
620 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 3, MARCH 2020
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Abstract— Bias temperature instability (BTI), hot carrier injec-
tion (HCI), gate–oxide time-dependent dielectric breakdown
(GTDDB), and random telegraph noise (RTN) degrade the stabil-
ity of the deeply scaled transistors and the overall circuit reliabil-
ity. These front-end wearout mechanisms are especially acute in
the static random access memory (SRAM) cells of first-level (L1)
caches, which are crucial for the performance of microprocessors
due to frequent accesses. This article presents a methodology
to analyze cache reliability degradation due to the combined
effect of BTI, HCI, GTDDB, and RTN for different cache
configurations, including variations due to associativity, cache
line size, cache size, and the error-correcting codes (ECCs). Time-
zero variability due to process and environmental parameters are
also considered. First, we analyze how each wearout mechanism
affects reliability degradation. Then we analyze the relationship
between reliability (probability of failure) and performance (hit
rate) of the L1 cache within a LEON3 microprocessor, while
the LEON3 is running a set of benchmarks, which determine
cell array activity, characterized by the duty cycle, toggle rate,
temperature, and supply voltage distributions of cells. Insights
on the performance–reliability tradeoff are provided for cache
designers.

Index Terms— Bias temperature instability (BTI), cache config-
urations, error-correcting codes (ECCs), gate–oxide breakdown
(GTDDB), hot carrier injection (HCI), LEON3 microprocessor,
performance–reliability tradeoff, random telegraph noise (RTN),
time-dependent dielectric breakdown, wearout.

I. INTRODUCTION

STATIC random access memories (SRAMs) are the domi-

nant part of systems-on-chips (SoCs). They consume half

or more than half of the die area and most of the transistors

Manuscript received April 14, 2019; revised August 14, 2019 and
October 18, 2019; accepted November 12, 2019. Date of publication
January 21, 2020; date of current version February 25, 2020. This work
was supported by the National Science Foundation under Award 1700914.
(Corresponding author: Linda Milor.)

R. Zhang and L. Milor are with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: ruizhang348@gatech.edu; linda.milor@ece.gatech.edu).

T. Liu was with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 USA. He is now with
Cadence Design Systems, San Jose, CA 95134 USA (e-mail: taizhi@cadence.
com).

K. Yang was with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 USA. He is now with
Synopsys, Mountain View, CA 94043 USA (e-mail: kexin.yang@synopsys.
com).

C.-C. Chen was with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 USA. He is now
with Microsoft Corporation, Redmond, WA 98052 USA (e-mail: changc@
microsoft.com).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2956923

in modern microprocessors. Hence, it is important to analyze

the reliability of SRAMs. This article focuses on the first-

level (L1) data cache. This block may not be the worst

block from the reliability perspective, as mentioned in [1]–[3],

which suggests the greater importance of the instruction caches

(I-Caches) and register files, but it is analyzed in detail to

illustrate the methodology. Cache efficiency is also critical

for system performance. Many prior works have focused on

the cache architecture needed to obtain higher cache effi-

ciency [4]–[6]. However, it is not known how cache reliability

is affected when a higher performance is achieved. In this

article, we present a methodology to estimate cache reliability

and apply this methodology to investigate the reliability [prob-

ability of failure (PF)] of the L1 data cache in a typical SoC

microprocessor for different design configurations, by looking

at associativity, cache line size, cache size, and error-correcting

codes (ECCs). By analyzing the reliability and performances

of different cache configurations, we provide insights into how

to achieve the best performance–reliability tradeoff in cache

system design.

Advanced SRAM design is accompanied with the devel-

opment of technology. Although smaller technology nodes

bring various benefits, like higher device density and lower

power consumption, they also pose significant reliability chal-

lenges. Deeply scaled CMOS devices, such as Fin Field-Effect

Transistors (FinFETs), have a high sensitivity to process para-

meter variability and front-end wearout mechanisms, such as

bias temperature instability (BTI), hot carrier injection (HCI),

gate–oxide breakdown (GTDDB), and random telegraph noise

(RTN). Variability and wearout not only make transistors

unreliable for low-voltage operation, but also lead to earlier

functional failures of circuits. This concern is for all computing

devices, ranging from server processors, where lifetime is a

critical requirement, to mobile devices, where the market share

strongly depends on reliability.

This article takes into account performance degradation due

to BTI, HCI, GTDDB, and RTN. These wearout mechanisms

degrade SRAM cell performances, including read/write/hold

static noise margins (SNMs), minimum voltage for state

retention, read delay and power, write delay and power, and

the leakage power during hold. The degradation of these

performances is random, involving within-die and between-die

process parameter variations, in addition to the degradation

caused by wearout.

The SRAM is composed of cells, but to determine SRAM

lifetime, the stress distribution among the cells must be taken
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into account, which depends on the use scenario of the

microprocessor. In this article, SRAM performances [hit rate

(HR)] and lifetime are evaluated for the full SRAM when

the microprocessor (containing the SRAM) is running realistic

workloads. The workloads are determined by running a set of

benchmarks on an emulation system, which determines the

duty cycle and toggle rate distributions for the SRAM cells in

the SRAM array. These parameters are then used to determine

the stress caused by each wearout mechanism in each cell. The

cell lifetime distributions are then computed and combined

to determine the statistical lifetime distribution and failure

probability of the full SRAM.

This work is new in the following ways.

1) A methodology that incorporates degradation due to

BTI, HCI, RTN, and GTDDB in a unified way is

presented. Shifts due to wearout are combined with

within-die and between-die process parameters for a

complete parametric description of degradation.

2) The methodology is demonstrated with application to

the analysis of cache reliability for different cache

configurations considering associativity, cache line size,

and cache size.

3) The impact of variations in device parameters

(process/electrical) is combined with wearout parameters

in Monte Carlo (MC) simulations to find the failure

probability of the SRAM cells based on when various

performance metrics degrade beyond design limitations.

4) The work uses the stress profile of the microprocessor

to analyze the cache reliability which is determined with

a field-programmable gate array (FPGA)-based aging

assessment framework to determine the stress profile

distributions of the cells in the SRAM.

The remainder of this article is organized as follows.

Section II summarizes the wearout models and the SRAM

cell structure studied in this article. Section III describes the

steps for activity extraction and shows an example of activity

distributions. It also presents the aging assessment framework.

Section IV uses the aging assessment framework to evaluate

SRAM cell and cache degradation. Section V analyzes how

various configurations affect cache performance and reliability.

Section VI concludes this article.

II. BACKGROUND AND PRIOR ART

Our evaluation process starts from physical models and

propagates them to the cache level, where they cause a shift

in performance metrics. In this section, we first introduce the

models for each wearout mechanism and how they affect the

device parameters. Then, we discuss how the mechanisms

degrade SRAM cell performances under various stress con-

ditions. Finally, we summarize prior work about how wearout

mechanisms impact SRAM reliability.

