless public key authenticated encryption [10], and fully
homomorphic encryption [11], which depend on the public
keys concept in some stage during the encryption phase. Those
algorithms are effective and ensure the identity of the devices
but still require intensive computation.

In addition to the computing power, another challenge
faces the authentication schemes represented by exposing the
secret keys or the fingerprints stored in Nonvolatile Memory
(NVM) of the local devices, which can affect the system
security severely. The IoT devices are usually vulnerable to
various attacks, including physical attacks such as devices
tampering, reading out the devices’ NVM, and extracting the
devices’ secrets [12]. These vulnerabilities were of the early
motivations for using Physical Unclonable Functions (PUF),
which does not require storing the keys on the devices [13].
Besides, tampering the PUF units would damage their structure
and make them useless. Hence, in this paper, a lightweight
PUF-based entity authentication scheme is proposed. Hence,
in this paper, a lightweight PUF-based entity authentication
scheme is proposed. This scheme is applicable to the resource-
constrained IoT devices, and the fingerprints generated using
PUF are robust against physical attacks.

PUF can be defined as a fingerprint of the physical objects
[14]. Like human beings’ fingerprints, each object has unique
variables, features, or behavior that makes it different from
other objects of the same type. PUF is a security primitive that
exploits the uncontrolled and unavoidable physical variations
generated during the fabrication process of the integrated
circuits (ICs). Since the variations sometimes cause random,
but stable, mismatches, they can be used as fingerprints, private
secret keys, or as a root of trust in physical system structures
[15].

Using the PUF is considered as a secure alternative to the
traditional storage of the secret keys and IDs [14]. Besides,
the PUF-based protocols used in authentication and security
are lightweight and significantly simplified to reduce the

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 30,2020 at 09:44:14 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3032518, IEEE Internet of

Things Journal

2

overhead at the end devices. They provide robust security
features with a lower computational cost compared with the
PKI-based cryptosystem [16]. These protocols usually use
Challenge-Response Pairs (CRPs) as follows: in the enrollment
phase, the authenticator challenges the PUF, measures the PUF
responses, and stores the CRPs in its database. The challenging
mechanism depends on the PUF type. In the authentication
phase, the authenticator chooses one of the CRPs, challenges
the PUF, and compares the generated response with the
recorded one. The PUF responses sometimes are noisy and
need correction, so researchers usually use Error Correction
Code (ECC) algorithms to fix them by generating helper data
[17]. According to the number of CRPs, the PUF can be
classified as strong PUF if the number of CRPs is significant.
Besides, adding a new component to the PUF unit can increase
the CRPs exponentially. The weak PUF, on the other side, has
few CRPs, and adding a new component to the PUF unit can
increase the CRPs linearly [15].

PUF has been used in the authentication schemes. In [18],
Wallrabenstein, J.R. used PUF as a part of the public-private
keys scheme. He stored a public challenge and its helper data
on the end device to be used later in generating the private
key [18]. However, the proposed authentication scheme mainly
runs a hashing function on a random nonce and a private key
more than using the PUF-based CRPs. Besides, repeating the
nonce will break the security of the authentication process
(Man-in-the-middle attack). In [19], Braeken, A. used a strong
PUF based public-private keys scheme in the authentication
process between two end devices, which is done through a
server. However, the author did not discuss the size of the
helper data used for correcting the noisy PUF responses, which
is significant. Besides, the computation overhead is relatively
high. Other researchers used strong PUFs based CRPs schemes
such as [20] and [21], which usually needs a special design
for PUF units, which causes extra cost, and requires a memory
capacity to store the significant size of helper data. On the
other hand, obfuscated challenge-response protocols [22] need
no encryption, and they are robust against machine learning
attacks. However, the CRPs should be chosen carefully in the
initial phase, and the used PUF needs to be strong.

While early proposed PUF types had their own special
designs [15], a recent trend is to get unique features from
the already deployed devices without adding new equipment
or replacing the existing devices. Some researchers tried to
extract a fingerprint from the devices’ memories, such as
SRAM-PUF [14], DRAM-PUF [23], and flash-PUF [24]. This
paper focuses on the SRAM-PUF and how we can overcome
its shortages.

Static Random Access Memory (SRAM)-PUF was first
introduced almost simultaneously in [25] by Guajardo et al.
and [26] by Holcomb et al. The authors in these papers
noticed that the SRAM cells startup with a random value
of 0 or 1. After reading the Startup Values of the SRAM
Cells (SVRCs) multiple times, the authors found out that
these SVRCs are relatively stable and unchangeable. Besides,
different SRAM chips have different SVRCs indicating that
SVRCs can be potential fingerprints for the local devices
in which they are installed. The SRAM cell consists of six

Fig. 1. SRAM cell

transistors; two of them (C5, C6) are access transistors, and the
other four (C1, C2, C3, C4) make two cross-coupled inverters as
shown in Fig.1. SVRCs are leaded by the mismatches in
the CMOS transistors of the SRAM cell that make the cell
startup value zero or one. These mismatches are caused by
uncontrolled variations on the atom level at the fabrication
process. According to the startup values, the memory cells
can be classified into 1) skewed cells, which always startup
with the same value as zero "0-skewed cell" or as one "1-
skewed cell". 2) Neutral cells, which have no strong tendency
to any value and start with a random value each time. The
skewed cells are suitable to be used as a fingerprint because
of their high stability [14].

