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Abstract

We construct ergodic absolutely continuous invariant probability measures
for an open class of non-hyperbolic surface maps introduced by [V2], who
showed that they exhibit two positive Lyapunov exponents at almost every
point. Our approach involves an inducing procedure, based on the notion of
hyperbolic time that we introduce here, and contains a theorem of existence
of absolutely continuous invariant measures for multidimensional piecewise
expanding maps with countably many domains of smoothness.

Résumé

Nous construisons des probabilités invariantes absolument continues ergodiques
pour une classe ouverte de transformations non hyperboliques dans des sur-
faces. Cette classe de transformations a été proposée par [V2], qui a prouvé
que ces transformations ont deux exposants de Lyapunov positives presque
partout. Notre approche utilise une procedure d’induction, basé sur la no-
tion de temps hyperboliques que nous présentons ici, et contient un théorème
d’existence des mesures invariantes absolument continues pour des tranforma-
tions dilatantes par morceaux ayant un nombre infini de domains de differen-
tiabilité.
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1 Introduction

Let ϕ : M → M be a smooth transformation on a compact manifold M . Given a
map f : M → R, one is interested in “observing” f along the orbits of points x ∈ M .
Even in cases of very simple transformations the sequences (time-series) f(ϕj(x)),
j ≥ 0, may have a rather complicated behaviour. Moreover, the transformations
may present sensitivity on the initial conditions, i.e. a small variation on the initial
point x ∈ M gives rise to a completely different behaviour of its time-series. A
more realistic task (but far from being simple) consists of studying the asymptotic
time-averages of such sequences for a “large” set of points x ∈ M . In this setting,
Birkhoff’s ergodic theorem says that if µ is a ϕ-invariant finite ergodic measure,
then

lim
n→+∞

1

n

n−1∑
j=0

f(ϕj(x)) =

∫

M

fdµ

for µ almost every point x ∈ M and every integrable map f : M → R. However, a
full µ measure set may have no special “physical” meaning, and one is particularly
interested in describing the time-averages for a positive Lebesgue measure set of
points in M .

The previous considerations motivate the following definition. We say that a
finite measure µ in M is a Sinai-Ruelle-Bowen measure (SRB measure, for short)
for the transformation ϕ : M → M if it is ϕ-invariant and there is a positive
Lebesgue measure set B ⊂ M such that for any continuous map f : M → R one
has

lim
n→+∞

1

n

n−1∑
j=0

f(ϕj(x)) =

∫

M

fdµ for every x ∈ B.

In the light of Riesz’s theorem, this in particular means that the measure µ may
be “seen” by computing the time-averages for a set of points with positive Lebesgue
probability. This kind of measure was introduced by Sinai for Anosov diffeomor-
phisms [S1], and later extended by Ruelle and Bowen for Axiom A diffeomorphisms
and flows [R1, BR]. For non-hyperbolic systems the existence of such measures
may be a very hard mathematical problem. Jakobson, in his celebrated paper [J],
constructed SRB measures for quadratic transformations on the interval. Another
important work was [BY] (based on the previous work [BC2]), where SRB measures
were constructed for Hénon two dimensional maps exhibiting strange attractors. All
these SRB measures are, in a sense, one-dimensional: they are absolutely continuous
with respect to Lebesgue measure on the interval, in the first case, respectively with
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respect to Lebesgue measure along one-dimensional local unstable manifolds, in the
Hénon case. (The SRB property is a more or less direct consequence of this absolute
continuity property together with ergodicity and absolute continuity of the stable
foliation).

Hyperbolic systems apart, very little is known on this subject for systems with
multidimensional expansion. Our goal in this work is to set up a framework for the
study of statistical properties of systems with nonuniform expansion. In doing this
we are primarily motivated by the (robust) examples of such systems constructed
by [V2]. However, the techniques we introduce here should prove useful in much
greater generality. Indeed, an application of these ideas is being given in [ABV],
where partially hyperbolic systems are considered.

In order to state our first theorem, let us briefly describe the examples of [V2].
Let ϕα : S1 ×R→ S1 ×R be a C3 map given by ϕα(θ, x) = (ĝ(θ), f̂(θ, x)), where ĝ
is a uniformly expanding map of the circle S1 = R/Z, and f̂(θ, x) = a(θ)− x2 with
a(θ) = a0 +αb(θ). We choose a0 ∈ (1, 2) in such a way that x = 0 is pre-periodic for
q(x) = a0−x2 and take b : S1 → S1 a Morse function. For the sake of definiteness we
assume that b(θ) = sin(2πθ) and ĝ is a linear expanding map of the form ĝ(θ) = dθ
(mod 1). It is easy to check that for α small enough there is an interval I ⊂ (−2, 2)
for which ϕα(S1 × I) ⊂ int(S1 × I).

The results in [V2] show that for d ≥ 16 and ϕ in a C3(S1 × I) neighborhood of
the map ϕα, there are two positive Lyapunov exponents almost everywhere. More
precisely, it is proved that there is some constant λ > 0 such that

lim inf
n→+∞

1

n
log ‖Dϕn(θ, x)v‖ ≥ λ

for Lebesgue almost every (θ, x) ∈ S1 × I and every non-zero v ∈ T(θ,x)(S
1 × I).

Here we prove the following result:

Theorem A For d ≥ 16 and α sufficiently small, the map ϕα has a finite absolutely
continuous (with respect to the bidimensional Lebesgue measure) invariant measure
µ∗. Moreover, the same holds for every map ϕ in a sufficiently small neighborhood
of ϕα in the C3(S1 × I) topology.

To the best of our knowledge, these are the first examples of nonuniformly ex-
panding systems with invariant measures absolutely continuous with respect to
higher dimensional Lebesgue measure. Let us mention that [BPV] exhibits SRB
measures for some multidimensional Lorenz-like attractors of flows. However, their
situation is quite close to being hyperbolic, since they deal with maps which are
everywhere expanding (rate of expansion bounded away from 1).

3



We will prove that ϕ has only finitely many ergodic absolutely continuous in-
variant probability measures – from which it follows that any absolutely continuous
invariant probability measure is a linear combination of such finite number of ergodic
ones. Then, as a consequence of Birkhoff’s ergodic theorem we get:

Corollary Every ϕ in a sufficiently small neighborhood of ϕα as in the theorem
above has an SRB measure.

In fact one can say more: in a joint work with M. Viana we show that ϕ is topo-
logically mixing and ergodic with respect to Lebesgue measure. As a consequence,
the SRB measure is unique, ergodic, and its support is the whole attractor.

Now we give a sketch of the proof of Theorem A. A basic idea is to introduce
a new map φ obtained by iterating the initial map ϕ until we get some (uniform)
expanding behaviour. This so-called inducing procedure goes back, at least to [J],
but there is a crucial difference in our setting with respect to nonuniformly hyperbolic
situations treated in previous works. Both quadratic maps and Hénon maps combine
hyperbolic behaviour in large parts of the domain with non-hyperbolic behaviour
in certain critical region, and that is also true for our systems. On the other hand,
all the approaches in these previous cases rely on the existence of a well-defined
recovering period during which the non-hyperbolic effect of the critical region is
compensated for. This last ingredient does not exist in our case, which is related to
the fact that the critical region {det ϕ = 0} intersects itself when positively iterated.

Instead, the mechanism that permits us to obtain the expanding behaviour is of
a statistical type, and will be implemented by introducing the notion of hyperbolic
times for points in S1 × I. Roughly speaking, a hyperbolic time for (θ, x) ∈ S1 × I
is an iterate h ∈ Z+ for which ‖Dϕ−k(ϕh(θ, x))‖ contracts for every 1 ≤ k ≤ h
(uniformly on (θ, x) and h, and exponentially on k). The existence of positive
Lyapunov exponents almost everywhere implies the existence of such hyperbolic
times for most points in S1 × I. Furthermore, we are able to prove that Lebesgue
almost every point in S1 × I has infinitely many hyperbolic times.

In Section 3 we use these hyperbolic times to define a partition R into rectangles
of S1 × I and a map h : R → Z+ such that for each R ∈ R the map ϕh(R)|int(R)
is a diffeomorphism onto its image and exhibits uniform expanding behaviour. It is
in this way that we associate to the map ϕ a multidimensional piecewise expanding
map φ from S1 × I into itself.

The ergodic properties of one-dimensional piecewise expanding maps have been
studied thoroughly, starting form [LY], but the multidimensional case is much
less understood. [K] proved the existence of absolutely continuous invariant mea-

4



sures (a.c.i.m., for short) for piecewise analytic transformations on the unit two-
dimensional square with the domains of smoothness having analytic boundaries. In
general dimension, [GB1] proved the existence of a.c.i.m.’s for C2 piecewise expand-
ing maps with finitely many domains of smoothness having C2 piecewise boundaries,
with angles at the vertices bounded away from zero. They always assume the map
to have only finitely many domains of smoothness, and so these results are not suffi-
cient for our purposes. For this reason, we prove in Section 5 the following result on
piecewise expanding maps with countably many smoothness domains, whose proof
we give in general dimension.

Theorem B Let ψ be a C2 piecewise expanding map from the bounded region R ⊂ Rn

into itself and {Ri}+∞
i=1 its smoothness domains. If ψ has bounded distortion and the

sets ψ(Ri) have C2 piecewise boundaries with angles bounded away from zero and
“large size” (see Section 5 for the precise statements), then ψ has a finite a.c.i.m..

Recent developments on this subject include [A],[B],[S],[T]. We will use theo-
rem B to prove that the map φ described above has some finite a.c.i.m. µ. Indeed,
the partition R is constructed in such a way that the iterate h(R) is a hyperbolic
time for the points in R. Using this, and consequently the backward uniform con-
tractive property, we prove in Section 4 that φ has a uniform bounded distortion
property and, moreover, satisfies the geometric hypotheses of Theorem B.

The existence of the a.c.i.m. µ∗ is then a direct consequence of the existence of
the a.c.i.m. µ. From the integrability of the hyperbolic time map h and the density
of µ we also deduce that µ∗ is finite.

Acknowledgements: I am thankful to M. Viana for having posed me this problem
and for many fruitful mathematical conversations. I also thank P. Collet, G. Keller
and C. Liverani for valuable references concerning higher dimensional expanding
maps. Finally, I acknowledge partial financial support from IMPA/CNPq, Fundação
Calouste Gulbenkian and JNICT.