A. Wearout Mechanisms (BTI, HCI, GTDDB, and RTN)

1) BTI Model: BTI is caused by trap generation and degen-

eration at the interface and in the bulk of gate dielectric

materials. Studies of BTI have been conducted at the transistor

and gate level with the classical reaction–diffusion (R–D)

model and the atomistic trap-based model [7]–[10]. Consensus

between the two models has not been achieved yet. The

classical R–D model has a lower computational and mem-

ory requirement, whereas the atomistic model has a higher

resolution in the nanosecond range and is challenging to use

for longer stress simulations [11]. In this article, since the

simulated time ranges from 1 to 108 s, an enhanced R–D

model is adopted to emulate the high-k dielectric charge

evolution with time, as described in [12]–[14]. Because of

the less importance of nFET BTI (PBTI), only the pFET

BTI (NBTI) is taken into account [15], [16].

Three uncorrelated contributions from the generation of the

interface trap density (�NI T ), hole trapping in preexisting

sites (�NHT ), and the generation of new bulk insulator

(�NOT ) traps are applied for trap density evolution [12]. The

model also incorporates the stress-recovery phenomenon, duty

factor, and the effect of temperature and operating frequency.

For BTI, the time range and the ratios of stress and recovery

are quite important for a clear prediction of degradation. There

is a complete solution for stress and recovery for each part

under short time durations, and a simplified solution for each

part under long-term dc stress [12]. Considering the long times

in this article, we combine the long-term dc stress model with

a duty factor equation to calculate the overall BTI degradation.

The traps’ shift due to BTI is predicted as

�NI T = A(VG − VT 0 − �V T )ŴI T e−
E AI T

kT t
1
6 (1a)

E AI T =
2

3
(E Ak f − E Akr ) +

E AD H2

6
(1b)

�NHT = B(VG − VT 0 − �V T )ŴH T e−
E AH T

kT (2)

�NOT = C

(

1 − e

(

−( t
n )

βOT
))

(3a)

n = η(VG − VT 0 − �V T )
ŴOT
βOT e

−
E AOT
kTβOT (3b)

where A, B , C , ŴI T , E AI T , E Ak f , E Akr , E AD H2, ŴHT , E AHT ,

η, ŴOT , βOT , and E AOT are constants. VG is the stress

voltage, VT 0 is the initial threshold voltage, �VT is the shift

of the threshold voltage, t is the stress time, k is Boltzmann’s

constant, and T is temperature.

We use constants adopted from [12] to calculate NBTI

degradation for high-k devices with E OT = 0.7 nm. A, B ,

and C are scaled simultaneously to meet the assumption that

�VT ,dc,Mean is 100 mV after ten years of dc stress [17].

Since SRAM cells experience frequent Read/Write oper-

ations, ac waveforms are necessary to predict real NBTI

degradation under different duty cycles. A universal relaxation

model for the effect of duty cycle (D) has been proposed [18]

and validated [19] for FinFETs and planar devices in 16- and

20-nm technology, respectively. The equivalent shift due to

traps (impacting the threshold voltage, etc.) is the product

of the shift under dc stress and the recovery fraction, r(D).

In general, r(D) is a function of operating frequency, tempera-

ture, and stress voltage [18]. We adopt a simplified expression

for r(D) due to the lack of experimental data on the impact

of frequency, temperature, and stress voltage

r(D) =
1

1 + BDF

(

1
D

− 1
)βDF

(4)
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where BDF is a scaling factor and βDF is a dispersive shape

factor [20]. The accuracy of the simplified recovery fraction

model for experimental data (under various stress conditions)

is validated in [18].

2) HCI Model: HCI happens when there are hot carriers

flowing through the channel. Energy transferred from hot

carriers to the lattice helps generate interface states or bulk

defects [21], [22]. HCI is caused by both interfaces and

oxide bulk trapped charges [23]. It is found that the interface

charge is not recoverable, however the bulk charge is partially

recoverable, and the highest HCI degradation in FinFETs

appears at VG = VD [23]. It has been found that degradation

caused by HCI is primarily due to interface traps and is not

recoverable [24], and modeling of interface charge matches

well with experimental data [25], [26]. Hence, we adopt the

analytical model in [25] to describe how the threshold voltage

related to HCI evolves with time. The interface charge is

the only contributor and is not recoverable. HCI in pFETs

is three times higher than that in nFETs under the same stress

conditions [27].

The interface trap degradation due to HCI during the time

under stress varies with FinFET dimension, stress voltage, and

temperature [25], [28]. It is modeled as

�NI T = Dtn(1/Lg)
b ∗ exp(c1Vds)

× exp(−c2(Vds − Vgs))exp(Ea,HCI/kT ) (5)

where D, n, b, c1, and c2 are constants. Lg is the gate

length and Vds and Vgs are the drain–source voltage and

the gate–source voltage, respectively. Ea,HCI is the activation

energy.

HCI occurs when highly energized (hot) carriers flow from

the drain to the source. Therefore, in the SRAM cell structure,

HCI happens when a transistor is ON and is conducting

current. Therefore, HCI happens when the stored data is being

flipped. It is necessary to figure out the equivalent stress time

during a transition, so that (5) can be evaluated for fixed

values of Vds = VD D and Vgs = VD D. A method described

in [29] is used to obtain the equivalent stress time for each

transition. The equivalent times are summed to determine

the total equivalent time interval for a transition. The values

of equivalent times are combined with the transition rate

computed in Section III.

It has been checked that HCI does not affect the threshold

voltage by more than 2 mV after ten years of stress at a

constant operating frequency of 250 MHz using the model

parameters in [25] and [28].

3) GTDDB Model: With the increase in stress time, traps

are accumulated in the oxide layer. If the traps do not overlap

from the gate to the channel, the device gate leakage current

is not affected. GTDDB occurs when the conducting paths

are formed in the gate dielectric. According to its severity,

GTDDB is divided into soft breakdown (SBD) and hard

breakdown (HBD). HBD has leakage currents that are several

orders of magnitude larger than SBD. For ultrathin dielectrics,

conversion between the two becomes more unstable. There-

fore, we use a statistical model for the GTDDB failure time

distribution. Time to HBD is the sum of time to SBD (TBD)

and the time gap between SBD and HBD (TPBD), where both

TBD and TPBD follow Weibull distributions [30].

Specifically, the breakdown (BD) of ultrathin gate–oxides

consists of the first BD and the progressive BD (PBD) phases.

Thus, the overall time to oxide failure is the sum of the time to

first BD (TBD) and the duration of PBD (TPBD) [31]. Before the

first BD, the leakage current is negligible (set as IBD(t) = 1.0

nA, 0 ≤ t ≤ TBD). When BD enters PBD, the current starts

to rise. At the end of PBD, the leakage current reaches a

saturation level which is taken as HBD. Here we set the HBD

current as 1 µA (IBD(TBD + TPBD)) for FinFETs [32]. There

are linear and exponential growth models for this process. The

exponential model is applied in this work [33], [34]

IBD(t) = IBD(TBD)exp

(

t−TBD

τBD

)

, tBD ≤ t ≤TBD+TPBD

(6a)

τBD =
TPBD

3 · ln(10)
(6b)

where TPBD is a Weibull distribution.