The startup values of SRAM cells are the entropy source
of SRAM-PUF. Since that each cell can only generate 1-bit
output, adding a new SRAM cell can only increase the CRPs
by 1, and that is why the SRAM-PUF is classified as a weak
PUF [15]. For SRAM-PUF to be used in authentication, the
cells’ addresses are used as a challenge, and the startup values
stored in the corresponding cells are the response. However,
challenged addresses can only be used once because their
content is exposed to the outside world. Therefore, SRAM-
PUF cannot be used directly in the authentication process
because of the lack of entropy, so in this paper, we add a
hashing function to SRAM-PUF output after re-ordering its
bits to overcome this shortage.

In addition to the lack of entropy, stability is another issue
that needs to be addressed. SRAM-PUF output sometimes is
noisy and unstable under different environmental conditions
such as high temperature and high voltage. Besides, since
the SRAM-PUF consists of electrical components, it is also
vulnerable to the aging effect. Some researchers have done
some experiments to study the effect of the circuit age on
SVRCs stability, whether by running the device under high
temperature and using high voltage to accelerate the circuit
aging where the rate of unstable cells increased by 5.3% to
7.2% [27] or by reading the SRAM-PUF output continuously
for a long time (two years) where the rate of unstable cells
increased by 2.49% to 2.97% [28]. The authors in [27] pro-
posed a method called anti-aging to help to mitigate the aging
effect by keeping |+Cℎ,C1 − +Cℎ,C2 | big enough to ensure the
stability of SVRCs. However, in general, some PUF protocols
accept the partially unstable PUFs. The others require the PUF
output to be %100 stable, especially when the PUF is used to
generate secret keys, which require ECC algorithms to fix the
PUF output.

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 30,2020 at 09:44:14 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3032518, IEEE Internet of

Things Journal

3

In this paper, we work with the SRAM-PUF because the
startup values of SRAM show good PUF features, including
stability, randomness, and uniqueness. Besides, SRAM-based
Field Programmable Gate Arrays (FPGAs) occupy the ma-
jority of the market today. Most IoT devices, which work
as sensors and actuators, are equipped with SRAM, such as
smartphones and FPGAs produced by big companies, includ-
ing Xilinx and Altera, Arduino, Texas Instruments, and others
[25]. As a result, the devices can benefit from the PUF features
without installing any new equipment. The key contributions
in this paper are as follows:

1) We analyze the startup values of the SRAM-PUF cells
and present some significant statistics about them. Be-
sides, we test the SRAM-PUF under different environ-
mental conditions including temperature, magnetic field
in addition to showing the effect of using the SRAM-
PUF cells by system on their startup values.

2) An SRAM-PUF based entity authentication scheme for
the resource-constrained devices has been proposed.
Also, the new scheme is tested and explored in detail to
fit with the different types of end devices. The proposed
scheme enables us to have a large number of CRPs with
minimum cost, minimum storage for the helper data, and
without changing the structure of SRAM.

The remaining part of the paper is organized as follows:
Section II describes the proposed SRAM-PUF authentication
scheme phases in detail. In Section III, we have evaluated the
scheme by doing some tests on the SRAM cells and providing
some statistics and information to be used while implementing
the proposed scheme. Results and discussion are presented in
section IV, and Section VI concludes the paper.

II. SRAM-PUF BASED AUTHENTICATION SCHEME

Our scheme is meant to authenticate the end devices
(provers) by the smart gateway (authenticator). It consists of
two phases: the enrollment phase and the authentication phase,
as shown later in this section. Firstly we explain what we mean
by the smart gateway.

A. Smart Gateway

A simple presentation of the cloud-based IoT structure is
shown in Fig.2. In this structure, the sensors collect and trans-
mit data to the cloud through the gateway. The local network
components, in such scenarios, are digital devices consisting
of communication modules attached to microcontrollers. The
gateway must handle different communication protocols to
manage the connection between the IoT devices in the sensing
layer and the cloud. That is why we use the term “smart
gateway.” Considering smart home or smart healthcare devices
as an instance, most sensors and actuators use Bluetooth,
ZigBee, or Wi-Fi (with private IP addresses) to transfer their
data. Therefore, the remote services cannot directly access
the end devices to perform entity authentication because they
are using incompatible addresses. Instead, the edge computing
devices close to the end devices can do this task [29].

In this paper, a raspberry pi 3 is used as a smart gateway.
It has Bluetooth, Wi-Fi, LAN and WAN interfaces. Besides,

Fig. 2. The System Structure

we attached an XBee module to the smart gateway to trans-
mit/receive ZigBee frames. That is not the only choice. There
are also other products available in the market under the
name "IoT gateway," which supports most of the standard
communications protocols used in IoT. As shown in Fig.2,
the smart gateway plays the role of a local authenticator. If
any remote device or any service on the cloud needs to access
a sensor attached to an end device inside the local network,
the smart gateway will be responsible for authenticating the
identity of the local end device. The smart gateway is an
optimal choice in such a scenario for the following reasons:

1) It is directly connected to end devices and can carry out
the authentication process locally. That will keep the
secrets of the local network safe from being transmitted
over unsecured networks (the Internet), preserve privacy,
and protect the local network structure from being
exposed to the outside world.

2) It has non-IP compatible interfaces for local communi-
cations and an IP-compatible interface for establishing
remote connections using robust security algorithms.