2 Hyperbolic times

The goal of this section is to recall some derivative estimates of [V2] and introduce
the notion of hyperbolic times for points in S1× I. We first assume that the map ϕ
has the special form

ϕ(θ, x) = (g(θ), f(θ, x)), with ∂xf(θ, x) = 0 if and only if x = 0, (1)
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and prove the conclusion of Theorem A for every C2 map ϕ satisfying

‖ϕ− ϕα‖C2 ≤ α on S1 × I. (2)

In Section 7 we show how to remove assumption (1) above.
Our estimates on the derivative depend in an important way on the returns of

orbits to the neighborhood S1× [−√α,
√

α ] of the critical set {x = 0}. For this, we
introduce a partition Q of I (mod 0) into the following intervals:

Ir = (
√

αe−r,
√

αe−(r−1) ], for r ≥ 1,

Ir = −I−r, for r ≤ −1,

I0+ = (
√

α, e
√

α ] and I0− = −I0+ ,

I+ =
(
I\[−e

√
α, e

√
α ]

) ∩ R+ and I− =
(
I\[−e

√
α, e

√
α ]

) ∩ R−.

We also introduce the following notation:

I+
r = Ir−1 ∪ Ir ∪ Ir+1, for |r| ≥ 1,

I+
0+ = I+ ∪ I0+ ∪ I1 and I+

0− = I− ∪ I0− ∪ I−1

(here we assume that Ir−1 = I0+ if r = 1, and Ir+1 = I0− if r = −1). These families
of intervals induce in a natural way analogous ones at each fiber of the type {θ}× I;
for the sake of notational simplicity no specification will be made on which fiber
they are, since this will be always clear in our settings.

In what follows we assume that α > 0 is a sufficiently small number independent
of any other constant. Furthermore, for each new constant appearing we will always
specify when it depends on α. Given (θ, x) ∈ S1 × I and j ≥ 0 we define (θj, xj) =
ϕj(θ, x). Following [V2], for the next lemma we take η a positive constant smaller
than 1/3 depending only on the quadratic map q.

Lemma 2.1. There are constants C0, C1 > 0 such that for every small α we have
an integer N(α) satisfying:

(a) If |x| < 2
√

α, then
∏N(α)−1

j=0 |∂xf(θj, xj)| ≥ |x|α−1+η.

(b) If |x| < 2
√

α, then |xj| >
√

α for every j = 1, . . . , N(α).

(c) C0 log(1/α) ≤ N(α) ≤ C1 log(1/α).
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Proof. Item (a) was proved in [V2]. We will follow through the ideas of its proof, and
derive items (b) and (c). Throughout this proof, C will denote any large constant
depending only on the map q. Take l ≥ 1 the smallest integer for which z = ql(0) is
a periodic point for q and let k ≥ 1 be its period. Denote ρk = |(qk)′(z)| and note

that by [S2] we must have ρ > 1. Fix ρ1, ρ2 > 0 with ρ1 < ρ < ρ2 and ρ1 > ρ
1−η/2
2 ,

and take δ0 > 0 small enough in order to obtain

ρk
1 <

k−1∏
j=0

∣∣∂xf(ϕi(σ, y))
∣∣ < ρk

2, whenever |y − z| < δ0

(and α sufficiently small). For (θ, x) ∈ S1 × I and i ≥ 0 we denote di = |xl+ki − z|.
Take δ1 > 0 and α sufficiently small in such a way that

|x| < δ1 ⇒ d0 ≤ Cx2 + Cα < δ0.

If (θ, x) and i ≥ 1 are such that |x| < δ1 and d0, . . . , di−1 < δ0, then di ≤ ρk
2di−1+Cα

and so, inductively,

di ≤ (1 + ρk
2 + · · ·+ ρ

k(i−1)
2 )Cα + ρki

2 d0 ≤ ρki
2 (Cα + Cx2).

If we assume that |x| < 2
√

α, then we have di ≤ ρki
2 Cα. Now we take Ñ(α) ≥ 1

the smallest integer for which ρ
kÑ(α)
2 Cα ≥ δ0, and define N(α) = l + kÑ(α). The

previous considerations imply

di < δ0 for i = 0, . . . , Ñ(α)− 1. (3)

Since 0 is pre-periodic for q, there exists some constant ε > 0 such that |qj(0)| > ε
for every j > 0. From this we deduce that

|x1|, . . . , |xl−1| > ε

2
, whenever |x| < 2

√
α, (4)

as long as α is sufficiently small. Assume from now on that |x| < 2
√

α.

(a) By (1) and (2) we may write ∂xf(θ, x) = xψ(θ, x) with |ψ + 2| < α at every
point (θ, x) ∈ S1 × I. This, together with (4), gives

l−1∏
j=0

|∂xf(θj, xj)| ≥ 1

C
|x|. (5)
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Taking into account that

N(α)−1∏
j=0

|∂xf(θj, xj)| =
l−1∏
j=0

|∂xf(θj, xj)|
Ñ(α)−1∏

i=0

(
k−1∏
j=0

|∂xf(θl+ki+j, xl+ki+j)|
)

,

we deduce from our previous estimates

N(α)−1∏
j=0

|∂xf(θj, xj)| ≥ 1

C
|x|ρkÑ(α)

1 ≥ 1

C
|x|ρ(1−η/2)kÑ(α)

2 ≥ 1

C
|x|α−1+η/2 ≥ |x|α−1+η,

as long as α is sufficiently small.

(b) We know from (3) above that

|xl+ki − z| < δ0 for i = 0, . . . , Ñ(α)− 1. (6)

Let zj = qj(z) for j = 1, . . . , k and choose α and δ0 small enough so that

|y1 − z1|, . . . , |yk − zk| < ε

2
, whenever |y − z| < δ0. (7)

From (6), (7) and our choice of ε we obtain |xj| > ε/2 for j = l, . . . , N(α),
which together with (4) gives |xj| > ε/2 for j = 1, . . . , N(α). We conclude
the proof of this item by taking 2

√
α < ε/2.

(c) Recall that by our choice of Ñ(α) we have ρ
Ñ(α)
2 Cα ≥ δ0 and ρ

k(Ñ(α)−1)
2 Cα <

δ0. Since N(α) = l + kÑ(α) and l, k are fixed, this implies that C0 log(1/α) ≤
N(α) ≤ C1 log(1/α) for some constants C0, C1 > 0 not depending on α.

We have proved the three items of the lemma. tu

The following type of result is well-known in the literature, see e.g. Lemma 1
in [BC1]. In fact Lemma 1 in [BC1] is stated for the family z 7→ 1 − az2 but this
is not important since this is affinely conjugate to x 7→ a − x2, through x = az.
We quote the statement from Lemma 2.5 in [V2], that contains the estimates in the
exact form we shall use them.

Lemma 2.2. There are τ > 1, C2 > 0 and δ > 0 such that for (θ, x) ∈ S1 × I and
k ≥ 1 the following holds:
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(a) If |x0|, . . . , |xk−1| ≥
√

α, then
∏k−1

j=0 |∂xf(θj, xj)| ≥ C2

√
ατ k.

(b) If |x0|, . . . , |xk−1| ≥
√

α and |xk| < δ, then
∏k−1

j=0 |∂xf(θj, xj)| ≥ C2τ
k.

In the sequel we will only consider points (θ, x) ∈ S1 × I whose orbit does not
hit the critical set {x = 0}. This restriction will have no special implication in our
results, since the set of such points has full Lebesgue measure. For each integer
j ≥ 0 we define

rj(θ, x) =

{ |r| if ϕj(θ, x) ∈ Ir with |r| ≥ 1;
0 if ϕj(θ, x) ∈ I\[−√α,

√
α ].

We say that ν ≥ 0 is a return situation for (θ, x) if rν(θ, x) ≥ 1. Let n be some
positive integer and 0 ≤ ν1 ≤ · · · ≤ νs ≤ n− 1 the return situations of (θ, x) from 0
to n− 1. It follows from Lemma 2.1 that for each 1 ≤ i ≤ s

νi+N(α)−1∏
j=νi

|∂xf(θj, xj)| ≥ e−rνi (θ,x)α−1/2+η,

and from Lemma 2.2

ν1−1∏
j=0

|∂xf(θj, xj)| ≥ C2τ
ν1 and

νi+1∏

j=νi+N(α)

|∂xf(θj, xj)| ≥ C2τ
νi+1−νi−N(α).

For the last piece of orbit (if it exists) we use again Lemma 2.2 and obtain

n−1∏
j=νs

|∂xf(θj, xj)| ≥ |∂xf(θνs , xνs)|C2

√
ατn−νs .

Since we may write ∂xf(θ, x) = xψ(θ, x) with |ψ + 2| < α at every point (θ, x) in
S1 × I, we have

|∂xf(θνs , xνs)| ≥ (2− α)
√

αe−rνs (θ,x).

Altogether, this yields the following lower bound for
∏n−1

j=0 |∂xf(θj, xj)|:

exp

(
(n− (s− 1)N(α)) log τ +

s∑
i=1

((
1

2
− η

)
log

1

α
− rνi

(θ, x)

)
− s log C2 − 3

2
log

1

α

)
.
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Considering

Gn(θ, x) =

{
1 ≤ νi ≤ n− 1 : rνi

(θ, x) ≥
(

1

2
− 2η

)
log

1

α

}
,

we have

s∑
i=1

((
1

2
− η

)
log

1

α
− rνi

(θ, x)

)
≥ ηs log

1

α
−

∑

j∈Gn(θ,x)

rj(θ, x)

≥ γsN(α)−
∑

j∈Gn(θ,x)

rj(θ, x) (8)

for some constant γ > 0 not depending on α or n (recall Lemma 2.1). Now we define

c =
1

5
min{γ, log τ}

(note that c is independent of α and n). Taking into account that νi+1− νi ≥ N(α)
for every 1 ≤ i < s, we must have

s ≤ n

N(α)
+ 1 ≤ n

C0 log(1/α)
+ 1,

and so, choosing α small enough, we have s log C2 ≤ cn + log C2 for every n ≥ 1.
Altogether, this yields

n−1∏
j=0

|∂xf(θj, xj)| ≥ exp


5cn−

∑

j∈Gn(θ,x)

rj(θ, x)− cn− log C2 − 3

2
log

1

α




≥ exp


4cn−

∑

j∈Gn(θ,x)

rj(θ, x)− 2 log
1

α


 (9)

for every n ≥ 1, as long as α is sufficiently small.