The overall time to failure is TFAIL = TBD + TPBD. Both

TBD and TPBD follow Weibull distributions. For small-area

devices in an SRAM cell, TPBD is much smaller than TBD. It is

reasonable to assume that TPBD follows a Weibull distribution

with a scale parameter of 106 s (ηPBD) and a shape parameter

of 1 (βPBD) [31]. TBD has a shape parameter of 1.08 (βBD)

and a scale parameter as follows:

ηBD = EV
−nBD

G

(

1

Aeff

)
1

βBD

exp

(

Ea,BD

kbT

)

(7)

where E and nBD are constants, Aeff is the effective gate area,

and Ea,BD is the activation energy.

Under these assumptions, the cumulative distribution func-

tion (CDF) of Tfail is [30]

FFAIL(t) = 1−exp

⎧

⎪

⎨

⎪

⎩

−

⎡

⎢

⎣

(

t
TF

)βF
(

t
TBD

)βBD

(

t
TF

)βF

+

(

t
TBD

)βBD

⎤

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(8a)

βF = βBD + βPBD (8b)

TF =

(

T
βBD

BD T
βPBD

PBD

K

)
1

βF

(8c)

K =
βBDβPBD

βBD + βPBD
B(βBD, βPBD) (8d)

where B(·, ·) is the beta function.

In the light of models in (6)–(8), it is convenient to calculate

the distribution of gate leakage current under specific stress

conditions (such as time, temperature, and stress voltage).

Moreover, ratios of leakage current flowing from the gate to

the drain and the source depend on the position of percolation

paths. In our simulations, it is assumed that the location of

the percolation path is uniformly distributed within the device

channel [35]. Since TDDB is less of a concern for pFETs [15],

we only consider nFET GTDDB in this article.

Our models include only the leakage current impact of

GTDDB. However, it is now known that BTI and GTDDB

accelerate each other [36]. Hence, in the future, the defect

generation caused by GTDDB can be included in the defect

density models that are used to determine the device para-

meter degradation. Similarly, defects from BTI could serve to

accelerate GTDDB.
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4) RTN Model: The trapping and de-trapping of channel

charges contribute to RTN by introducing large variations

in the interface trap density (�NI T ). Variations in �NI T

cause variations in various device parameters, such as the

threshold voltage (Vth). RTN leads to the malfunction of

circuits when �NI T is large. The distribution of �NI T has

been observed to be a lognormal distribution for deeply scaled

devices [37], [38]. We similarly model RTN as a lognormal

distribution.

RTN is affected by device dimensions, temperature, and

interface charge density [37], [39]. RTN introduces additional

variations in the interface trap density (�NI T ). However, since

the fluctuation is temporary, it does not affect the accumulated

�NI T induced by BTI and HCI. �NI T induced by RTN

is modeled with a lognormal distribution, with mean and

standard deviation as follows [37], [39]:

µln(�NI T ) = F + ln

(

1

Weff Leff

)

(9a)

σln(�NI T ) =
qG(�VI T + VT 0)

nRTNkbT
+ln

[

H Cox

q(Weff Leff )mRTN

]

(9b)

where F , G, H , nRTN, and mRTN are constants. Weff and Leff

are the effective gate width and length, respectively. q is the

elementary charge. Cox = εSiO2/EOT is the gate capacitance.

εSiO2 is the dielectric constant of SiO2.

5) Impact on Device Parameters: In this article, BTI is

modeled as affecting the interface traps of the pFETs, hole

trapping in preexisting sites, and the generation of new bulk

insulator traps. HCI affects interface traps of the n/pFETs.

RTN introduces extra variations in the number of traps, while

GTDDB leads to gate leakage current in the nFETs.

It is verified in [40] that performance evaluation considering

solely the impact on VT draws over optimistic conclusions.

To obtain a convincing and persuasive result, it is necessary

to include a more comprehensive model of the impact on the

device parameters. Therefore, a shift of charge density in a

transistor, caused by BTI, HCI, and RTN, leads to a shift

of threshold voltage, carrier mobility (µ), subthreshold slope

(SS), and gate–drain capacitance (Cgd) [44]. The GTDDB-

induced gate leakage current consists of leakage from the gate

to the drain and leakage from the gate to the source. Leakage

currents are implemented with Verilog-A models.

Uncontrollable factors in manufacturing cause time-zero

variability of the threshold voltage. Wearout causes both the

mean and standard deviation to shift with time under stress.

The overall shift of the threshold voltage due to NBTI and

HCI is modeled as a normal distribution with mean, µVT , and

variance σ 2
VT 0

[41]

µVT =
q(�NI T + �NHT + �NOT )

Cox
+ VT0 (10a)

σ 2
VT

=

(

1 +
�VT

100 mV

)

σ 2
VT 0

(10b)

where the trap shifts are caused by BTI and HCI. VT0 and

σ 2
VT 0

are the time-zero mean and variance, respectively. They

depend on the specific manufacturing process. We assume

Fig. 1. Typical 6T SRAM cell with degradation and variability parameters
marked.

a well-controlled process by setting the square root of the

variance to be 5% of VT 0 [42].

The threshold voltage shift (�VIT) caused by RTN is

obtained from the lognormal distribution with a mean and

standard deviation:

µln(�VI T ) =
q

Cox
µln(�NI T ) (11a)

σln(�VI T ) =
q

Cox
σln(�NI T ). (11b)

The overall threshold voltage shift distribution is sum of

the normal distribution described in (10) and the lognormal

distribution shown in (11).

These front-end wearout mechanisms induce not only

�NI T , but also �NHT and �NOT . Only shallow �NI T

impacts µ, SS, and Cgd . The relationship between effective

carrier mobility and the threshold voltage shift induced by

interface traps (through Coulomb scattering) is described

by [25]

µeff =
µeff,ini

1 + α1�V I T

(12)

where µeff,ini is the effective carrier mobility initially, �V I T

is the threshold voltage shift due to interface traps, and α1 is

a constant.

It is found in [40] that SS is sensitive to interface trap

capacitance (CI T ) and �VI T . In this article, we use the

14-nm predictive technology model (PTM) for simulation [43].

We have checked how CI T and �VI T affect SS for devices

with various gate lengths and temperatures. Neither CI T nor

�VI T affect SS in an obvious way. Therefore, the shift of

SS is not considered. It can be easily added for other device

models that are sensitive to CI T and �VI T .

Cgd degradation due to �NI T is characterized with TCAD

simulations, incorporating real device materials and dimen-

sions. Since the influence of �NI T on Cgd varies for different

values of Lg , it is also included in the characterization.

A generalized expression of this relation is

�Cgd = p0 + p1�N I T + p2Lg + p3�N 2
I T + p4�N I T Lg

+p5L2
g + p6�N3

I T + p7�N2
I T Lg + p8�N I T Lg (13)

where p0– p8 are constants. The units of �NI T and Lg are

cm−2 and nanometer, respectively.
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B. SRAM Cell

Each cached bit is implemented with an SRAM cell con-

sisting of six transistors (6T) as shown in Fig. 1. The cell

is implemented with the PTM for the 14-nm technology

node [43]. The cell configuration is designed with a fin

number ratio of 1:1:2 (PU:AX:PD). The degradation and

variability parameters considered in this article are marked.