B. Enrollment phase

In this phase, a stable fingerprint (100 bits) is extracted
from the SRAM of the IoT end device. There is no need to
store the fingerprint in the NVM of the end device because
the fingerprint can be generated on-time when the entity
authentication is required.

Since IoT end devices have programmable microcontrollers
or microprocessors, reading the startup values of SRAM re-
quires writing the code in the setup part of the device firmware
making memory reading the first instruction to be executed
by the microprocessor. That ensures the read values are the
startup values of the SRAM cells, not new values written by
the running program.

As shown in Fig.3, for generating the stable fingerprint, we
read the startup values of a part of the device’s SRAM multiple
times - in this paper, startup values of 1KB of SRAM was
read for 50 times. Then, a stability map is created to show

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 30,2020 at 09:44:14 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3032518, IEEE Internet of

Things Journal

4

Fig. 3. Enrollment Phase

the stability of SVRCs. After that, a simple algorithm runs to
choose the SRAM-PUF participating cells as follows:

1) 50% of the fingerprint are chosen from the 1-skewed
cells, and the other 50% are chosen from the 0-skewed
cells.

2) The algorithm chooses the participating cells starting
with 100% stable cells. If there are not enough 100%
stable cells to build the fingerprint, the algorithm will
choose from the 99% stable cells, and so on until a full
fingerprint is built entirely.

After building the stable fingerprint, it is passed to an ECC
algorithm for generating the helper data, as shown in Fig.3 step
4. Helper data, which help correct the generated fingerprint if
some bits change for some reason, are stored either on the end
device in NVM or on the authenticator.

At the end of this stage, the fingerprints of all end devices
are stored in the authenticator device (i.e., smart gateway).
Sending the fingerprints from end devices to the smart gateway
is the most critical step in this stage. The fingerprints can
be inserted manually into the smart gateway or sent over
the air to the gateway if the communication protocol used
between the end device and the smart gateway is secured,
and the packets are encrypted. Exposing the fingerprints in
this stage undermines system security and further makes the
future authentication requests meaningless.

C. Authentication phase

When an entity authentication is required, the authenticator
challenges the end device and measures its response. In our
proposed scheme, the authenticator sends the addresses of the
stable SRAM cells in a random order. Using this method, the
authenticator will have 100= 9.3 ∗ 10

157 available challenges.
After receiving the challenge, the end device does not send the
startup values of these addresses directly. Instead, it runs some
operations on the PUF value and applies a hashing algorithm
to hide the original values of the SRAM cells. Firstly, we list
some of the terms used in the authentication phase steps:

• id: the end device ID
• nonce: a random number with a length of 4 bytes
• challenge: the addresses of the SRAM-PUF cells in a

random order
• PUF: the SRAM-PUF output with a length of 100 bits

• RPUF: the re-ordered SRAM-PUF output with a length
of 100 bits

• �#, : encryption using a network key
• H: hashing function

As shown in Fig.4, the authentication process consists of
some steps. Most of them run on the authenticator and the
end device simultaneously as follows:

1) At the beginning of the authentication process, the
authenticator generates a challenge and a random nonce.
Then, it sends them up with the device ID to the
end device. The message is encrypted usinga network
(NWK) key related to the communication protocol
�#, (83, =>=24, 2ℎ0;;4=64). We consider that the
connection between the gateway and the end device is
secured using an NWK key regardless of the used com-
munication protocol, whether it is Bluetooth, ZigBee,
Wi-Fi, or any other communication method.

2) After receiving the authentication request, the end device
decrypts the message and obtains the sent nonce and
challenge. Then, the end device generates its PUF output
and corrects it using ECC and the helper data. Next, the
end device re-orders the PUF output bits according to
the received challenge.

3) An XoR operation is carried out between the original
PUF output, the re-ordered PUF output, and the nonce.
Then, a hashing function is added to the output of
the XoR operation � (=>=24 ⊕ %*� ⊕ '%*�). Simul-
taneously, on the authenticator side, the authenticator
uses the device ID as an index to search the device’s
fingerprint (PUF output), which is recorded in its table.
After that, the authenticator conducts the same process
using XoR between the generated nonce, the device
fingerprint, and the re-ordered fingerprint value.

4) The end device encrypts the hashing output, which
represents the response of the received challenge, using
the NWK key and sends it to the smart gateway.

5) After receiving the authentication reply
�#, (83, =>=24, � (=>=24 ⊕ %*� ⊕ '%*�), the
smart gateway decrypts the message, checks the nonce,
and compares the received response with the locally
calculated one (the hashing output). If they match, that
means the end device is trustable and authenticated.

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 30,2020 at 09:44:14 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3032518, IEEE Internet of

Things Journal

5

Fig. 4. Authentication Phase

Otherwise, the device will be marked as an untrustable
device and added to the blacklist.