Lemma 2.3. If (θ, x), (σ, y) are points in S1× I such that rj(θ, x) ≤ rj(σ, y)+4 for
every j = 0, . . . , n− 1, then

n−1∏
j=0

|∂xf(θj, xj)| ≥ exp


3cn−

∑

j∈Gn(σ,y)

rj(σ, y)− 3 log
1

α


 .
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Proof. Let 0 ≤ ν1 ≤ · · · ≤ νs(θ,x) ≤ n − 1 (resp. 0 ≤ µ1 ≤ · · · ≤ µs(σ,y) ≤ n − 1) be
the returns of (θ, x) (resp. (σ, y)) from 0 to n− 1. From Lemma 2.1 we deduce

s(θ,x)∑
i=1

rνi
(θ, x) =

n−1∑
j=0

rj(θ, x)

≤
n−1∑
j=0

rj(σ, y) +
4n

N(α)
+ 1

=

s(σ,y)∑
i=1

rµi
(σ, y) +

4n

N(α)
+ 1

Using this, and estimate (8) for (σ, y), we obtain

s(θ,x)∑
i=1

((
1

2
− η

)
log

1

α
− rνi

(θ, x)

)
≥ γsN(α)−

∑

j∈Gn(σ,y)

rj(σ, y)− 4n

N(α)
− 1,

and so, as in (9), this finally yields

n−1∏
j=0

|∂xf(θj, xj)| ≥ exp


4cn−

∑

j∈Gn(σ,y)

rj(σ, y)− 4n

N(α)
− 1− 2 log

1

α




≥ exp


3cn−

∑

j∈Gn(σ,y)

rj(σ, y)− 3 log
1

α




for α small enough. tu

Let us briefly recall how in [V2] the two Lyapunov exponents are obtained for
Lebesgue almost every point in S1 × I. Since ϕ is close to ϕα and ĝ is uniformly
expanding, it follows that for every (θ, x) ∈ S1 × I and every non-vertical tangent
vector v, ‖Dϕn(θ, x)v‖ ≥ const|(gn)′(θ)| grows exponentially fast. This provides a
positive Lyapunov exponent non-collinear to the vertical direction. For obtaining
the other positive Lyapunov exponent, in [V2] it was proved the following:

Lemma 2.4. There are positive constants C and γ such that for every large n there
is a set En ⊂ S1 × I such that

(b) m2(En) ≤ Ce−γ
√

n,
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(a) (θ, x) ∈ (
S1 × I

) \En ⇒
∑

j∈Gn(θ,x)

rj(θ, x) ≤ cn,

where m2 is the Lebesgue measure on S1 × I.

From this and (9) above, [V2] deduces that Lebesgue almost every point (θ, x)
in S1 × I has a positive Lyapunov exponent in the x-direction. Indeed, if n is large
enough, then ∥∥∥∥Dϕn(θ, x)

∂

∂x

∥∥∥∥ =
n−1∏
j=0

|∂xf(θj, xj)| ≥ e2cn

except for (θ, x) ∈ En. Thus, taking E = ∩n≥1 ∪k≥n Ek we have for each n

m2

(⋃

k≥n

Ek

)
≤

∑

k≥n

Ce−γ
√

k ≤ const e−γ
√

n,

which implies that m2(E) = 0, and ϕ has another positive Lyapunov exponent in
the x-direction for every point (θ, x) ∈ (S1 × I) \E.

For the following definition we fix 0 < ε < c/2 and recall that since we are
assuming d ≥ 16 we have in particular ec+ε < d− α for small α.

Definition 2.5. We say that n ≥ 1 is a hyperbolic time for (θ, x) ∈ S1 × I if for
every 0 ≤ k < n we have

∑
i∈Gn(θ,x)

k≤i<n

ri(θ, x) ≤ (c + ε)(n− k).

Fix some large integer p (to be specified in Section 6) and let H be the set of
points that has at least one hyperbolic time greater or equal to p. We decompose H
into a union H =

⋃
n≥p Hn, where each Hn is the set of points whose first hyperbolic

time greater or equal to p is n. The following result, whose proof is motivated on
a lemma due to Pliss (see also [M]), gives in particular that H has full Lebesgue
measure.

Proposition 2.6. There is an integer n0 = n0(p, ε) ≥ p such that for every n ≥ n0

one has (
S1 × I

) \En ⊂ Hp ∪ · · · ∪Hn.
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Proof. Let n be some integer bigger than p and take (θ, x) ∈ (S1 × I)\En. We
are going to prove that (θ, x) has some hyperbolic time m, with p ≤ m ≤ n. For
i = 0, . . . n− 1 define

r̂i =

{
ri(θ, x) if i ∈ Gn(θ, x),
0 otherwise,

and ai = c + ε − r̂i. Consider for k = 1, . . . , n the sums Sk =
∑k−1

i=0 ai and take
1 ≤ m ≤ n such that

Sm = max{Sk : 1 ≤ k ≤ n}.
Using that (θ, x) /∈ En we get

Sn = (c + ε)n−
n−1∑
i=0

r̂i ≥ (c + ε)n− cn ≥ εn.

Choose n0 ∈ Z such that εn0 > (p− 1)(c + ε). If n ≥ n0, then we have

Sn ≥ εn > (p− 1)(c + ε) ≥ Si

for i = 0, . . . , p−1. Taking into account our choice of Sm, we must have Sm > Si for
i = 0, . . . , p − 1, and so m ≥ p. Now we are going to prove that m is a hyperbolic
time for (θ, x). For 0 ≤ k ≤ m− 1 we have

∑
i∈Gn(θ,x)
k≤i≤m−1

ri =
m−1∑

i=k

r̂i =
m−1∑

i=k

(c + ε− ai)

= (c + ε)(m− k)− (Sm − Sk)

≤ (c + ε)(m− k)

since by our choice of m, Sm ≥ Sk for all k (we assume S0 = 0). So m is indeed a
hyperbolic time for (θ, x). Since p ≤ m ≤ n, the proof is complete. tu

Remark 2.7. From this last result we easily deduce that Lebesgue almost every point
in S1× I has infinitely many hyperbolic times. Indeed, letting F be the set of points
that have some hyperbolic time, it follows from Proposition 2.6 and the estimate on
the measure of the sets En that F has full Lebesgue measure. On the other hand, if

13



n is a hyperbolic time for (θ, x) and m is a hyperbolic time for ϕn(θ, x), then n + m
is a hyperbolic time for (θ, x). Hence, taking

G =
⋃
n≥1

⋂

k≥n

ϕ−k(F )

we have that G has full Lebesgue measure and points in G have infinitely many
hyperbolic times (G is precisely the set of points that fall infinitely often into F ).

3 The partition

In this section we will construct a partition R into rectangles of S1 × I (modulus
a zero Lebesgue measure set). These rectangles will be obtained in several steps,
by dividing S1 × I according to the itineraries of points and their hyperbolic times.
For this, we will consider the partition Q of I described in Section 2 and introduce
a sequence of Markov partitions of S1.

Assume that S1 = R/Z has the orientation induced by the usual order in R and
let θ0 be the fixed point of g close to θ = 0. We define the Markov partitions Pn,
n ≥ 1, of S1 in the following way:

• P1 = {[θj−1, θj) : 1 ≤ j ≤ d}, where θ0, θ1, . . . , θd = θ0 are the pre-images of θ0

under g (ordered according to the orientation of S1).

• Pn+1 = { connected components of g−1(ω) : ω ∈ Pn} for each n ≥ 1.

Given ω ∈ Pn we denote by ω− the left hand side endpoint of ω .
Before we go into the construction of the partition R let us make a few com-

ments on the way R will be obtained, and state some basic properties that we want
rectangles in R verify.

The partition R will be obtained by successive divisions of the rectangles in the
initial partition Pp ×Q of S1× I, and will be written as a union R = ∪n≥pRn with
the sets Rn defined inductively and obeying the following first condition:

(In) Hn ⊂
⋃

R∈Rn
R and R ∩Hn 6= ∅ for every R ∈ Rn.

Rectangles in Rn will always have the form ω×J , with ω belonging to Pn and J
a subinterval of Ir for some Ir ∈ Q. In order to obtain uniform bounded distortion
for ϕn|R, R ∈ Rn, we will also require the following property for all n ≥ p:

(IIn) For every 0 ≤ j < n and ω × J ∈ Rn there is Irj
∈ Q such that

ϕj({ω−} × J) ⊂ I+
rj

.

14



We will be interested in that the images by ϕn of R ∈ Rn have “large size” (see
Proposition 3.8) in order to apply the results of Section 5; for this it will be useful
to distinguish a particular subset of Rn

R∗
n = { ω × J ∈ Rn | ∃ 0 ≤ j < n, ∃ Irj

∈ Q : Irj
⊂ ϕj({ω−} × J) }

We would like R∗
n to coincide with the whole Rn. This does not seem to be possible,

but we are nevertheless able to show that for every ω × J ∈ Rn there is some
0 ≤ j < n for which ϕj({ω−} × J) contains a definite fraction of some Irj

∈ Q.
With this in mind we introduce the following useful notion.

Definition 3.1. We say that ωn×Jn ∈ Rn is subordinate to ωl×Jl ∈ R∗
l if ωn ⊂ ωl,

Jn and Jl have a common endpoint, and there are j < l and Irj
∈ Q for which the

following holds:
(i) Irj

⊂ ϕj({ω−l } × Jl);
(ii) Irj+1 ⊂ ϕj({ω−l } × Jn) or Irj−1 ⊂ ϕj({ω−l } × Jn).

 ϕ  (ω n x Jn )j

 ϕ  (ω l
j x Jl )Ir j

Ir j-1

g j ( )ω l
− g j ( )ω n

−

Figure 1: ωn × Jn is subordinate to ωl × Jl

In order to obtain the large size property of the images of the rectangles men-
tioned above, we will do the construction of R in such a way that the following
condition is satisfied for each n ≥ p:

(IIIn) For every R ∈ Rn, either R ∈ R∗
n or R is subordinate to some

R∗ ∈ R∗
l with l ≤ n.
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At each step n ≥ p of our inductive process we will also obtain a partition Sn of
the set of points that are not in the rectangles R ∈ R constructed until the moment
n, i.e. Sn is a partition of the set

(S1 × I) \
n⋃

i=p

⋃
R∈Ri

R .

Rectangles in Sn will also have the form ω×J , with ω ∈ Pn and J is a subinterval of
some Irj

∈ Q. In order to ensure property (IIIj) for rectangles R ∈ Rj with j > n,
we will require for all n ≥ p:

(IVn) For every ω × J ∈ Sn, either J = Ir for some Ir ∈ Q or ω × J is
subordinate to some R∗ ∈ R∗

l with l ≤ n.

Let us start now the inductive construction of the partition R.

First step. Take an arbitrary ωp ∈ Pp and let J0 be the family of those intervals
Ir ∈ Q such that ωp× Ir intersects Hp. Then we apply ϕ to {ω−p }× J0 with J0 ∈ J0

and consider the following two possible cases:

(a) ϕ({ω−p } × J0) contains some interval of Q.

We write J0 = ∪i1Ji1 with the intervals Ji1 satisfying

Iri1
⊂ ϕ({ω−p } × Ji1) ⊂ I+

ri1

for some Iri1
∈ Q. This may be done by taking Ji1 = J0 ∩ϕ−1({g(ω−p )}× Iri1

)
except for each one of the two end intervals which, if necessary, is joined to
the adjacent one. We take J1 to be the set of those Ji1 ’s in the union above
such that ωp × Ji1 intersects Hp.