The labeled transistors form an inverter loop that holds the

stored logic value, whereas the remaining pass transistors

controlled by the wordline (WL) signal allow read and

write operations to the cell through the bitline (BL) and its

complement (BLB).

In a 6T cell, when the cell is stable and storing a “0,” PUR

suffers from NBTI, and PDL suffers from GTDDB. On the

contrary, when the cell stores a “1,” PUL and PDR are affected

by NBTI and GTDDB, respectively. On the other hand, HCI

affects all the transistors on a write if the logic value flips.

Note that the wearout effects induced by each possible duty

cycle are complementary, meaning that, for a given duty cycle,

the pair of transistors not under stress are partially under

recovery from NBTI degradation. Overall, the four transistors

of the inverter loop are continuously aging regardless of

whether the cell stores “0” or “1.” This fact makes these

transistors particularly sensitive to wearout [44]. Note that the

pass transistors (nFETs) just age from BTI when the SRAM

cell is being accessed, making them much less aging-sensitive

than the inverter-loop transistors. Therefore, this article focuses

on the wearout of the inverter-loop transistors.

C. Prior Art

SRAMs are highly sensitive to BTI-induced transistor-

strength mismatch [45]–[47], and the FinFET SRAM is more

vulnerable to BTI than the planar CMOS SRAM [36]. SRAM

stability is analyzed in [48] and [49] by assuming two ideal

stress conditions, static stress and alternating stress, and for a

continuous range of stress states [50]. The SRAM degradation

due to BTI based on a customer usage workload has been con-

sidered for logic [1], [51] and SRAM cells [2], [3], [52]–[54].

The shift of SRAM stability due to the HCI is less

studied in prior research because BTI is usually dominant

due to its frequency independence. However, since nowadays

chips are running at higher frequencies, HCI is becoming an

issue [55], [56]. In [57] and [58], the impact of HCI on SRAM

cell stability is analyzed, and the simulation and experimental

results were compared [57].

Methods that take into account usage scenarios have been

proposed to mitigate aging. These methods include power

gating [2], [3], [59], adaptive body bias [60], register address

allocation [2], [53], and other techniques to more evenly

distribute the stress [54]. Improved lifetime is achieved by

balancing the amount of time that logic “0” and “1” values are

stored in the cells with the aim to provide a BTI-optimal duty-

cycle distribution [2], [54], [61], [62], and by implementing

redundancy into the cache design to combat BTI-induced

wearout [63]. It has also been proposed to mitigate the HCI

degradation by providing a uniform distribution of cache

accesses across sets of cells [54], [63].

Progressive gate–oxide BD is an important source of stabil-

ity degradation in an SRAM. This is not only because of the

thinner dielectrics, but also due to the lower supply voltage.

In fact, it was found that leakage currents of 20–50 µA at

the nFET source results in a 50% reduction in the noise

margin (for 0.15 and 0.13 µm technologies) [64]. Moreover,

an equivalent 100 K SBD resistance leads to an increase

of 21% and 33% in delay and power of an SRAM cell,

respectively [65].

RTN induces the erratic performance phenomenon and a

higher failure probability [66]–[70]. With the scaling of tech-

nology, RTN adversely affects SRAM design margins [67].

Moreover, RTN reduces the read SNM and write margin by

12% and 3.9%, respectively [68]. In [69], RTN causes a 50%

increase in the failure probability.

We study the impact of NBTI, HCI, GTDDB, and RTN on

SRAM stability by checking the shifts of representative per-

formance metrics. Based on the shift of performance metrics,

we obtain the failure probability as a function of performance

specifications. This article differs from prior work as we con-

sider all wearout mechanisms simultaneously, together with

realistic workloads. Our purpose is not to propose a wearout

mitigation technique, but rather to demonstrate a methodology

to evaluate the impact of wearout on caches in a realistic way

so that designers can make appropriate tradeoffs.

III. AGING ASSESSMENT FRAMEWORK

As the time-to-failure due to wearout is a function of

device stress and the thermal profile, a framework for the

acquisition of spatial thermal/electrical stress of a system was

constructed. The FPGA-based emulation system extracts the

duty-cycle/toggle-rate profiles and the temperature profile.

Running register transfer level (RTL) or Simulation Program

with Integrated Circuit Emphasis (SPICE) simulations of a

complete microprocessor to extract the activity profile of each

SRAM cell is not feasible in most cases, since it may take

a few months to simulate a single benchmark. On the other

hand, simulating microprocessors with standard benchmarks

on an FPGA takes only a few minutes. Our aging assessment

framework provides an efficient way to acquire electrical and

thermal profiles for any digital system for use in system-level

reliability analysis. Any other emulation system, such as

Gem5 [71], would be able to generate similar results after

revising the source code carefully.

For analyzing the impact of BTI, HCI, GTDDB, and RTN

on caches within a microprocessor system, we have imple-

mented the well-known open-source LEON3 IP core proces-

sor [72] with superscalar abilities on various processes. The

emulation system is implemented with an FPGA. Specifically,

for activity tracking, the hardware RTL of the design was

synthesized for the FPGA, and counters were placed at the I/O

ports of the data cache, which track both state probabilities and

toggle rates of the ports during application runtime. We used

the LEON3 processor synthesized with the 90-nm process to

extract the cache activity and then used the activity to study

the aging of the cache implemented with a 14-nm FinFET

process. The technology of the FPGA is not important. It is just
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Fig. 2. Example of a stress-state distribution for a 32-kb memory. A stress
state is a combination of the duty-cycle state and the toggle-rate state. The
z-axis is the number of cells.

required that the FPGA has sufficient resources to implement

the circuit being analyzed and that the FPGA implementation

is functionally equivalent.

A set of standard benchmarks [73] were used as the appli-

cations for analysis. The outputs of the FPGA emulation are

the duty cycle and toggle rate of the I/O’s of the blocks of

which the design is composed.

The microprocessor logic units consist of a 32-bit general-

purpose integer unit (IU), a 32-bit multiplier (MUL), a 32-bit

divider (DIV), and a memory management unit (MMU).

Storage blocks, which are composed for SRAM cells, include a

window-based register file unit (RF), separate data (D-Cache),

and instruction (I-Cache) caches, and cache tag storage units

(Dtags and Itags). In this article, we have focused on the L1

data cache due to its high activity and temperature. However,

other cache blocks can be studied using the same methodology.

After emulation is complete, the I/O duty cycle, I/O toggle

rate, and the netlist were then used for activity propaga-

tion to each SRAM cell in the data cache for a complete

stress/transition probability profile of the SRAM arrays within

microprocessor. This step takes into account the technology

and netlist of the circuit being implemented. After activity

propagation, we have the distributions of duty cycle and toggle

rate for all of the SRAM arrays in the microprocessor. Fig. 2

shows an example joint distribution of the duty cycle and the

transition rate of the data cache, when the microprocessor is

running the Basicmath benchmark. Fig. 3 compares the duty

cycle and transition rate for different memory blocks while

running the same benchmark. BTI is sensitive to the duty-cycle

distribution, and Fig. 3(a) shows that the data cache is the

most vulnerable unit to BTI and the register file is the least

vulnerable unit to BTI. HCI is sensitive to the toggle rate,

and Fig. 3(b) shows that the register file is most sensitive to

HCI and the data cache is least sensitive to HCI. Moreover,

for a modern cache operating at a higher frequency, the most

vulnerable block is more likely to be the register file.