III. EXPERIMENTAL EVALUATION

A. Reading SRAM startup values

The first step in our experiment was reading the SVRCs
of the end devices. The reading program was written using
C language, and we read 1 KB (1*1024*8 =8192 bits) of
each device 50 times. The devices in this experiment were as
follows: seven Arduino Mega 2560 (Clock Speed: 16 MHz,
SRAM: 8 KB), three Arduino UNO (Clock Speed: 16 MHz,
SRAM: 2 KB), and one Arduino Nano (Clock Speed: 16 MHz,
SRAM: 2 KB). After analyzing and comparing the readings
data by writing some programs using Python programming
language, we summarize some statistics and facts about the
obtained results as follows:

• As shown in Fig.5, on average, the percentage of the
cells that are most likely to start as one (1-skewed cells)
is about 68.40% and as zero (0-skewed cells) is about
31.48%. In addition, the neutral cells (50:50 probabilities
of starting as 0 or 1) represent about 0.12% of the SRAM
cells. These results are very close to the ones published
in [12] and [14]. For each device, the percentage of the 0-
skewed cells �0 and of 1-skewed cells �1 are calculated
using the eq.1 and eq.2 as follows:

�0 =

#0

#0 + #1 + #=
(1)

�1 =

#1

#0 + #1 + #=
(2)

Where #0 is the number of 0-skewed cells, #1 is the
number of 1-skewed cells, and #= is the number of
neutral cells.

• As shown in Fig.6, the 1-skewed cells are a little more
stable than 0-skewed cells. On average, about 88.56%
of the 1-skewed cells are stable, the maximum rate is
93.53%, and the minimum rate is 83.04%. For 0-skewed
cells, on average, about 84.06% of the cells are stable,
the maximum rate is 88.87%, and the minimum rate is
78.11%. Before choosing the stable cells’ addresses, we
considered that some stable cells could be unstable under
different circumstances, so we also studied the SVRCs
under three conditions, as presented later in this paper.
For each device, the percentage of the 100% stable 0-
skewed cells (0 and 100% stable 1-skewed cells (1 are
calculated using the eq.3 and eq.4 as follows:

(0 =

#(0

#0
(3)

(1 =

#(1

#1
(4)

Where #(0 is the number of the 100% stable 0-skewed
cells, and #(1 is the number of the 100% stable 1-skewed
cells.

• As shown in Fig.7, the average of the 100% stable cells
extracted from the SRAM is about 87%, the maximum
rate is about 92%, and the minimum rate is about 82%.
Of these 100% stable cells, there were, on average, about
69% 1-skewed cells and 31% 0-skewed cells. For each
device, the percentage of the 100% stable cells (�, the
percentage of the 0-skewed cells in the 100% stable cells
%0, and the percentage of the 1-skewed cells in the 100%
stable cells %1 are calculated using the eq.5, eq.6, and
eq.7 as follows:

(� =

#(G

#24;;B
(5)

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 30,2020 at 09:44:14 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3032518, IEEE Internet of

Things Journal

6

Fig. 5. The Distribution of 1-skewed and 0-skewed cells in the startup values
of SRAM cells (M: Arduino Mega, U: Arduino Uno, N: Arduino Nano, 0s:
0-skewed Cells Percentage, 1s: 1-skewed Cells Percentage)

Fig. 6. The Stability of 0-skewed and 1-skewed Cells in the startup values
of SRAM cells

Fig. 7. The Stability of the startup values of SRAM Cells with Showing
Stable 0-skewed and 1-skewed Cells ratio

%0 =

#(0

#(G
(6)

%1 =

#(1

#(G
(7)

Where #(G is the number of 100% stable cells, whether
they are 0-skewed or 1-skewed cells, and #24;;B is the
number of tested cells.

B. The Evaluation of Temperature Effect

We increased the temperature of the microcontroller, in
which SRAM is embedded, to 60◦C-65◦C, and then read
the SVRCs. According to the obtained information, the total
stability loses on average about 3.47% (4 stable cells changed
their startup values when reading 100 bits), the maximum
loss is 8.90% (9 stable cells changed their startup value),
and the minimum loss is 0.63% (1 stable cell changed its
startup value). Also, by comparing the stability of the startup
values of the SRAM cells, we find out that 1-skewed cells are
more vulnerable to be unstable under the high temperature
comparing with 0-skewed cells. On average, the stability of 1-
skewed cells loses 4.70%, whereas that of the 0-skewed cells
loses 0.69%.

C. The Evaluation of Magnetic Effect

We read the SVRCs after putting a magnetic near the
microcontroller in different positions. We used a magnetic
with a size of 20*4 mm and magnetic field strength of 1500
Gauss. We have done this experiment under such circum-
stances because some sensors and actuators use magnetics,
which sometimes put the microcontroller’s SRAM inside a
magnetic field. According to the obtained results, the total
stability loses about 0.84% (1 stable cell changed its startup
value) on average, the maximum loss is 5.45% (6 stable cells
changed their startup value), and the minimum loss is 0.16%.
By comparing the stability of 0-skewed cells and 1-skewed
cells, we find out that 1-skewed cells are less vulnerable to
changing their startup value than 0-skewed cells under the
magnetic field. In this experiment, the stability of the 1-skewed
cells loses 0.32%, whereas that of the 0-skewed cells loses 2%
on average.

D. The Evaluation of Previous Written Value Effect

SRAM-PUF was tested by writing zeros and ones to all of
the SRAM cells used as PUF. After doing that, we turned the
device OFF and then ON to read the SVRCs. The purpose of
this experiment is to figure out whether the previous states of
the cells affect the stability of their startup values. For each
device, we read the SVRCs five times after writing zeros and
five times after writing ones. Then we analyzed the results
and compared them with the reading values of the devices in
normal cases. We found out that the total stability loses about
0.99% (1 stable cell changed its startup value) on average,
the maximum loss is about 4.98% (5 stable cells changed its
startup value), and the minimum loss is about 0.1%. Besides,
by comparing the stability of 0-skewed cells and 1-skewed
cells, we can figure out that 1-skewed cells (loss 0.58%) are
less vulnerable to changing their startup values than 0-skewed
(loss 1.86%) after writing different values on the cells.