(b) ϕ({ω−p } × J0) contains no interval of Q.

In this case we do not divide J0 and say that J0 ∈ J1.

Now take J1 ∈ J1 and apply ϕ2 to {ω−p } × J1. If ϕ2({ω−p } × J1) contains no
interval ofQ we say that J1 ∈ J2; otherwise we proceed as in case (a) and decompose
J1 = ∪i2Ji2 as above. We also take J2 to be the set of those Ji2 in the union such
that ωp × Ji2 intersects Hp.
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We apply this procedure until the (p−1)th iterate, defining in this way the family
of intervals Jp−1. Let Cp−1 be the set of the connected components of

J0 \
⋃

J∈Jp−1

J.

Finally, given J ∈ Jp−1 ∪ Cp−1 we say that ωp × J belongs to Rp if J ∈ Jp−1, and
ωp × J belongs to Sp if J ∈ Cp−1. Doing this for every ωp ∈ Pp we obtain all the
rectangles in Rp and Sp. It is clear from our construction that Rp and Sp verify the
required properties (Ip), (IIp), (IIIp) and (IVp). Actually, in this first step we have
R∗

p = Rp.

Inductive step. Assume now that we have defined the families of rectangles
Rp, . . . ,Rn and Sn satisfying properties (In), (IIn), (IIIn) and (IVn). Let us show
how we define the new rectangles in Rn+1 and Sn+1.

Take S ∈ Sn. By the inductive hypotheses we know that S = ωn × Jn, where
ωn ∈ Pn and Jn ⊂ Ir for some Ir ∈ Q. We write

S =
d⋃

i=1

(ωi
n+1 × Jn),

where ω1
n+1, . . . , ω

d
n+1 are the intervals in the Markov partition Pn+1 that cover ωn,

and distinguish the following two possible cases for each rectangle ωi
n+1 × Jn in the

union above:

(a) (ωi
n+1 × Jn) ∩Hn+1 = ∅

We say that ωi
n+1×Jn ∈ Sn+1. Property (IVn+1) is obviously true for this new

rectangle, since no division has been made on the interval Jn.

(b) (ωi
n+1 × Jn) ∩Hn+1 6= ∅

Here we again distinguish two possible cases:

(i) ∃ 0 ≤ j ≤ n ∃ Irj
∈ Q : Irj

⊂ ϕj({ω−n+1} × Jn).

We proceed as in the first step, starting our process with ωi
n+1×Jn in the

place of ωp × J0, and define in this way the rectangles of Rn+1 and Sn+1

contained in ωi
n+1×Jn. As before, properties (In+1), (IIn+1), (IIIn+1) and

(IVn+1) are verified by construction.
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(ii) Otherwise, we say that ωi
n+1 × Jn ∈ Rn+1 and (IIn+1) is obviously true

for this new rectangle. Property (IIIn+1) is also true, since no division
has been made on the interval Jn and property (IVn) holds.

Our induction is complete. Since (In) is verified for all n ≥ p and H has full Lebesgue
measure, we conclude that R is indeed a partition of S1×I (modulo a zero Lebesgue
measure set).

The goal of the following results is to give some geometric properties of the
rectangles in the partition R to be used later. We say that X̂ ⊂ S1 × I is an
admissible curve if X̂ = graph(X) for some X : S1 −→ I satisfying:

• X is C2 except, possibly, for being discontinuous on the left at θ = θ0.

• |X ′(θ)| ≤ α and |X ′′(θ)| ≤ α at every θ ∈ S1.

Given X̂ = graph(X) and ω ⊂ S1 we denote X̂|ω = graph(X|ω). Since we are
taking the map ϕ with stronger expansion on the horizontal direction than in the
vertical one, an application of the graph transform contruction gives rise to the
following:

Lemma 3.2. If X̂ is an admissible curve and ω ∈ Pn, then ϕn(X̂|ω) is also an
admissible curve.

Proof. See [V2], Lemma 2.1. tu

Corollary 3.3. If R ∈ Rn for some n ≥ p, then the boundary of ϕn(R) is made by
two vertical lines and two admissible curves.

Proof. Immediate from the construction of the rectangles and Lemma 3.2. tu

Lemma 3.4. There is a constant δ0 > 0 such that if α is sufficiently small, then
for every (σ, y) ∈ Hn and 0 ≤ j < n

∣∣Irj(σ,y)+5

∣∣ ≥ δ0α
1−2ηe−(c+ε)(n−j) ≥ 4α(d− α)−(n−j).

Proof. The second inequality is a direct consequence of our assumptions on d and
c + ε and the fact that α may be taken sufficiently small. For the first inequality,
we distinguish the cases j ∈ Gn(σ, y) and j /∈ Gn(σ, y):
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(a) If j ∈ Gn(σ, y), and since n is a hyperbolic time for (σ, y), we have in
particular

rj(σ, y) ≤ (c + ε)(n− j).

Thus,
∣∣Irj(σ,y)+5

∣∣ =
√

αe−(rj(σ,y)+4) −√αe−(rj(σ,y)+5)

=
√

α(e−4 − e−5)e−rj(σ,y)

≥ √
α(e−4 − e−5)e−(c+ε)(n−j)

≥ α1−2ηe−(c+ε)(n−j),

as long as α is sufficiently small (independent of n− j).

(b) If j /∈ Gn(σ, y), then we have

rj(σ, y) ≤
(

1

2
− 2η

)
log

1

α
,

and so

|Irj(σ,y)+5| =
√

α
(
e−4 − e−5

)
e−rj(σ,y)

≥ α1−2η
(
e−4 − e−5

)
.

It suffices to take δ0 = e−4 − e−5. tu

Lemma 3.5. Let n ≥ p and R ∈ Rn. If (θ, x) ∈ R and (σ, y) ∈ R ∩ Hn, then
rj(θ, x) ≤ rj(σ, y) + 4 for every 0 ≤ j < n.

Proof. Take 0 ≤ j < n and let (θj, xj) = ϕj(θ, x), (ω−j , x−j ) = ϕj(ω−, x). Since
(θj, xj) and (ω−j , x−j ) lie in a same admissible curve, and

|θj − ω−j | ≤ (d− α)−(n−j),

it follows from Lemma 3.2 that

|x−j − xj| ≤ α(d− α)−(n−j),

and so

|xj| ≥ |x−j | − α(d− α)−(n−j)

≥ √
αe−rj(ω

−,x) − α(d− α)−(n−j).
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Now, let (σj, yj) = ϕj(σ, y) and (ω−j , y−j ) = ϕj(ω−, y). Using the same argument as
before, we also prove that

|y−j | ≥ |yj| − α(d− α)−(n−j)

≥ √
αe−rj(σ,y) − α(d− α)−(n−j).

An easy application of Lemma 3.4 gives

|Irj(σ,y)+1| > |Irj(σ,y)+5| > α(d− α)−(n−j),

and so
|y−j | ≥

√
αe−rj(σ,y) − |Irj(σ,y)+1|,

which means that
rj(ω

−, y) ≤ rj(σ, y) + 1.

Taking into account (IIn), we also have

rj(ω
−, x) ≤ rj(ω

−, y) + 2,

and so
rj(ω

−, x) ≤ rj(σ, y) + 3.

Altogether, this yields

|xj| ≥ √
αe−rj(ω

−,x) − α(d− α)−(n−j)

≥ √
αe−(rj(σ,y)+3) − |Irj(σ,y)+4| (by Lemma 3.4)

≥ √
αe−(rj(σ,y)+4),

which gives
rj(θ, x) ≤ rj(σ, y) + 4,

and so the proof is complete. tu

Corollary 3.6. If R ∈ Rn for some n ≥ p, then ϕn|int(R) is a diffeomorphism onto
its image.

Proof. Take n ≥ p and R ∈ Rn. By (In) we have R ∩ Hn 6= ∅. Since points in
R∩Hn do not hit the critical line {x = 0} during their first n− 1 iterates, it follows
from Lemma 3.5 that the same occurs for the other points in R. This implies that
ϕn|int(R) is a diffeomorphism onto its image. tu
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Lemma 3.7. Let R ∈ Rn for some n ≥ p. If (θ, x) ∈ R, then for j = 0, . . . , n− 1

n−1∏
i=j

|∂xf(θi, xi)| ≥ exp

(
(2c− ε)(n− j)− 3 log

1

α

)
.

Proof. Take (θ, x) ∈ R and 0 ≤ j ≤ n− 1 . We have

n−1∏
i=j

|∂xf(θi, xi)| =
n−j−1∏

i=0

|∂xf(θj+i, xj+i)|.

By (In) and Lemma 3.5, we know that there is some (σ, y) ∈ (ω × J) ∩Hn with

ri(θ, x) ≤ ri(σ, y) + 4

for i = 0, . . . , n− 1. This in particular implies

ri(θj, xj) ≤ ri(σj, yj) + 4

for i = 0, . . . , n− j − 1. Then, using Lemma 2.3 we obtain

n−j−1∏
i=0

|∂xf(θj+i, xj+i)| ≥ exp


3c(n− j)−

∑

i∈Gn−j(σj ,yj)

ri(σj, yj)− 3 log
1

α


 .

We remark that since n is a hyperbolic time for (σ, y), then (n− j) is a hyperbolic
time for (σj, yj), and so

n−j−1∏
i=0

|∂xf(θj+i, xj+i)| ≥ exp

(
3c(n− j)− (c + ε)(n− j)− 3 log

1

α

)
.

This finally gives

n−1∏
i=j

|∂xf(θi, xi)| ≥ exp

(
(2c− ε)(n− j)− 3 log

1

α

)
,

and so the proof is complete. tu

Proposition 3.8. There is δ1 = δ1(α) > 0 such that for each n ≥ p and ω×J ∈ Rn

we have |ϕn({θ} × J)| ≥ δ1 for every θ ∈ ω.
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Proof. Take an arbitrary ω × J ∈ Rn and fix θ ∈ ω. We divide the proof into two
parts, according to whether ω × J belongs to R∗

n or not:

(a) If ω × J ∈ R∗
n, we know that there are 0 ≤ j < n and Irj

∈ Q such that

Irj
⊂ ϕj({ω−} × J). (10)

Fix j and rj in these conditions. By the mean value theorem, we have some x ∈ J
for which

|ϕn({θ} × J)| =
n−1∏
i=j

|∂xf(θi, xi)| · |ϕj({θ} × J)|,

and so, by Lemma 3.7

|ϕn({θ} × J)| ≥ exp

(
(2c− ε)(n− j)− 3 log

1

α

)
· |ϕj({θ} × J)|. (11)

Our objective now is to find a lower bound for the second factor on the right hand
side of this last inequality. Let J = [u, v] and consider the curves

γ1 = ϕj(ω × {u}) and γ2 = ϕj(ω × {v}).