Besides activity variation, temperature variation throughout

the microprocessor is also taken into account when modeling

the wearout mechanisms. The netlist was used for layout gen-

eration in the target technology (14 nm). The RC information

from the layout, together with the net activities, was used for

the extraction of the power profile and the consequent thermal

profile, through the power (Synopsys PrimeTime) and the

thermal (COMSOL) simulators, respectively, for every single

block of the microprocessor. The COMSOL [74] heat transfer

module determines the thermal distribution. The equivalent

thermal resistance (RT H ) of 1.472e5 K/W due to FinFET

Fig. 3. Distribution of (a) duty cycle and (b) toggle rate for three memory
blocks in the LEON3 microprocessor.

Fig. 4. Average temperature distribution of the microprocessor implemented
in 14-nm technology while running the Basicmath benchmark.

self-heating (SH) is also incorporated [75]. Fig. 4 shows

the average temperature distribution when the microprocessor

implemented with 14-nm technology is running the Basicmath

benchmark. During the microprocessor’s operations, the activ-

ity and temperature are not constant. We have simulated the

steady-state results while using the maximum power distribu-

tion to obtain a worst case estimate.

All the crucial blocks of a microprocessor are considered in

this experiment. The power ratio for each block is calculated

from PrimeTime. The I-Cache has the highest temperature in

our simulations, because the operations of the microprocessor

are determined by the instructions. Every time, when an

instruction is executed, the I-Cache is involved, while the

D-Cache is relatively less frequently involved. On the other

hand, although Fig. 4 shows that the RF has a higher toggle

rate than the I-Cache, the I-Cache has a higher temperature

because of its much larger size and the larger number of

bits involved during each operation. Meanwhile, Dtags has

a lower temperature, since only a successful comparison of

tags is accompanied with a read operation on the cache block,

which involves more bits than the tags. Also, Dtags has a much

smaller size than the D-Cache block.
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Fig. 5. DC sweep for (a) write, (b) hold, and (c) read SNMs, under various
stress conditions. V1 and V2 represent the input and output voltages of the
two inverters forming the inverter loop in the SRAM cell. All the simulations
are obtained for 14-nm technology. The simulations vary depending on the
gate length, duty cycle, transition rate, and temperature randomly. Ten sample
curves are shown. The results confirm that the read SNM is the smallest (most
important) for all possible sets of parameters.

IV. SRAM RELIABILITY CHARACTERIZATION

A. Performance Degradation Analysis

SRAMs are characterized with several performance metrics.

These include the read/write/hold SNMs, minimum voltage for

state retention (vdd-min-ret), read delay and power, write delay

and power, and the leakage power during hold.

The SNMs are defined as the minimum dc noise voltage

necessary to change the state of an SRAM cell.

The stability margins are extracted by fitting squares

between the SNM curves and observing the diagonal length

of the smaller of the two squares [76]. While measuring the

SNM, the inverter loop is first opened to form two inverters,

and then the input–output curves are obtained by sweeping the

input voltage. The SNM is calculated from fitting the squares

between the input–output curves. The read margin is measured

with the access transistors turned ON and BL/BLB at Vdd (the

supply voltage). The write margin is the minimum voltage

needed to flip the state of the cell, with the access transistors

turned on and BL/BLB at their own voltages (0/1 for write 0,

and 1/0 for write 1). The hold margin is measured when the

access transistors are turned off. Vdd-min-ret is the minimum

voltage in which the SRAM retains its state. Finally, delay and

power are also extracted with SPICE simulations.

Fig. 5 shows the input–output curves of the SRAM inverters,

with squares inserted to measure the noise margins (write,

hold, and read). As shown in Fig. 5, the read SNM is the small-

est of the SNMs for various device dimensions (gate length)

and stress conditions (duty cycle, transition rate, temperature).

Therefore, we only consider the read SNM among the SNMs

when determining the cell failure probability in the next step.

With the increase in degradation, when any of the seven

metrics degrades to a predefined threshold, the SRAM cell

Fig. 6. Framework for MC simulation for FinFET SRAM cell degradation.

is considered to have failed. In this article, MC simulations

in HSPICE were implemented to obtain 2000 samples for

each performance metric for each stress condition considered.

Fig. 6 shows our detailed simulation flow. First, the cell’s

device information, workload, temperature, and stress time

are fed to front-end wearout mechanism models to obtain

the corresponding parameters, such as trap density shifts and

distributions and the TBD relevant to GTDDB. Then the failure

probability based on time to the first BD distribution and

the time to post-BD distribution are calculated with (8). The

exact leakage current distribution is obtained from the current

growth model and the GTDDB failure probability. The ratio

of leakage current from the gate to the drain versus the gate

to the source is assumed to be uniformly distributed between

0 and 1 for each device [35]. Third, the SRAM cell netlist

is augmented with parameters predicted by the degradation

mechanisms. Finally, the HSPICE MC simulations are per-

formed to get various performance degradation distributions.

Post analysis is needed for data display and to compute the

cells’ failure probability.

Fig. 7 shows the degradation of the read SNM, Vdd-

min-ret, read delay and power, write delay and power, and

hold (leakage) power of a memory cell with a 20% duty cycle

and a 10 transitions/µs transition rate. It shows a comparison

between degradation due to all front-end mechanisms, due to

NBTI and GTDDB, and due to NBTI and HCI. At the 106 s

time point, NBTI and HCI severely degrade the read SNM and

Vdd-min-ret and improve hold power, while read delay and

power and write delay and power are relatively unaffected.

When NBTI and GTDDB are considered simultaneously,

both read SNM and Vdd-min-ret degrade, while the other

performance metrics are not obviously affected. The different

shift direction of Vdd-min-ret introduced by GTDDB is caused

by the fact that the inverters’ state is easier to flip if the

pull-down (PD) nFETs have a higher gate leakage current.

Therefore, the overall Vdd-min-ret gets higher (worse) with

GTDDB.

When NBTI, HCI, and GTDDB are present, the read SNM

and Vdd-min-ret degrade more in comparison with NBTI and

GTDDB. We should also note that the HCI effect has a strong

dependence on the operating frequency. Throughout this arti-

cle, the LEON3 microprocessor is set to run at 250 MHz [76].

For this situation, BTI is dominant and HCI has a smaller

influence. HCI would have more influence when the operating

frequency reaches the GHz range.
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Fig. 7. Degradation of (a) read SNM, (b) Vdd-min-ret, (c) read delay, (d) read
power, (e) write delay, (f) write power, and (g) hold power of SRAM cells
under different combinations of wearout mechanisms. All curves assume that
the cell has experienced a 20% duty cycle and a 10 transitions/µs transition
rate. All simulations were obtained for 14-nm technology.