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 30,2020 at 09:44:14 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3032518, IEEE Internet of

Things Journal

7

Fig. 8. The Stability of SRAM Cells under different circumstances (Temperature, Magnetic, and Writing on the cells) for the device 2 (Arduino Mega)

E. Summary and discussion of the environmental effects

According to the results in this experiment, 1-skewed cells
are more likely to be unstable under high temperature but
more stable against the nearby magnetic field effect and the
effect of the previously written value compared with 0-skewed
cells. Fig.8 shows the stable cells of device 2 (Arduino Mega)
and how they changed their startup values under different
conditions. The “Normal” part represents the SVRCs under the
room temperature of 25◦C. “Temperature,” “Magnetic,” and
“Writing” parts represent the SVRCs under the three tested
conditions, respectively. The last part “All Conditions,” shows
all the stable cells that turned into unstable cells under one or
more of the tested conditions.

As shown in TABLE I, there are 0.003% of the cells
changed under all the conditions, and 0.013%, 0.05%, 0.013%
changed under the temperature and magnetic, temperature and
writing, and magnetic and writing, respectively. As a result, the

cells that lose stability under one condition are mostly different
from the cells which lose stability under other conditions. The
accumulated bit-error from all the tests in case they are totally
independent is 9% + 6% + 5% = 21%. In fact, having 21
bit-error in one reading is very unlikely to happen. The 21
bit-error happened in different readings. However, the error-
correcting coding (ECC) algorithm was chosen according to
the worst scenario and can fix up to 22 bit-error for a 100-bit
fingerprint, which will make the extracted fingerprint %100
stable even under different environmental conditions.

IV. RESULTS AND DISCUSSION

The authentication request message consists of a nonce with
a length of 4 bytes and a challenge with a length of 100
bytes. This challenge consists of the order of the participating
memory cells. It could be the addresses of PUF cells, but
that requires a challenge of 200 bytes since the SRAM cells’

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 30,2020 at 09:44:14 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3032518, IEEE Internet of

Things Journal

8

TABLE I
UNSTABLE CELLS UNDER ENVIRONMENTAL CONDITIONS

Devices TMW TM TW MW T M W Stable

M1 4 4 15 5 85 11 63 6548

M2 0 10 98 8 539 52 39 6648

M3 0 4 6 2 110 5 22 6787

M4 2 6 15 1 306 11 8 7042

M5 0 1 4 0 106 19 5 6675

M6 0 2 6 1 88 16 1 6751

M7 1 1 1 2 40 16 4 6734

U8 0 7 5 2 267 13 25 7173

U9 1 2 12 9 383 16 28 7067

U10 1 4 2 13 265 21 18 7132

N11 0 7 5 2 267 13 25 7173

MAX 4 10 98 13 539 52 63 7173

MIN 0 1 1 0 40 5 1 6548

AVR 1 4 15 4 223 18 22 6885

T: Temperature, M: Magnetic, W: After writing 0 or 1 to the cell,
TM: changed in both Temperature and Magnetic, TW: changed in
both Temperature and writing, MW: changed in both Magnetic and
writing, TMW: changed in Temperature , Magnetic, and writing.
(MEMORY SIZE=8192 BITS)

address length is 2 bytes (enough to address up to 64 KB
memory cells). Besides, sending the addresses of SRAM-PUF
cells is considered as a security threat.

Authentication with a 100-bit fingerprint was firstly tested
using Arduino Mega. On the end device side, the process took
about 34ms, including SRAM cells reading, BCH decoding,
and MD5 Hashing. The written program’s global variables
occupied about 1.7 KB of SRAM, and the program size
occupied about 7 KB of the flash memory, including 148 bits
of the helping data generated by the BCH encoding, the source
code for BCH decoding, and the hashing function MD5. BCH
ran as (255,107,45), which means that the fingerprint’s length
can be up to 107 bits, the final block size (data + helper data)
is 255 bits, and this code can correct up to 22 bits. However,
using the same authentication method on Arduino Uno and
Nano, which have an SRAM of 2KB, is not feasible, so we
had to reduce the fingerprint’s length to 50 bits and run the
BCH as (127, 57, 23). That means the length of the fingerprint
size can be up to 57 bits, the final block size (data + helper
data) is 127 bits, and the BCH code can correct up to 11 bits.
As a result, to generate a fingerprint using our scheme, the
device should have an SRAM memory with a size more than
2KB.

Choosing whether to store the helper data on the end
device or the server depends on balancing communication and
storage. In general, when a strong PUF is used, the helper data
are stored on the server (the authenticator). That is because
each response could be noisy and need helper data to be
corrected, which makes the size of the helper data significant.
Besides, the end devices could be resources-constrained and
do not have enough storage capacity to store all these data.
Using weak PUF like SRAM-PUF, the helper data can be
either stored on the device or the server. That is because the
number of CRPs is small, and so is the size of the helper data.