Note that since γ1 and γ2 are contained in admissible curves (recall Lemma 3.2),
they are graphs of maps defined on gj(ω) ∈ Pn−j, whose derivatives have absolute
value bounded by α. Therefore, their diameters in the x-direction are bounded from
above by α(d− α)−(n−j), which together with (10) gives in particular for the points
ϕj(θ, u) and ϕj(θ, v)

|uj| ≤
√

αe−rj + α(d− α)−(n−j) (12)

and
|vj| ≥

√
αe−(rj−1) − α(d− α)−(n−j) (13)

(we are assuming |uj| < |vj|, the other case is similar).

Since (σ, y) ∈ (ω × J) ∩ Hn and rj = rj(ω
−, z) for some (ω−, z) ∈ ω × J , we have

from Lemma 3.5
rj ≤ rj(σ, y) + 4, (14)

which together with Lemma 3.4 gives

|Irj
| > |Irj(σ,y)+4| > |Irj(σ,y)+5| ≥ 4α(d− α)−(n−j).
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 ϕ  (ω n x Jn )j

 ϕ  (ω l
j x Jl )Ir j

Ir j-1

g j ( )ω l
− g j ( )ω n

−

Figure 2: The length of ϕj({θ} × J)

Hence, from (12) and (13) above and this last inequality we obtain

|vj − uj| ≥ √
αe−rj+1 −√αe−rj − 2α(d− α)−(n−j)

= |Irj
| − 2α(d− α)−(n−j)

>
|Irj(σ,y)+4|

2
,

which by Lemma 3.4 yields

|ϕj({θ} × J)| > δ0

2
α1−2ηe−(c+ε)(n−j). (15)

Taking into account (11) and (15) we finally get

|ϕn({θ} × J)| ≥ δ0

2
α1−2η exp

(
(c− 2ε)(n− j)− 3 log

1

α

)
, (16)

which is obviously bounded from below by some constant δ1(α) > 0, for every n and
j ≤ n, since we have chosen c > 2ε.

(b) If ω× J /∈ R∗
n, then by (IIIn) we know that there are l ≤ n and ωl × Jl ∈ R∗

l

such that ω × J is subordinate to ωl × Jl. This implies that for some j ≤ l − 1 and
Irj
∈ Q we have

Irj
⊂ ϕj({ω−l } × Jl)

and
Irj+1 ⊂ ϕj({ω−l } × J) or Irj−1 ⊂ ϕj({ω−l } × J).
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With no loss of generality, we assume

Irj+1 ⊂ ϕj({ω−l } × J)

(in fact this is the worst possible case for our purpose, since we want to prove that
the length of ϕj({θ} × J) is large). As in case (a) we have

|ϕn({θ} × J)| ≥ exp

(
(2c− ε)(n− j)− 3 log

1

α

)
· |ϕj({θ} × J)|. (17)

Let J = [u, v] and consider the curves

γ1 = ϕj(ωl × {u}) and γ2 = ϕj(ωl × {v}).
Using a similar argument to the one we used in the previous case, we deduce this
time that

|uj| ≤
√

αe−(rj+1) + α(d− α)−(l−j) (18)

and
|vj| ≥

√
αe−rj − α(d− α)−(l−j). (19)

It follows from (Il) and Lemma 3.5 that there is some (σ, y) ∈ (ωl × Jl) ∩ Hl for
which

rj ≤ rj(σ, y) + 4.

This, together with Lemma 3.4 gives

|Irj+1| > |Irj(σ,y)+5| ≥ 4α(d− α)−(l−j). (20)

Analogously to the previous case, (18), (19), (20) lead to a similar estimate to the
one obtained in (15),

|ϕj({θ} × J)| > δ0

2
α1−2ηe−(c+ε)(l−j).

Since l − j ≤ n− j, this gives

|ϕj({θ} × J)| ≥ δ0

2
α1−2ηe−(c+ε)(n−j). (21)

Hence, from (17) and (21) we obtain

|ϕn({θ} × J)| ≥ δ0

2
α1−2η exp

(
(c− 2ε)(n− j)− 3 log

1

α

)
,

which is the same estimate that we obtained before. tu
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4 Bounded distortion

We know from Corollary 3.6 that for n ≥ p the interiors of the rectangles R ∈ Rn

are mapped diffeomorphicaly by ϕn|R onto its image. In this section we are going
to prove that there is some uniform constant bounding the distortion of such maps.
It follows from assumption (1) that for each n ≥ 1 there is a map Fn from S1× I to
I such that for every (θ, x) ∈ S1 × I we have ϕn(θ, x) = (gn(θ), Fn(θ, x)).

Lemma 4.1. There is a constant C3 > 0 such that for every (θ, x) ∈ S1 × I and
n ≥ 1 we have ∣∣∣∣

∂θFn(θ, x)

∂θgn(θ)

∣∣∣∣ ≤ C3.

Proof. We start by noting that from (1), (2) and the expression of ϕα we deduce

|∂θg| ≥ d− α, |∂θf | ≤ α|b′|+ α ≤ 8α and |∂xf | ≤ |2x|+ α ≤ 4.

The proof follows by induction. If n = 1 we have F1(θ, x) = f(θ, x) for every
(θ, x) ∈ S1 × I. Then ∣∣∣∣

∂θF1(θ, x)

∂θg(θ)

∣∣∣∣ <
8α

d− α
.

Assume now that the result is true for some n ≥ 1. We have for every (θ, x) ∈ S1×I

Fn+1(θ, x) = f(gn(θ), Fn(θ, x)).

Hence
∣∣∣∣
∂θFn+1(θ, x)

∂θgn+1(θ)

∣∣∣∣ =

∣∣∣∣
∂θf(gn(θ), Fn(θ, x))∂θg

n(θ) + ∂xf(gn(θ), Fn(θ, x))∂θFn(θ, x)

∂θg(gn(θ))∂θgn(θ)

∣∣∣∣

≤
∣∣∣∣
∂θf(gn(θ), Fn(θ, x))

∂θg(gn(θ))

∣∣∣∣ +

∣∣∣∣
∂xf(gn(θ), Fn(θ, x))

∂θg(gn(θ))

∣∣∣∣ ·
∣∣∣∣
∂θFn(θ, x)

∂θgn(θ)

∣∣∣∣

≤ 8α

d− α
+

4

d− α
C3 ≤ 8α

d− α
+

C3

2

since d ≥ 16. So we only have to choose C3 > 0 in such a way that

8α

d− α
≤ C3

2
,

and the lemma is proved. tu
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Proposition 4.2. There is a constant C4 = C4(α) > 0 such that for every n ≥ p,
R ∈ Rn and (σ, y) ∈ ϕn(R)

‖D (J ◦ φ−1) (σ, y)‖
|(J ◦ φ−1)(σ, y)| < C4,

where φ = ϕn|R : R → ϕn(R) and J is the Jacobian of φ.

Proof. Taking (σ, y) ∈ φ(R) and letting (θ, x) = φ−1(σ, y) we write

‖D (J ◦ φ−1) (σ, y)‖
|(J ◦ φ−1)(σ, y)| =

∥∥DJ(θ, x) ◦ [Dφ(θ, x)]−1
∥∥

|J(θ, x)| .

Since φ(θ, x) = (gn(θ), Fn(θ, x)), this last expression is equal to

1

J2(θ, x)
· ‖(∂θJ(θ, x)∂xFn(θ, x)− ∂xJ(θ, x)∂θFn(θ, x) , ∂xJ(θ, x)∂θg

n(θ))‖ .

Now it suffices to find uniform upper bounds for

A1 =
1

J2(θ, x)
· |∂θJ(θ, x)∂xFn(θ, x)| and A2 =

1

J2(θ, x)
· |∂xJ(θ, x)∂θg

n(θ)|

(recall that |∂θFn(θ, x)| ≤ C3|∂θg
n(θ)| by Lemma 4.1). Let us first estimate the

absolute value of the partial derivatives of J(θ, x). Since

|J(θ, x)| = |∂θg
n(θ)∂xFn(θ, x)| = exp

(
n−1∑
i=0

log |∂θg(θi)∂xf(θi, xi)|
)

,

we deduce

|∂θJ(θ, x)| = |J(θ, x)| ·
∣∣∣∣∣
n−1∑
i=0

∂2
θθg(θi)∂θg

i(θ)∂xf(θi, xi) + ∂θg(θi)∂θ∂xf(θi, xi)∂θg
i(θ)

∂θg(θi)∂xf(θi, xi)

∣∣∣∣∣

= |J(θ, x)| ·
∣∣∣∣∣
n−1∑
i=0

(
∂2

θθg(θi)∂θg
i(θ)

∂θg(θi)
+

∂θ∂xf(θi, xi)∂θg
i(θ)

∂xf(θi, xi)

)∣∣∣∣∣
and

|∂xJ(θ, x)| = |J(θ, x)| ·
∣∣∣∣∣
n−1∑
i=0

∂θg(θi)∂
2
xxf(θi, xi)

∏i−1
j=0 ∂xf(θj, xj)

∂θg(θi)∂xf(θi, xi)

∣∣∣∣∣

= |J(θ, x)| ·
∣∣∣∣∣
n−1∑
i=0

∂2
xxf(θi, xi)

∏i−1
j=0 ∂xf(θj, xj)

∂xf(θi, xi)

∣∣∣∣∣ .
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Before we go into the estimates of A1 and A2 let us remark that there is some
constant K > 0 such that for every (θ, x) ∈ S1 × I

|∂2
θθg(θ)|, |∂2

xxf(θ, x)|, |∂θ∂xf(θ, x)| < K.

Now, for the first expression we have

A1 =

∣∣∣∣
∂xFn(θ, x)

J(θ, x)

∣∣∣∣ ·
∣∣∣∣∣
n−1∑
i=0

(
∂2

θθg(θi)∂θg
i(θ)

∂θg(θi)
+

∂θ∂xf(θi, xi)∂θg
i(θ)

∂xf(θi, xi)

)∣∣∣∣∣

≤
∣∣∣∣

1

∂θgn(θ)

∣∣∣∣ ·
n−1∑
i=0

∣∣∣∣
∂2

θθg(θi)∂θg
i(θ)

∂θg(θi)
+

∂θ∂xf(θi, xi)∂θg
i(θ)

∂xf(θi, xi)

∣∣∣∣

≤
n−1∑
i=0

(∣∣∣∣
∂2

θθg(θi)

∂θg(θi)∂θgn−i(θi)

∣∣∣∣ +

∣∣∣∣
∂θ∂xf(θi, xi)

∂xf(θi, xi)∂θgn−i(θi)

∣∣∣∣
)

≤
n−1∑
i=0

K

(d− α)(d− α)n−i
+

n−1∑
i=0

K

|∂xf(θi, xi)|(d− α)n−i
.