B. Memory PF Characterization

When any of the performance metrics mentioned in

Section IV-A degrades to a predefined threshold, the SRAM

cell is said to have failed, and thus the PF of the cell is

obtained. Using MC simulations, the PF of an SRAM cell

at each time point is obtained for the given performance

distributions and the constraints.

Running SPICE simulations for each SRAM cell is very

computationally expensive. To manage the large volume of

SRAM cells and to limit the number of SPICE simulations,

we partition both static stress probability and switching activ-

ity into states to balance the accuracy and computational cost

of the simulations for NBTI, GTDDB, HCI, and RTN. The

cells in the same stress state have the same degradation.

Fig. 8. Failure probability evolution of an SRAM cell when it is in a specific
stress state. Each stress state is a combination of the duty-cycle state and the
toggle-rate state. Four stress states are shown in this figure. Note that the
figure shows limiting cases, which do not occur in practice (see Fig. 3). For
example, “0% duty cycle + 100% toggle” and “50% duty cycle and 0%
toggle” are such limiting conditions. These cases are included to illustrate the
trend toward these extremes.

For NBTI and GTDDB, the stress states represent duty

cycles. 0% duty cycle means the cell has 0% time storing a

“1,” while 100% duty cycle corresponds to 100% time storing

a “1.” For HCI, the stress states are proportional to the maxi-

mum observed transition rate, a fraction of the maximum tran-

sition rate. One example of such a distribution of stress states

is illustrated in Fig. 2, for a 32-kb data cache. Note that the

stress distribution not only depends on the applications being

run, but also depends on the memory allocation of the cache

system, which will be discussed in detail in Section V. When

NBTI, GTDDB, and HCI are combined, the stress states are

combinations of the duty-cycle state and the toggle-rate state.

For example, a stress state could have a low duty cycle and a

high toggle rate, or a high duty cycle and a low toggle rate.

Since degradation and process variations are considered, the

performance degradation of each SRAM cell is a distribution

rather than a fixed value. Because we consider all the cells

in the same stress state to have the same stress, all the cells

in one stress state share the same degradation distribution at

each stress time point. By running MC simulations in HSPICE,

the performance distribution is computed for each stress state

at each time point. The PF of each cell is calculated as the

fraction of performance distributions whose values exceed

their predefined threshold values. An example of a failure

probability after various stress times for four different stress

states is illustrated in Fig. 8 for the combined effect of NBTI,

HCI, GTDDB, and RTN.

As can be seen from this figure, an SRAM cell has a lower

probability of failure when it has a 50% duty cycle and a 0%

toggle rate. Moreover, higher toggle rates result in a worse

failure probability. The failure probability distribution of all

stress states is characterized for two different temperatures,

that is, temperature is partitioned into two states.

The PF of a word is then calculated by

PFword = 1−

N
∏

i=1

(1 − PFbit i ) (14)

where PFword is the PF of a word, PFbit is the PF of a bit, and

N is the number of bits in one word. The word size is N = 32
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for the data cache of the LEON3. Since PFbit changes as a

function of time, PFword also changes as a function of time.

If the SRAM does not use error-correcting codes, the mem-

ory fails when the first cell fails to work. The PF of the SRAM

block is obtained accordingly as a function of time

PFSRAM = 1−

Nword
∏

i=1

(1 − PFbiti ) (15)

where PFSRAM is the PF of the whole memory block, PFwordi

is the PF of word i and Nword is the number of words.

Error-correcting codes (ECCs) can ensure that a mem-

ory system can tolerate faults. Bose-Chaudhun-Hocquenghem

(BCH) codes [77] require seven additional bits per word and

can correct one bit per word. The relationship between failures

of single bits, Pfail, and the failure of the word is modeled with

a binomial distribution. For a word containing N bits, the PF

of a word, Fword, is

PFword = 1−

N
∏

i=1

(1 − PFbiti )

−

N
∑

j=1

⎡

⎣PFbit j ∗
∏

i �= j

(1 − PFbit i )

⎤

⎦ . (16)

The word size when there are ECCs is N = 39 for the

D-Cache, I-Cache, and RF blocks of the LEON3. The failure

probability of the memory, PFSRAM, is calculated using (15).

V. PERFORMANCE–RELIABILITY ANALYSIS FOR

DIFFERENT CACHE CONFIGURATIONS

Based on the method for memory lifetime characteriza-

tion in Section IV, the reliability (failure probability) of

the LEON3 L1 data cache was studied for different cache

configurations: associativity, cache line size, and cache size.

Since the least-recently-used (LRU) replacement algorithm is

found to cause the highest failure probability compared with

the least recently replaced (LRR) and Random algorithms,

we take it as the default setting [78]. The impact of ECCs

is also analyzed.

Six representative benchmarks from MiBench [73] were

run on the microprocessor: Basicmath, Qsort, SHA, cyclic

redundancy check (CRC) 32, FFT, and Dijkstra. These may

not be the most advanced benchmarks, but they easily run

on the LEON3 microprocessor and are sufficient to illustrate

our methodology. The Basicmath benchmark performs simple

mathematical calculations that often do not have dedicated

hardware support in embedded processors. Qsort sorts a large

array of strings into ascending order using the well-known

quick sort algorithm. SHA is the secure hash algorithm that

produces a 160-bit digest for a given input. CRC32 is a

benchmark performing a 32-bit CRC on a file to detect errors

in data transmission. FFT performs a Fast Fourier Transform

(FFT) on an array of data. The Dijkstra benchmark constructs

a large graph in an adjacency matrix representation and then

calculates the shortest path between every pair of nodes using

the repeated application of Dijkstra’s algorithm.

The aging assessment framework in Section III was used

to extract the duty-cycle/toggle-rate and temperature of the

Fig. 9. Duty-cycle distributions of SRAM cells in a two-way 32-kb data
cache while the microprocessor is running six different benchmarks.

data cache for different cache designs and for the six applica-

tions above. The method for memory lifetime characterization

described in Section IV was then used to calculate the failure

probability of the data cache while running each application.

Fig. 9 shows the duty-cycle distribution for each application

using a two-way 32-kb data cache with a 16-byte line size.

Clearly, logic “0” is the predominant state.

Memories in a processor contain more 0s than 1s throughout

normal operations [79]. In general, “0” is stored longer than

“1” because the memory is usually initialized to zero when

it is allocated. Thus, even if there is an equal likelihood of

an application writing a “0” or a “1” in any bit position, this

initialization always means that “0” is stored longer. Other

reasons for “0” being stored longer are that false Boolean

values and NULL pointers are represented with zero, as well

as most data in dense-form sparse matrices [77].