In this paper, the used PUF is weak. Even though the number
of CRPs is large, there is just one SRAM-PUF output required
to generate all the responses. Accordingly, if the fingerprint’s
length is 100 bits, then the size of the helper data needed to
correct 22 bit-error is 148 bits. Therefore, if there is enough
space on the end device, the helper data should be stored there
to eliminate the communication overhead caused by sending
the data every time the authentication process is carried out.
If there is no storage capacity, the helper data will be stored
on the server and sent to the end device at the beginning of
every authentication process.

If the authentication process happens just once each time
the device boots up and joins the system, the end device can
hide its fingerprint by storing a random value of 100 bits on
the SRAM-PUF cells. Doing that will hide the PUF output,
but it will prevent the device from doing other authentication
operations during the run time because the SRAM-PUF output
can only be obtained when the device boots up. To address
this issue, we can keep the PUF output stored in an array
inside the SRAM, which occupies 13 bytes while hiding
the startup values of the SRAM-PUF cells. There was a
proposed structure of the SRAM, which can reset individual
cells anytime [30]. That includes adding four transistors to
each SRAM cell, and thus, any cell can be reset anytime
without the need to restart the device in order to read the
SRAM-PUF output. However, this solution requires changing
the SRAM structure, which is out of this paper’s scope.

From a security perspective, our proposed scheme is robust
against the attacks intended to authenticate a fake end device
which does not belong to the system. Some attacks are
discussed below:

• The Man in the Middle Attack: in this attack, an adversary
can listen and capture authentication request/reply mes-
sages to be used later in the replay attacks. If a previous
authentication request got repeated, i.e., the sever chose
a challenge and a nonce that were used before, the
adversary can successfully authenticate a fake entity by
sending the captured response. However, for this attack to
carry out against our scheme, a challenge of 100 numbers
and a nonce of 4 bytes chosen randomly need to be
repeated, which is very unlikely to happen.

• Side-Channel Attack: in this attack, the intruder can
physically access the end device and read the PUF output.
However, this attack is almost impossible to succeed with
the SRAM-PUF. That is because SRAM is embedded in
the microcontroller package and has no connection to the
outside world. Thus, the SRAM cannot be read without
corrupting the microcontroller.

• Extracting hashing tables: the hashing tables are usually
stored in the NVM, making them vulnerable to the
side-channel attack. Extracting the hashing tables will
compromise the whole security system and may help in
exposing the PUF output. Therefore, the hashing tables
in the NVM need protection by encrypting them using a
hardware key derived from the SRAM-PUF [12].

• Brute force attack: when the 100-bit fingerprint is ex-
tracted directly from the SVRCs, it will have, theoreti-
cally, 68 ones and 32 zeros inherited from the 0:1 ratio

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 30,2020 at 09:44:14 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3032518, IEEE Internet of

Things Journal

9

TABLE II
COMPARISON BETWEEN THE PUF-BASED SCHEMES

Scheme CO Neq HDS NCRPs
Wallrabenstein, J.R. [18] Medium Yes Small Small
Braeken, A. [19] High Yes Big Big
Che, Wenjie, et al. [20] Small Yes Big Big
Gope et al. [21] Medium Yes Big Big
Obfuscated protocols [22] Small Yes Medium Medium
Our scheme Small No Small Big

CO: Computation overhead for resource-constrained end devices,
Neq: requires installing a new equipment, HDS: Helper Data size,
NCRPs: Number of CRPs.

found in SVRCs. Therefore, in this paper, we choose the
participating SRAM addresses to ensures that 50% of the
fingerprint are 0s and the other 50% are 1s. That will
make it more difficult for attackers to guess all the possi-
ble compositions (Brute force attack). When we generate
a 100-bit key, there are 5.0446 ∗ 10

28 compositions for
50:50 ratio of 0s and 1s, and 4.576 ∗ 10

25 compositions
for 32:68 ratio of 0s and 1s.

Finally, Our scheme can provide unique fingerprints to the
end devices without adding any new equipment in addition
to a significant number of CRPs with a small size of data
helper. Besides, the computation overhead of the authentica-
tion process is comparatively small and can be handled by the
resource-constrained devices. TABLE II presents a comparison
between our scheme and the previously proposed schemes.

V. CONCLUSION

Remote sensing and control are an essential part of our dig-
ital world. Accessing resources that are far away is becoming
a common practice now. Therefore, the entity authentication
of remote devices becomes a hot topic while building a trust
system. Running the traditional authentication algorithm on
the resource-constrained devices faces some challenges related
to computing power and memory storage. Therefore, this pa-
per proposed a lightweight SRAM-PUF based authentication
scheme to ensure the end devices’ entity. After analyzing
and testing the startup values of SRAM cells under different
conditions, a stable fingerprint was extracted and then cor-
rected using BCH. The experiment in this paper shows that the
proposed scheme can be deployed in the IoT end devices and
perform the entity authentication efficiently. Besides, its re-
quirements can be easily satisfied by the resource-constrained
devices. In future work, there will be more tests to run on
the SRAM cells and more in-depth research to find a module
to predict which cells are more likely to be unstable under
different conditions.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (61872038), Scientific and Technological
Innovation Foundation of Shunde Graduate School, USTB
(BK19CF010), UK Royal Society-Newton Mobility Grant
(No.IEC\NSFC\170067), and in part by the Fundamental Re-
search Funds for the Central Universities under Grant FRF-
GF-19-020B.