Since d − α > 1, it suffices to find a uniform upper bound for the second term
in the sum above. Taking into account (1) and (2) we have |∂xf(θi, xi)| ≥ (2 −
α)
√

αe−ri(θ,x), for i = 0, . . . , n − 1. We also have from (In) and Lemma 3.5 that
there is some (σ, y) ∈ R ∩Hn for which ri(θ, x) ≤ ri(σ, y) + 4, for i = 0, . . . , n − 1.
Hence

n−1∑
i=0

K

|∂xf(θi, xi)|(d− α)n−i
≤

n−1∑
i=0

K

(2− α)
√

αe−ri(σ,y)−4(d− α)n−i
,

and taking C(α) = K/((2− α)
√

αe−4) this last sum is equal to

C(α)


 ∑

i∈Gn(σ,y)

1

e−ri(σ,y)(d− α)n−i
+

∑

i/∈Gn(σ,y)

1

e−ri(σ,y)(d− α)n−i


 ,

which is uniformly bounded from above, since for i ∈ Gn(σ, y) we have ri(σ, y) ≤
(c + ε)(n − i) (recall that n is a hyperbolic time for (σ, y), and ec+ε < d − α), and
for i /∈ Gn(σ, y) we have ri(σ, y) ≤ (1/2− 2η) log 1/α.
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For the second expression we have

A2 =

∣∣∣∣
∂θg

n(θ)

J(θ, x)

∣∣∣∣ ·
∣∣∣∣∣
n−1∑
i=0

∂2
xxf(θi, xi)

∏i−1
j=0 ∂xf(θj, xj)

∂xf(θi, xi)

∣∣∣∣∣

≤
n−1∑
i=0

∣∣∣∣∣
∂2

xxf(θi, xi)

∂xf(θi, xi)
∏n−1

j=i ∂xf(θj, xj)

∣∣∣∣∣

≤
n−1∑
i=0

K∣∣∣∂xf(θi, xi)
∏n−1

j=i ∂xf(θj, xj)
∣∣∣
.

By (In) and Lemma 3.5 there is some (σ, y) ∈ R∩Hn with ri(θ, x) ≤ ri(σ, y) + 4 for
i = 0, . . . , n− 1. Thus, from Lemma 2.3 we have

n−1∏
j=i

|∂xf(θj, xj)| = exp


3c(n− i)−

∑

j∈Gn−i(σi,yi)

rj(σi, yi)− 3 log
1

α


 .

Since n is a hyperbolic time for (σ, y), then n − i is a hyperbolic time for (σi, yi),
and so

n−1∏
j=i

|∂xf(θj, xj)| ≥ exp

(
3c(n− i)− (c + ε)(n− i)− 3 log

1

α

)
.

On the other hand, from (1) and (2)

|∂xf(θi, xi)| ≥ (2− α)
√

αe−ri(θ,x) ≥ (2− α)
√

αe−ri(σ,y)−4.

Thus, taking C ′(α) = e4/((2− α)α7/2), we obtain

A2 ≤ C ′(α)
n−1∑
i=0

1

exp ((2c− ε)(n− i)− ri(σ, y))
,

which again by splitting into sums over i ∈ Gn(σ, y) and i /∈ Gn(σ, y) we obtain a
uniform upper bound, similarly to what we have done for A1. tu
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5 Multidimensional piecewise expanding maps

This section is independent of the previous ones both in content and in notations.
Here we will give sufficient conditions for the existence of absolutely continuous
invariant probabilities for higher dimensional C2 piecewise expanding maps with
infinitely many domains of smoothness. In [GB1] sufficient conditions are given for
the existence of such probabilities, in the case of only a finite number of domains
of smoothness. We will follow through the approach in [GB1] and prove that under
certain general conditions the result may be extended for countably many domains.

Let R be some bounded region in Rn and φ a map from R to R. We say that φ
is a C2 piecewise expanding map if the following conditions hold:

(E1) There is a partition {Ri}∞i=1 of R, such that each Ri is a closed domain with
piecewise C2 boundary of finite (n− 1)-dimensional measure.

(E2) Each φi = φ|Ri is a C2 bijection from the interior of Ri onto its image and has
a C2 extension to Ri.

(E3) There is 0 < σ < 1 such that ‖Dφ−1
i ‖ < σ for every i ≥ 1.

The piecewise expanding map φ is said to have bounded distortion if:

(D) There is some K > 0 such that for every i ≥ 1

∥∥D
(
J ◦ φ−1

i

)∥∥
∣∣J ◦ φ−1

i

∣∣ < K,

where J is the Jacobian of φ.

Let S be some closed region in Rn with piecewise C2 boundary of finite (n − 1)-
dimensional measure and U a neighborhood of ∂S in S. We say that U is a regular
collar for S if there are a C1 unitary vector field H in ∂S and β(S), ρ(S) > 0 with
the following properties:

(C1) U may be written as the disjoint union of the segments joining x ∈ ∂S to
x + ρ(S)H(x).

(C2) For every x ∈ ∂S and v ∈ Tx∂S the angle between H(x) and v is bounded
away from zero, with | sin ∠(v, H(x))| ≥ β(S).
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S

U

Figure 3: The regular collar U

Remark 5.1. Here we assume that at the points x ∈ ∂S where ∂S is not smooth the
vector H(x) is a common C1 extension of H restricted to each (n− 1)-dimensional
smooth component of ∂S having x in its boundary. We also assume that the tangent
space of any such singular point x is the union of the tangent spaces to the (n− 1)-
dimensional smooth components it belongs to.

Theorem 5.2. Let φ : R → R be a C2 piecewise expanding map with bounded
distortion and {Ri}∞i=1 its domains of smoothness. Assume that there are β, ρ > 0
such that each φ(Ri) has a regular collar with β(φ(Ri)) > β and ρ(φ(Ri)) > ρ. If
σ(1 + 1/β) < 1, then φ has an absolutely continuous invariant probability.

The main ingredient for the proof of this theorem is the notion of variation for
maps in multidimensional spaces. We adopt the definition given in [G]. In all that
follows we denote by mn the Lebesgue measure of Rn and mn−1 the induced Lebesgue
measure in any piecewise smooth (n− 1)-dimensional submanifold. For f ∈ L1(Rn)
with compact support we define the variation of f as

V (f) = sup

{∫

Rn

fdiv(g)dmn : g ∈ C1
0(Rn,Rn), ‖g‖ ≤ 1

}
,

where C1
0(Rn,Rn) is the set of C1 functions from Rn to Rn with compact support

and ‖ · ‖ is the supremum norm in C1
0(Rn,Rn). We will make use of the following

properties, whose proofs may be found in [G] or [EG]:

(V1) If f ∈ C1(Rn), then V (f) =
∫
Rn ‖Df‖dmn.
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(V2) If A ⊂ Rn is a closed domain with piecewise smooth (n − 1)-dimensional
boundary and f ∈ L1(Rn) is such that f | (Rn\A) = 0, f |A is continuous and
f |int(A) is C1, then

V (f) =

∫

int(A)

‖Df‖dmn +

∫

∂A

|f |dmn−1.

Let R be the domain of the C2 piecewise expanding map φ. In the sequel we
will consider the space

BV (R) =
{
f ∈ L1(R) : V (f) < +∞}

,

which is called the space of bounded variation functions in L1(R). The proof of the
following results may also be found in [G] or [EG]:

(B1) BV (R) is dense in (L1(R), ‖ · ‖1).

(B2) Given f ∈ BV (R), there is a sequence (fk)k of functions in C1(R) such that
limk ‖fk − f‖1 = 0 and limk V (fk) = V (f).

(B3) If (fk)k is a sequence of functions in BV (R) converging to f in L1
loc(R), then

V (f) ≤ lim infk V (fk).

(B4) If (fk)k is a sequence in BV (R) such that
(‖fk‖1

)
k

and
(
V (fk)

)
k

are bounded
in R, then (fk)k has some subsequence converging in the L1-norm to some
function in BV (R).

Now we introduce the linear Perron-Frobenius operator

L : L1(R) −→ L1(R)

defined as

Lf =
∞∑
i=1

f ◦ φ−1
i

|J ◦ φ−1
i |

χ
φ(Ri).

It is well-known that L has the following two properties:

(L1) ‖Lf‖1 ≤ ‖f‖1 for every f ∈ L1(R).

(L2) Lf = f if and only if f is the density of an absolutely continuous invariant
probability measure for φ.
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We will prove Theorem 5.2 by showing that there is some fixed point of the
Perron-Frobenius operator in BV (R). For this we need some auxiliary lemmas.

Lemma 5.3. Let S be some closed domain having a regular collar. If f ∈ C1(S),
then ∫

∂S

fdmn−1 ≤ 1

β(S)

(
1

ρ(S)

∫

S

fdmn +

∫

S

‖Df‖dmn

)
.

Proof. See [GB1], Lemma 3. tu

From now on we assume that the C2 piecewise expanding map φ : R → R and
its domains of smoothness {Ri}+∞

i=1 satisfy the hypotheses of Theorem 5.2.

Lemma 5.4. There is a constant K0 > 0 such that for every f ∈ BV (R)

V (Lf) ≤ σ(1 + 1/β)V (f) + K0‖f‖1.

Proof. We start by proving this in the case f ∈ C1(R). We have

Lf =
∞∑
i=1

Fi
χ

φ(Ri) where Fi = (f ◦ φ−1
i )/(J ◦ φ−1

i ).

Hence, using the subaditivity of variation and (V2)

V (Lf) ≤
∞∑
i=1

V (Fi
χ

φ(Ri))

=
∞∑
i=1

(∫

φ(Ri)

‖DFi‖dmn +

∫

∂φ(Ri)

|Fi|dmn−1

)
.

Let us estimate each one of the terms involved in this last sum. For the first one we
have

∫

φ(Ri)

‖DFi‖dmn

≤
∫

φ(Ri)

‖D(f ◦ φ−1
i )‖

|J ◦ φ−1
i | dmn +

∫

φ(Ri)

∥∥∥∥(f ◦ φ−1
i ) ·D

(
1

J ◦ φ−1
i

)∥∥∥∥ dmn

≤ σ

∫

φ(Ri)

‖Df(φ−1
i )‖

|J ◦ φ−1
i | dmn +

∫

φ(Ri)

K

∣∣∣∣
f ◦ φ−1

i

J ◦ φ−1
i

∣∣∣∣ dmn,
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where K > 0 is the constant given by the bounded distortion property of φ. By a
change of variables induced by φ in these last two integrals we obtain

∫

φ(Ri)

‖DFi‖dmn ≤ σ

∫

Ri

‖Df‖dmn + K

∫

Ri

|f |dmn.