According to the performance requirements and the reliabil-

ity budget, cache designers could optimize a cache by balanc-

ing performance, reliability, and area requirements. We define

a performance metric HPS which is a function of HR, PF, and

cache area (Area)

HPS =
(AHRHR − BHR)

nHR

(APFPF−BPF)nPF(AAreaArea−BArea)nArea
. (17)

In general, our target is to obtain a high HR and low PF

at a suitable cache area. We set the constants according to

the importance of the various requirements, so that a higher

HPS results in a better design. Therefore, a cache designer

can optimize HPS to achieve the best possible design. In (17),

AHR, BHR, nHR, APF, BPF, nPF, AArea, BArea, and nArea are

constants that can be adjusted based on the design require-

ments. In our study, AHR, nHR, APF, BPF, nPF, BArea, and nArea

are fixed at 1.0e−4, 5.0, 1.0e2, 0, 0.1, 0, and 1.5, respectively.

BHR and AArea are chosen to be different for each bench-

mark to make the impact of configuration parameters under

various benchmarks observable in a similar range. They are

selected as 9.6e3 and 0.7629 µm−2 for Basicmath, 7.58e3 and

1.63e2 µm−2 for CRC32, 6.2e3 and 8.54e2 µm−2 for Dijkstra,

7.24e3 and 4.11e2 µm−2 for FFT, 7.8e3 and 1.16e2 µm−2 for

Qsort, and 9.74e3 and 0.2154 µm−2 for SHA, respectively.

A. Associativity

Cache associativity can be taken as the method to select

bookshelves of different shapes and sizes. Caches fall into one

of three categories: direct mapped, n-way set associative, and

fully associative. Direct mapped caches are designed so that
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Fig. 10. Failure probability as a function of time for one-way associativity
with the Basicmath benchmark while all the wearout mechanisms are included,
GTDDB is excluded, and both GTDDB and RTN are excluded.

a cache block can only go in one spot in the cache. Two-way

set associative caches are made up of sets such that each set

can fit into two blocks, while in a four-way set associative

cache, each set fits into four blocks. For a fully associative

cache, a cache block can go anywhere in the cache. It is worth

noting that the directly mapped cache is actually a one-way set

associative cache and a fully associative cache of m blocks is

an m-way set associative cache. Higher associativity improves

the HR, but reduces the cycle time and costs more area because

of the need for more comparators. The L1 data cache of the

LEON3 was implemented with three different associativities:

one-way, two-way, and four-way, while the cache line size

(16 byte), cache size (32 kb), and the replacement algorithm

(LRU) were kept the same.

Fig. 10 shows the PF as a function of time for one-way

associativity under the Basicmath benchmark, with different

combinations of wearout mechanisms. According to a com-

parison of the PF, it is found that GTDDB and RTN affect

reliability significantly. GTDDB impacts SRAM reliability by

introducing leakage currents which impact device performance

metrics and cause them to shift more easily. As a result, the

SRAM becomes more sensitive to NBTI and HCI. Similarly,

since the interface trap density due to NBTI and HCI accumu-

lates, the impact of RTN on the failure probability increases

with stress time. Therefore, it is necessary to include all the

wearout mechanisms in simulations.

Fig. 11 shows the comparison of failure probability at 106 s

for three associativities and two benchmarks. For illustration

purposes, the results from two applications are shown: Basic-

math and Dijkstra, since other applications produce the same

trend. Note that the impact of associativity on the failure

probability is highly related to the mechanisms considered,

while the impact of associativity is small.

The HRs for one-way, two-way, and four-way associativities

are 96.12%, 96.33%, 96.36%, respectively, for Basicmath,

and are 62.23%, 64.81%, 65.54%, respectively, for Dijkstra.

Higher associativity results in a higher HR, but also increases

the failure probability. A higher HR produces fewer misses,

and thus the cells are more likely to keep their stored values

unchanged, which aggravates NBTI and GTDDB. From the

perspective of aging, a cache miss is potentially useful as

it flips the value stored in a cell and mitigates NBTI and

GTDDB.

Fig. 11. Comparison of the failure probability at 106 s for the three
associativity algorithms and two benchmarks with (a) all wearout mechanisms
included, (b) GTDDB excluded, and (c) both GTDDB and RTN excluded.

HPS varies with associativity under different benchmarks.

For example, when the benchmark is Basicmath with one-way

associativity, the values of HPS are 0.123, 0.138, and 0.177.

When the associativity is two-way, the values of HPS are

19.35, 21.7, and 27.86, respectively. When the associativity

is four-way, the values of HPS are 29.88, 33.44, and 42.82,

respectively. Four-way associativity is the optimal option

with respect to HPS. The trend is similar for the Dijkstra

benchmark.

B. Cache Line Size

Data is transferred between the main memory and the cache

in blocks of fixed size, called cache lines. When a cache line is

copied from the main memory into the cache, a cache entry is

created. The cache entry includes the copied data as well as the

requested memory location (called a Tag). We implemented

the data cache with two different cache line sizes: 16- and

32 byte, while the two-way associativity, cache size (32 kb),

and the replacement algorithm (LRU) are kept the same.

Fig. 12 shows the percentage reduction of the PF at

106 s and the percentage improvement of the HR of the

six benchmarks with a 32-byte cache line compared with a

16-byte cache line. The simulation results with all mechanisms

considered, with GTDDB excluded, and with GTDDB & RTN

excluded, are shown. Obviously, it is necessary to include all

wearout mechanisms in the analysis. It is observed that the

32-byte cache line has a lower failure probability than the

16-byte cache line for all six benchmarks. When including all

wearout mechanisms, the 32-byte cache line always has an

improved failure probability in comparison with the 16-byte

cache line. Except for Basicmath and SHA, where there is

almost no hit-rate improvement, the 32-byte cache line also

achieves a better performance than the 16-byte cache line.
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Fig. 12. Percentage reduction in the PF at 106 s and the percentage
improvement in the HR, for six applications, with all wearout mechanisms
included, GTDDB excluded, and both GTDDB and RTN excluded. The
improved/reduced value is defined as the improvement/reduction of using a
32-byte cache line compared to a 16-byte line.

Fig. 13. Percentage reduction of the PF at 106 s, for six applications, with all
wearout mechanisms included. The percentage reduction is defined for cache
line sizes with the 32-, 64-, and 128-byte cache lines in comparison with the
16-byte line.

It can be seen that compared to the case without GTDDB,

the PF reduction is lower for the case with all the wearout

mechanisms for some benchmarks. The reason is that although

a larger cache line size causes the overall duty cycle distribu-

tions to get closer to 50%, the sensitivity of the PF reduction

for cells with a duty cycle close to 50% is different for the

cases with all wearout mechanisms included and the cases

with GTDDB excluded. It’s found that when the duty cycle is

very close to 50%, the PF reduction of cells with all wearout

mechanisms considered is lower than that of the cases with

GTDDB excluded.

Overall, the 32-byte cache line is better than the 16-byte

cache line in both performance and reliability, although this

improvement is not very large. This observation is a little

counter-intuitive as we have shown that a higher HR results

in lower reliability in Section V-A. So, it might be straightfor-

ward to think that the 32-byte cache line would have a higher

failure probability because of its higher HR. However, a cache

miss in a 32-byte cache line produces recovery cycles for up

to 256 (32×8) SRAM cells, which is twice as many as with a

16-byte cache line (16 × 8 SRAM cells). Therefore, although

a 32-byte cache line has fewer misses, it actually has a larger

number of NBTI stress recovery cycles than a 16-byte cache

line, which results in improved reliability. Fig. 13 shows the

percentage reduction of the PF at 106 s, with 32-, 64-, and

128-byte cache lines when compared with a 16-byte cache

line. The larger cache line size helps improve the PF.