REFERENCES

[1] J. Ding, M. Nemati, C. Ranaweera, and J. Choi, “IoT Connectivity
Technologies and Applications: A Survey,” IEEE Access, vol. 8, pp.
67 646–67 673, Feb 2020.

[2] Y. Chen, W. Sun, N. Zhang, Q. Zheng, W. Lou, and Y. T. Hou,
“Towards Efficient Fine-Grained Access Control and Trustworthy Data
Processing for Remote Monitoring Services in IoT,” IEEE Transactions

on Information Forensics and Security, vol. 14, no. 7, pp. 1830–1842,
Dec 2019.

[3] B. Martinez, M. Montón, I. Vilajosana, and J. D. Prades, “The power
of models: Modeling power consumption for iot devices,” IEEE Sensors

Journal, vol. 15, no. 10, pp. 5777–5789, 2015.
[4] C. Boyd, A. Mathuria, and D. Stebila, Authentication and Key Transport

Using Public Key Cryptography. Berlin, HeidelbHolcomb2009erg:
Springer Berlin Heidelberg, 2020, pp. 135–164.

[5] S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the internet of
things: A standardization perspective,” IEEE Internet of Things Journal,
vol. 1, no. 3, pp. 265–275, 2014.

[6] Q. Wang and G. Qu, “A Silicon PUF Based Entropy Pump,” IEEE

Transactions on Dependable and Secure Computing, vol. 16, no. 3, pp.
402–414, Nov 2019.

[7] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes,” in
Advances in Cryptology, G. R. Blakley and D. Chaum, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1985, pp. 47–53.

[8] C. Peikert and Others, “A decade of lattice cryptography,” Foundations

and Trends R©in Theoretical Computer Science, vol. 10, no. 4, pp. 283–
424, Mar 2016.

[9] S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Attribute-Based Encryp-
tion for Circuits,” Journal of the ACM (JACM), vol. 62, no. 6, pp. 1–33,
Dec 2015.

[10] D. He, M. Ma, S. Zeadally, N. Kumar, and K. Liang, “Certificateless
public key authenticated encryption with keyword search for industrial
internet of things,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 8, pp. 3618–3627, 2018.

[11] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev,
V. Vaikuntanathan, and D. Vinayagamurthy, “Fully Key-Homomorphic
Encryption, Arithmetic Circuit ABE and Compact Garbled Circuits,”
in Advances in Cryptology – EUROCRYPT 2014, P. Q. Nguyen and
E. Oswald, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 533–556.

[12] F. Farha, H. Ning, H. Liu, L. Yang, and L. Chen, “Physical unclonable
functions based secret keys scheme for securing big data infrastructure
communication,” Information Sciences, vol. 503, Nov 2019.

[13] M. N. Aman, K. C. Chua, and B. Sikdar, “Mutual authentication in iot
systems using physical unclonable functions,” IEEE Internet of Things

Journal, vol. 4, no. 5, pp. 1327–1340, 2017.
[14] D. Holcomb, W. Burleson, and K. Fu, “Power-Up SRAM State as an

Identifying Fingerprint and Source of True Random Numbers,” IEEE

Transactions on Computers, vol. 58, no. 9, pp. 1198–1210, Nov 2009.
[Online]. Available: http://ieeexplore.ieee.org/document/4674345/

[15] H. Ning, F. Farha, A. Ullah, and L. Mao, “Physical unclonable function:
architectures, applications and challenges for dependable security,” IET

Circuits, Devices & Systems, Feb 2020.
[16] J. Guajardo, B. Škorić, P. Tuyls, S. S. Kumar, T. Bel, A. H. M. Blom, and

G.-J. Schrijen, “Anti-counterfeiting, key distribution, and key storage
in an ambient world via physical unclonable functions,” Information

Systems Frontiers, vol. 11, no. 1, pp. 19–41, Mar 2009.
[17] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data

algorithms for puf-based key generation: Overview and analysis,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 34, no. 6, pp. 889–902, 2015.
[18] J. R. Wallrabenstein, “Practical and Secure IoT Device Authentication

Using Physical Unclonable Functions,” in 2016 IEEE 4th International

Conference on Future Internet of Things and Cloud (FiCloud), Vienna,
Austria, 2016, pp. 99–106.

[19] A. Braeken, “PUF based authentication protocol for IoT,” Symmetry,
vol. 10, no. 8, pp. 352–367, Jul 2018.

[20] W. Che, M. Martin, G. Pocklassery, V. Kajuluri, F. Saqib, and
J. Plusquellic, “A Privacy-Preserving, Mutual PUF-Based Authentication
Protocol,” Cryptography, vol. 1, no. 1, p. 3, Nov 2016.

[21] P. Gope, A. K. Das, N. Kumar, and Y. Cheng, “Lightweight and phys-
ically secure anonymous mutual authentication protocol for real-time
data access in industrial wireless sensor networks,” IEEE Transactions

on Industrial Informatics, vol. 15, no. 9, pp. 4957–4968, 2019.