For the second term in the sum above, we have by Lemma 5.3
∫

∂φ(Ri)

|Fi|dmn−1 ≤ 1

β

(
1

ρ

∫

φ(Ri)

|Fi|dmn +

∫

φ(Ri)

‖DFi‖dmn

)

≤ 1

βρ

∫

Ri

|f |dmn +
1

β

∫

φ(Ri)

‖DFi‖dmn

≤
(

1

βρ
+

K

β

) ∫

Ri

|f |dmn +
σ

β

∫

Ri

‖Df‖dmn.

Altogether, this yields

V (Lf) ≤
∞∑
i=1

((
σ +

σ

β

) ∫

Ri

‖Df‖dmn +

(
K +

1

βρ
+

K

β

) ∫

Ri

|f |dmn

)

≤ σ

(
1 +

1

β

)
V (f) +

(
K +

1

βρ
+

K

β

) ∫

R

|f |dmn,

from which we deduce the result for the special case f ∈ C1(R), simply by taking
K0 = K + 1/(βρ) + K/β.

For the general case, we observe that by (B2), given f ∈ BV (R) we may choose
a sequence (fk)k of functions in C1(R) such that

lim
k
‖fk − f‖1 = 0 and lim

k
V (fk) = V (f).

As a consequence of what we have seen for the case f ∈ C1(R), we have in particular
that L(C1(R)) ⊂ BV (R). By (L1), the sequence (Lfk)k also converges in L1(R) to
Lf , and so we may apply (B3) and deduce

V (Lf) ≤ lim inf
k→+∞

V (Lfk)

≤ lim inf
k→+∞

(σ(1 + 1/β)V (fk) + K0‖fk‖1)

= σ(1 + 1/β)V (f) + K0‖f‖1.

This proves the general case. tu
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Lemma 5.5. There are constants 0 < λ < 1 and K1 > 0 such that for every
f ∈ BV (R) and j ≥ 1

V (Ljf) ≤ λjV (f) + K1‖f‖1.

Proof. Let λ = σ(1 + 1/β) and take f ∈ BV (R). It follows from (L1) and Lemma
5.4 that

V (Ljf) ≤ λV (Lj−1f) + K0‖f‖1

≤ λ2V (Lj−2f) + (λ + 1)K0‖f‖1

· · ·
≤ λjV (f) + (λj−1 + · · ·+ 1)K0‖f‖1.

It suffices to take K1 = K0

∑∞
j=0 λj. tu

Proof of Theorem 5.2. As we said before, we are going to prove that the Perron-
Frobenius operator associated to φ has a fixed point in BV (R). Consider for k ≥ 1

fk =
1

k

k−1∑
j=0

Lj1.

It follows from Lemma 5.5 that for each k ≥ 1

V (fk) ≤ 1

k

k−1∑
j=0

V (Lj1) ≤ 1

k

k−1∑
j=0

(λjV (1) + K1‖1‖1) ≤ K1.

Since we also have ‖fk‖1 ≤ ‖1‖1 for every k ≥ 1, it follows from (B4) that (fk)k

has some accumulation point f0 in the L1-norm, which is obviously invariant by L.
Thus, µ = f0mn is an absolutely continuous φ-invariant finite measure. tu

Remark 5.6. It follows from the proof above that the accumulation point f0 belongs
to BV (R). In higher dimensions a bounded variation function need not to be bounded
(see [GB2]). However, by Sobolev’s inequality (see Theorem 1.28 in [G] or Theorem
1 in Section 5.6 of [EG]), there is some constant K(n) > 0 only depending on the
dimension n such that for any f ∈ BV (R)

(∫
|f |rdmn

)1/r

≤ K(n) V (f), where r =
n

n− 1
.

This in particular gives BV (R) ⊂ Lr(R).
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Now we are going to derive some ergodic properties of the map φ. For this, we
start by proving that given any f ∈ L1(R) the sequence 1/k

∑k−1
j=0 Ljf has accumu-

lation points in BV (R) (in the L1-norm). We follow some well-known arguments,
e.g. those used in [LY], where they also prove that every fixed point of L is in
BV (R). We could also prove such result by using the same arguments, but we do
not need it for our purposes.

Let f ∈ L1(R) and take a sequence (fl)l in BV (R) converging to f in the L1-
norm. It is no restriction to assume that ‖fl‖1 ≤ 2‖f‖1 for every l ≥ 1 and do it.
For each l ≥ 1 we have

V (Ljfl) ≤ λjV (fl) + K1‖fl‖1 ≤ 3K1‖f‖1

for every large j. So, increasing k if necessary, we have

V

(
1

k

k−1∑
j=0

Ljfl

)
≤ 4K1‖f‖1.

It follows from (B4) that there exists some f̂l ∈ BV (R) and a sequence (ki)i such
that 1/ki

∑ki−1
j=0 Ljfl converges in the L1-norm to f̂l as i goes to +∞. Moreover, by

(B3) we have V (f̂l) ≤ 4K1‖f‖1. Hence, we may apply the same argument to the
sequence (f̂l)l in order to obtain a subsequence (li)i such that (f̂li)i converges in the

L1-norm to some f̂ with V (f̂) ≤ 4K1‖f‖1. We deduce by a triangular inequality
argument that there is some sequence (km)m → +∞ for which 1/km

∑km−1
j=0 Ljflm

converges to f̂ in the L1-norm as m → +∞. On the other hand,

‖ 1

km

km−1∑
j=0

(Ljflm − Ljf
)‖1 ≤ 1

km

km−1∑
j=0

‖flm − f‖1 = ‖flm − f‖1

and this last term goes to 0 as m → +∞. This finally implies that 1/km

∑km−1
j=0 Ljf

converges to f̂ in the L1-norm.
We claim that given any φ-invariant set A ⊂ R with positive Lebesgue measure,

there exists some absolutely continuous φ-invariant probability measure µA whose
density has variation less than 4K1 and µA(A) = 1. Indeed, for some sequence (ki)i

the sequence 1/ki

∑ki−1
j=0 LjχA converges in the L1-norm to some fA with V (fA) ≤

4K1‖χA‖1 ≤ 4K1 and ‖fA‖1 > 0. Thus, taking µA equal to the normalization of the
measure fAmn, we have that µA is an absolutely continuous φ-invariant probability
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measure. Up to multiplying by the total mass of µA and letting Ac = R\A we have

µA(Ac) = lim
i

1

ki

ki−1∑
j=0

∫

Ac

LjχA dmn = lim
i

1

ki

ki−1∑
j=0

∫

R

χAc ◦ φj · χA dmn = 0.

Now let A ⊂ R be some φ-invariant set with positive Lebesgue measure, and
µA = fAmn an absolutely continuous φ-invariant probability measure giving full
weight to A with V (fA) ≤ 4K1. Let r = n/(n−1) and q = 1/n. Combining Remark
5.6 with Hölder’s inequality we obtain

1 = ‖fA‖1 ≤ ‖fA‖Lrmn(A)1/q ≤ K(n)4K1mn(A)n. (22)

Taking K̂(n) = (K(n)4K1)
−1/n we have that mn(A) ≥ K̂(n).

It immediately follows that R can be decomposed into finitely many minimal
φ-invariant sets A1, . . . , Ap with positive Lebesgue measure. By minimality, for each
i = 1, . . . p, the absolutely continuous φ-invariant measure µAi

giving full weight to
Ai is ergodic. Moreover, any absolutely continuous φ-invariant probability measure
µ can be written as µ =

∑p
i=1 µ(Ai) µAi

.

6 The measure

Here we will use the results of the previous sections to prove that the map ϕ has a
finite absolutely continuous invariant measure. Let R = ∪n≥pRn be the partition of
S1 × I (mod 0) constructed in Section 3. We define the map φ : S1 × I −→ S1 × I
by taking

φ|int(R) = ϕn|int(R) if R ∈ Rn,

and extending it arbitrarily to the boundaries of the rectangles. In order to use
the results of Section 5, we may view φ as a C2 piecewise expanding map from
[0, 1]× I ⊂ R2 into itself, since the interiors of the rectangles in R and their images
by φ do not intersect the set {θ = 0}.

Our objective now is to show that the map φ defined above satisfies the hypothe-
ses of Theorem 5.2.

− (E1) and (E2) are easily verified.

− For (E3), note that if (θ, x) belongs to R ∈ Rn, then

Dφ(θ, x) =

(
∂θg

n(θ) 0
∂θFn(θ, x) ∂xFn(θ, x)

)
,
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and so

(Dφ(θ, x))−1 =
1

J(θ, x)

(
∂xFn(θ, x) 0
−∂θFn(θ, x) ∂θg

n(θ)

)

=

(
(∂θg

n(θ))−1 0
−∂θFn(θ, x)(∂θg

n(θ)∂xFn(θ, x))−1 (∂xFn(θ, x))−1

)
.

Taking into account Lemma 4.1 this implies

‖Dφ−1(φ(θ, x))‖ ≤ max
{|∂θg

n(θ)|−1 + C3|∂xFn(θ, x)|−1, |∂xFn(θ, x)|−1
}

.

We have
|∂θg

n(θ)|−1 ≤ (d− α)−n.

Using (In) and Lemmas 2.3 and 3.5 we also have

|∂xFn(θ, x)|−1 ≤ exp

(
−(2c− ε)n + 3 log

1

α

)
.

Hence,

‖Dφ−1(φ(θ, x))‖ ≤ (d− α)−n + (1 + C3) exp

(
−(2c− ε)n + 3 log

1

α

)
, (23)

which can be made smaller than one, by taking p large enough.

− (D) is a direct consequence of Proposition 4.2.

− For (C1) and (C2), we observe that by Corollary 3.3 the boundary of φ(R),
R ∈ R, is made by two vertical lines and two admissible curves. Hence, the
C2 components of the boundaries of φ(R) meet at angles uniformly bounded
away from zero. This, together with Proposition 3.8, provides regular collars
for φ(R) with constants β(φ(R)) and ρ(φ(R)) uniformly bounded away from
zero.

Now we are in conditions to specify our choice of p: having in mind Theorem 5.2
and estimate (23), let p ≥ 1 be an integer such that

(
(d− α)−p + (1 + C3) exp

(
−(2c− ε)p + 3 log

1

α

))(
1 +

1

β

)
< 1.
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Thus, we may apply Theorem 5.2 and conclude that φ has an absolutely continuous
invariant probability µ. Finally, defining the sequence of sets

R1 = · · · = Rp−1 = ∅, and Rn =
⋃

R∈Rn

R for n ≥ p,

we take

µ∗ =
∞∑

j=0

ϕj
∗

(
µ |

⋃
n>j

Rn

)
.

We will show that µ∗ is a ϕ-invariant absolutely continuous finite measure, and then
derive the existence of a finite number of measures with the same properties of µ∗

and moreover being ergodic.