Fig. 14. Hit rate and the PF at 106 s for five different cache sizes under
the Basicmath application, with all wearout mechanisms included, GTDDB
excluded, and both GTDDB and RTN excluded.

Fig. 15. HPS as a function of cache size, with all wearout mechanisms
included, GTDDB excluded, and both GTDDB and RTN excluded. The
benchmark is Basicmath.

The differences among applications for cache line size

are because the activity shifts differently under various

applications. Since different applications cause different data

to be kept in the cache, the impact on the cells’ activity

is not always the same. The improved PF also varies with

application.

Obviously, cache line size impacts HPS. If the benchmark

is FFT, the values of HPS are 19.94, 118.93, 139.21, and

188.02 with line sizes of 16, 32, 64, and 128 bytes, respec-

tively. The trend is similar for the benchmark Qsort.

C. Cache Size

The size of the data cache is another important metric in

cache system design. In our experiments, the data cache was

implemented with five different cache sizes: 4, 16, 32, 64,

and 128 kb, while the associativity (two-way), cache line size

(16 byte), and replacement algorithm (LRU) were kept the

same. Fig. 14 shows the HR and failure probability (at 106 s)

for five different cache sizes and the Basicmath application.

The failure probability increases dramatically as the cache size

increases because the failure probability is larger when there

are more SRAM cells.

It is also observed that the HR increases as the cache size

increases. However, when the cache size is larger than 32 kb,

little improvement is seen in the HR.

According to the performance requirements and the reliabil-

ity budget, cache designers could determine an optimal cache

size balancing both performance and reliability requirements,

by maximizing HPS, as shown in Fig. 15. As can be seen from

the figure, we may not prefer a very large cache because large
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Fig. 16. (a) HPS as a function of cache size, (b) average duty cycle as a
function cache size, and (c) HPS as a function of average duty cycle, for four
applications, with all wearout mechanisms included.

caches result in a large area and high power consumption.

According to the HPS distribution in Fig. 15, we can say

that a 32-kb cache size provides an optimal design. When

including different wearout mechanisms, the optimal solution

does not change. The parameters of the HPS function are just

an example, and the methodology can be extended to study

more complicated cases.

Fig. 16(a)–(c) shows HPS as a function of cache size, the

average duty cycle as a function of cache size, and HPS as

a function of the average duty cycle for four applications,

respectively, while the associativity (two-way), cache line size

(16 byte), and replacement algorithm (LRU) were kept the

same. In Fig. 16(c), HPS is a function of the average duty

cycle, which is obtained from Fig. 16(a) and (b), by sweep-

ing cache size from small to large. Here, all the wearout

mechanisms are included. First, it is found that the cache

size for optimal HPS is impacted by the application. Second,

the average duty cycle always gets lower with the increase in

cache size. Third, the cache size for optimal HPS gets higher

Fig. 17. PF of the two-way 32-kb data cache with and without ECCs as a
function of time for the Basicmath application, with all wearout mechanisms
included, GTDDB excluded, and both GTDDB and RTN excluded.

if the overall duty-cycle distribution gets lower. The optimal

HPS is affected by the average duty cycle of the applications.

D. Error-Correcting Codes

ECCs detect and correct the most common sources of

internal data corruption. ECCs add some redundancy (some

extra bits) to check the consistency of the data and to recover

corrupted data. The word size containing the ECC codes for

the data cache of the LEON3 is N = 39 when the implemented

ECCs are designed to correct single-bit errors.

The failure probabilities of the two-way 32-kb data cache

with and without ECCs are shown in Fig. 17 as a func-

tion of time, with all the wearout mechanisms included,

GTDDB excluded, and both GTDDB and RTN excluded. The

Basicmath benchmark is illustrated as an example, and other

benchmarks produce similar results. It can be seen that ECCs

lead to a substantial improvement in the failure probability.

In fact, increasing the number of bits corrected always lowers

the PF.

Although ECCs lower the PF, the area increases. For the

example shown in Fig. 18, when ECCs are not considered,

the values of HPS are 19.21, 21.51, and 27.53 with all wearout

mechanisms included. With ECCs, the values of HPS are

33.38, 42.5, and 68.5 with all wearout mechanisms included.

On the basis of the case considered here, ECCs improve HPS.

VI. CONCLUSION

NBTI, HCI, GTDDB, and RTN progressively degrade the

parameters of transistors, such as threshold voltage, carrier

mobility, fringe capacitance, gate leakage current, resulting in

stability degradation of SRAMs. These wearout mechanisms

are especially critical for the transistors of first-level (L1)

caches, which are frequently accessed and continuously aging.

In this article, we have studied the impact of a variety

of wearout mechanisms on SRAM lifetime. The wearout

mechanisms are sensitive to two parameters which are a

function of the application running on the microprocessor,

the duty cycle and the toggle rate. We have found that if the

application running on the SRAM has a duty-cycle distribution

closer to 50% and a toggle rate closer to 0%, the PF is lower.

Hence, applications whose characteristics are closer to these

limits have better lifetimes.
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We have also presented the reliability and performance

of the data cache while varying four different configuration

parameters: associativity, cache line size, cache size, and

ECCs. A general rule is that higher performance (higher HR)

results in lower reliability (higher failure probability). This is

because the additional resources needed to improve the HR

degrade lifetime.

One exception of this rule happens for different cache line

sizes. The 32-byte cache line is better than the 16-byte cache

line in both performance and reliability. One cache miss for

a 32-byte cache line can recover as many as 256 (32 × 8)

cells from BTI stress, which is twice as many as for a 16-byte

cache line. Therefore, despite the fact that the 32-byte cache

line has fewer cache misses, it actually results in more NBTI

stress recovery. Thus, the 32-byte cache line achieves higher

performance and better reliability.

Cache size is of great significance to both cache perfor-

mance and reliability. It is observed that when the cache

size increases to larger than 16 kb, the cache reliability

dramatically drops, while the performance (HR) shows very

limited improvement. Moreover, ECCs improve reliability at

the cost of area and power overhead. The two configuration

parameters that most strongly impacted reliability are cache

size and ECCs.

It is important to include all of the wearout mechanisms

while evaluating the PF of a cache. Then, based on the

user-defined importance of cache area, HR, and PF, we can

obtain the target cache configuration which results in an

optimal HPS.

Overall, the proposed framework can efficiently evalu-

ate the performance and reliability of the cache memory

and can provide insights to help cache designers optimize

performance–reliability tradeoffs by selecting the appropriate

cache configurations based on the specification budget and

lifetime requirements. Instead of just determining whether

the duty-cycle distribution is closer to 50%, users can define

requirements on HR, PF, and cache size to obtain the best

cache configuration at a specific stress time.
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