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 30,2020 at 09:44:14 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3032518, IEEE Internet of

Things Journal

10

[22] Y. Gao, G. Li, H. Ma, S. F. Al-Sarawi, O. Kavehei, D. Abbott, and D. C.
Ranasinghe, “Obfuscated challenge-response: A secure lightweight au-
thentication mechanism for puf-based pervasive devices,” in 2016 IEEE

International Conference on Pervasive Computing and Communication

Workshops (PerCom Workshops), 2016, pp. 1–6.
[23] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “DRAM-

based intrinsic physically unclonable functions for system-level security
and authentication,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 25, no. 3, pp. 1085–1097, Sep 2017.
[24] P. Prabhu, A. Akel, L. M. Grupp, W.-K. S. Yu, G. E. Suh, E. Kan, and

S. Swanson, “Extracting Device Fingerprints from Flash Memory by
Exploiting Physical Variations,” in Trust and Trustworthy Computing,
J. M. McCune, B. Balacheff, A. Perrig, A.-R. Sadeghi, A. Sasse, and
Y. Beres, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 188–201.

[25] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in Proc. 9th International

Workshop on Cryptographic Hardware and Embedded Systems - CHES

2007, Vienna, 2007, pp. 63–80.
[26] D. E. Holcomb, W. P. Burleson, K. Fu, and Others, “Initial SRAM state

as a fingerprint and source of true random numbers for RFID tags,” in
Proceedings of the Conference on RFID Security, vol. 7, no. 2, 2007,
p. 1.

[27] R. Maes and V. van der Leest, “Countering the effects of silicon aging
on sram pufs,” in 2014 IEEE International Symposium on Hardware-

Oriented Security and Trust (HOST), 2014, pp. 148–153.
[28] R. Wang, G. Selimis, R. Maes, and S. Goossens, “Long-term continuous

assessment of sram puf and source of random numbers,” in 2020 Design,

Automation Test in Europe Conference Exhibition (DATE), 2020, pp. 7–
12.

[29] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge Computing
Security: State of the Art and Challenges,” Proceedings of the IEEE,
vol. 107, no. 8, pp. 1608–1631, Jun 2019.

[30] Y. Su, J. Holleman, and B. P. Otis, “A Digital 1.6 pJ/bit Chip Identi-
fication Circuit Using Process Variations,” IEEE Journal of Solid-State

Circuits, vol. 43, no. 1, pp. 69–77, Jan 2008.

Fadi Farha received his BS from the faculty of
Informatics Engineering, Aleppo University, Syria.
He did his MS degree and currently pursuing toward
a Ph.D. degree in the School of Computer and Com-
munication Engineering, University of Science and
Technology Beijing, China. His current research in-
terests include Physical Unclonable Function (PUF),
Security Solutions, ZigBee, Computer Architecture,
and Hardware Security.

Huansheng Ning (SM’13) received his B.S. degree
from Anhui University in 1996 and his Ph.D. degree
from Beihang University in 2001. He is currently
a Professor and Vice Dean with the School of
Computer and Communication Engineering, Uni-
versity of Science and Technology Beijing, China,
and the founder and principal at Cybermatics and
Cyberspace International Science and Technology
Cooperation Base. He has authored 6 books and
over 180 papers in journals and at international
conferences/workshops. He has been the Associate

Editor of IEEE Systems Journal, the associate editor (2014-2018), area editor
(2020-) and the Steering Committee Member of IEEE Internet of Things
Journal (2018-). He is the host of the 2013 IEEE Cybrmatics Congress and
2015 IEEE Smart World Congress. His awards include the IEEE Computer
Society Meritorious Service Award and the IEEE Computer Society Golden
Core Member Award. His current research interests include Internet of Things,
Cyber Physical Social Systems, Cyberspace Data and Intelligence.

Karim Ali received his Bachelor’s degree from
the Department of Computer Engineering and
Communications, Lebanese International University,
Lebanon. He is currently pursuing toward Master’s
degree in Computer Science and Technology, Uni-
versity of Science and Technology Beijing, China.
His research focuses mainly on the vulnerabilities
of machine learning and adversarial attacks against
deep learning.

Liming Chen received the B.E. and M.E. degrees
from the Beijing Institute of Technology, Beijing,
China,and the Ph.D. degree in artificial intelligence
from DeMontfort University, Leicester, U.K. He is
currently a Professor of Data Analytics, Research
Director for the School of Computing, and lead
the Cognitive Analytics Research Lab (CARL) at
Jordanstown campus in Ulster University (UU). His
research interests include pattern recognition, in-
telligent systems, smart environment, and assisted
living.

Christopher Nugent is the Head of School of
Computing and holds the position of Professor of
Biomedical Engineering. He is based within the
School of Computing and Mathematics at Ulster
University. He received a Bachelor of Engineering
in Electronic Systems and DPhil in Biomedical En-
gineering both from Ulster University. Chris joined
the University as a Research Fellow in 1999 and was
appointed as Lecture in Computer Science in 2000.
Following this he held positions of Senior Lecture
and Reader within the Faculty of Computing and

Engineering before his appointment as Professor of Biomedical Engineering in
2008. In 2016 he was awarded the Senior Distinguished Research Fellowship
from Ulster University, His research within biomedical engineering addresses
the themes of the development and evaluation of technologies to support
ambient assisted living. Specifically, this has involved research in the topics
of mobile based reminding solutions, activity recognition and behaviour
modelling and more recently technology adoption modelling. He has published
extensively in these areas with papers spanning theoretical, clinical and
biomedical engineering domains. He has been a grant holder of Research
Projects funded by National, European and International funding bodies. Chris
is the Group Leader of the Smart Environments Research Group and also the
co-PI of the Connected Health Innovation Centre at Ulster University.

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 30,2020 at 09:44:14 UTC from IEEE Xplore. Restrictions apply.