Invariance. Let A be an arbitrary Borelean in S1 × I. We have

µ∗(ϕ−1(A)) =
∞∑

j=0

µ
(
ϕ−j(ϕ−1(A)) ∩ (∪n>jRn)

)

=
∞∑

j=0

µ
(
ϕ−(j+1)(A) ∩ (Rj+1 ∪ (∪n>j+1Rn)

)

=
∞∑

j=0

µ
(
ϕ−(j+1)(A) ∩Rj+1

)
+

∞∑
j=0

µ
(
ϕ−(j+1)(A) ∩ (∪n>j+1Rn)

)
.

In this last equality we used that (Rn)n is a sequence of disjoint sets (mod 0). Now
we have

∞∑
j=0

µ
(
ϕ−(j+1)(A) ∩Rj+1

)
= µ

(∪j≥1

(
ϕ−j(A) ∩Rj

))

= µ(φ−1(A)) = µ(A)

and
∞∑

j=0

µ
(
ϕ−(j+1)(A) ∩ (∪n>j+1Rn)

)
= µ∗(A)− µ(A ∩ (∪n>0Rn))

= µ∗(A)− µ(A),

which altogether gives
µ∗(ϕ−1(A)) = µ∗(A),

and so the measure µ∗ is ϕ-invariant.
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Absolute continuity. This is a direct consequence of the absolute continuity of
the measure µ. Note that if A is a Borelean in S1 × I with m2(A) = 0, then
m2(ϕ

−j(A)) = 0 for every j ≥ 0. Then, by the absolute continuity of µ, we have
µ(ϕ−j(A)) = 0 for every j ≥ 0. Hence

µ∗(A) =
∞∑

j=0

µ

(
ϕ−j(A) ∩

(⋃
n>j

Rn

))
= 0,

which shows that µ∗ is absolutely continuous with respect to m2.

Finitness. Let f0 be the density of µ with respect to the Lebesgue measure m2.
We have

µ∗
(
S1 × I

)
=

∞∑
j=0

µ (∪n>jRn)

=
∞∑

j=0

∫

∪n>jRn

f0dm2

=
∞∑

j=0

∫

S1×I

f0 · χ∪n>jRndm2.

Now, recall that by Remark 5.6 we have f0 ∈ L2(S1 × I). On the other hand, it
follows from Proposition 2.6 that for every j ≥ p

⋃
n>j

Rn ⊂
((

S1 × I
) \ (Hp ∪ · · · ∪Hj)

) ⊂ Ej,

and so, by Lemma 2.4

m2

( ⋃
n>j

Rn

)
≤ m2(Ej) ≤ Ce−γ

√
j.
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Altogether, this yields

µ∗(S1 × I) ≤
∞∑

j=0

‖f0‖L2 · ‖χ∪n>jRn‖L2

≤ p‖f0‖L2 + ‖f0‖L2

∞∑
j=p

‖χ∪n>jRn‖L2

≤ p‖f0‖L2 + ‖f0‖L2

∞∑
j=p

C1/2e−γ
√

j/2

which is obviously finite.

Ergodicity. For proving that ϕ has some ergodic absolutely continuous invariant
probability measure, we will show that for any ϕ-invariant set A ⊂ S1 × I with
positive Lebesgue measure:

1. A has Lebesgue measure uniformly bounded away from zero;

2. there is some absolutely continuous ϕ-invariant probability measure giving full
weight to A.

This allows us to decompose S1×I into a finite number of minimal positive Lebesgue
measure ϕ-invariant sets. Then everything follows exactly in the same way as for
the piecewise expanding map φ in Section 5.

Let A ⊂ S1 × I be any ϕ-invariant set with m2(A) > 0. We have

φ−1(A) =

{
x ∈

⋃
i≥p

Ri : φ(x) ∈ A

}
=

⋃
i≥p

(
ϕ−i(A) ∩Ri

)
= A,

and so the set A is also φ-invariant. It follows from what we have seen in Section 5
that m2(A) ≥ K̂(2), and so we have proved 1. above.

Now let µA be a measure as in Section 5 and take

µ∗A =
∞∑

j=0

ϕj
∗

(
µA |

⋃
n>j

Rn

)
.

In order to obtain 2. it suffices to show that µ∗A(Ac) = 0, where Ac = (S1 × I)\A.
Since A is ϕ-invariant, Ac is also ϕ-invariant, and so

µ∗A(Ac) =
∞∑

j=0

µA

(
ϕ−j (Ac) ∩

(⋃
n>j

Rn

))
=

∞∑
j=0

µA

(
Ac ∩

(⋃
n>j

Rn

))
= 0
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Hence, the normalized µ∗A is an absolutely continuous ϕ-invariant probability mea-
sure giving full weight to A.

7 Conclusion of the proof

Here we show how to remove assumption (1) from our hypotheses and conclude that
any C3 map ϕ satisfying ‖ϕ − ϕα‖ < ε for sufficiently small ε (with respect to α)
has a finite absolutely continuous invariant measure.

The main step is to show that such a ϕ admits an invariant foliation F c by C1

leaves C1 close to vertical lines in S1× I. This is a consequence of the fact that the
set of vertical lines constitutes a normally expanding invariant foliation for the map
ϕα.

Let H be the space of continuous maps ξ : S1 × I → [−1, 1] endowed with the
sup norm, and define the map F : H → H by

Fξ(z) =
∂xf(z)ξ(ϕ(z))− ∂xg(z)

−∂θf(z)ξ(ϕ(z)) + ∂θg(z)
, z = (θ, x) ∈ S1 × I.

Note that F is well-defined, since

|Fξ(z)| ≤ (4 + ε) + ε

−(const α + ε) + (d− ε)
< 1

for small α > 0 and ε > 0. Moreover, F is a contraction on H: given ξ, η ∈ H and
z ∈ S1 × I

|Fξ(z)− Fη(z)| ≤ |detDϕ(z)||ξ(z)− η(z)|
|(−∂θf(z)ξ(ϕ(z)) + ∂θg(z))(−∂θf(z)η(ϕ(z)) + ∂θg(z))|

≤ ((d + ε)(4 + ε) + ε)|ξ(z)− η(z)|
(d− constα)2

.

This last quantity can be made smaller than 1/2|ξ(z)− η(z)|, as long as α and ε are
chosen sufficiently small. This shows that F is a contraction of the Banach space H,
and so has a fixed point ξc ∈ H. Note that since the map F depends continuously on
the dynamics ϕ, and for ϕα the fixed point coincides with the constant map equal to
zero, then for ϕ close to ϕα the fixed point ξc of F is close to zero. We have defined
F in such a way that if we take Ec(z) = span{(ξc(z), 1)}, then for every z ∈ S1 × I

Dϕ(z)Ec(z) ⊂ Ec(ϕ(z)). (24)
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Now we take F c to be the set of integral curves of the vector field z → (ξc(z), 1).
Since the vector field is taken of class C0, it does not follow immediately that
through each point in S1× I passes only one integral curve. However, we will prove
uniqueness of solutions by using the fact that the map ϕ has a big expansion in the
horizontal direction.

Assume by contradiction that there are two distinct integral curves Y1, Y2 ∈ F c

with a common point. So we may take three distinct nearby points z0, z1, z2 ∈ S1×I
such that z0 ∈ Y1 ∩ Y2, z1 ∈ Y1, z2 ∈ Y2 and z1, z2 have the same x-coordinate.
Consider the horizontal curve X joining z1 to z2. If we iterate X by ϕ, such iterates
are admissible curves (nearly horizontal) and locally grow in the horizontal direction
by a factor al least d − const α in each iterate. Hence, after a certain number of
iterates the images of X wrap many times around the cylinder S1 × I. On the
other hand, since the iterates of Y1 and Y2 are always tangent to the vector field
z → (ξc(z), 1), it follows that all the iterates of Y1 and Y2 have small amplitude
in the θ-direction. This gives a contradiction, since all the iterates by ϕ of the
homotopically zero closed curve made by Y1, Y2 and X is always homotopic to zero
in S1 × I. Thus, we have uniqueness of solutions of the vector field z → (ξc(z), 1),
and from (24) it follows that F c is a ϕ-invariant foliation of S1 × I by C1 leaves C1

close to vertical lines.
The existence of this invariant foliation F c replaces the assumption of the skew-

product form of ϕ in (1). One also needs an analog of the second part of assumption
(1). Since (24) holds and Ec(z), Ec(ϕ(z)) are unidimensional spaces, there must be
some scalar ∆(z) satisfying

Dϕ(z)(ξc(z), 1) = ∆(z)(ξc(ϕ(z)), 1)

for every z ∈ S1× I. We define the critical set of ϕ by C = {z ∈ S1× I : ∆(z) = 0}.
By an easy implicit function argument it is shown in Section 2.5 of [V2] that C is
the graph of some C2 map η : S1 → I arbitrarily C2-close to zero if ε is small. This
means that up to a change of coordinates C2-close to the identity we may suppose
that η ≡ 0 and, hence, write ∆(θ, x) = xψ(θ, x) with |ψ + 2| close to zero if ε and
α are small. This provides an analog to the second part of assumption (1). At this
point, the arguments of [V2] apply with ∂xf(θ, x) replaced by ∆(θ, x), to show that∏n−1

i=0 ∆(θi, xi) grows exponentially fast almost surely.
Now the proof of Theorem A follows in just the same way as before, with the

leaves of F c replacing the vertical lines. For the sake of completeness a few words are
required, concerning the construction of the partitionR. In this case the boundary of
the rectangles will be made by two horizontal segments (as before) and two segments
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of leaves in F c. For each n ≥ 1 we define a partition Pn of S1×{0} in the following
way: consider the map

X̂n : S1 × {0} −→ S1 × I
(θ, 0) 7−→ ϕn(θ, 0)

and let F0 be the leaf of F c close to {θ = 0} that is fixed under ϕ. Then we define

Pn =
{

[θ′, θ′′) : (θ′, θ′′) is a connected component of X̂−1
n ((S1 × I)\F0)

}
.

This partition easily induce a partition of S1 × I into nearly vertical strips

P̂n =

{
Ω =

⋃

θ∈ω

Fθ : ω ∈ Pn

}
,

where each Fθ is the leaf of F c that contains the point (θ, 0) ∈ S1 × I. Note that

for each x ∈ I and Ω ∈ P̂n the length of ω = (S1 × {x}) ∩ Ω depends on x in an
unimportant way. In fact we have

(d + constα)−n ≤ |ω| ≤ (d− constα)−n

for every x ∈ I and n ≥ 1. Now the construction of the partition R follows as
in Section 3, starting our inductive process with the nearly vertical strips of the
partition P̂p. Here we use the left hand side fibers of the strips in P̂n (n ≥ p) to
determine the itineraries of points. Having defined the elements of Rn and Sn for
some n ≥ p, we use the partition P̂n+1 to divide the remaining rectangles in Sn.
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