

srcML: An Infrastructure for the Exploration, Analysis,
and Manipulation of Source Code

A Tool Demonstration

Michael L. Collard1, Michael John Decker2, Jonathan I. Maletic2
1Department of Computer Science

The University of Akron
Akron, Ohio

collard@uakron.edu

2Department of Computer Science
Kent State University

Kent, Ohio 44242
mdecker6@kent.edu, jmaletic@kent.edu

Abstract—srcML is an XML representation for C/C++/Java
source code that forms a platform for the efficient exploration,
analysis, and manipulation of large software projects. The
lightweight format allows for round-trip transformation from
source to srcML and back to source with no loss of information
or formatting. The srcML toolkit consists of the src2srcml tool
for robust translation to the srcML format and the srcml2src tool
for querying via XPath, and transformation via XSLT. In this
demonstration a guide of these features is provided along with
the use of XPath for constructing source-code queries and XSLT
for conducting simple transformations.

Keywords—srcML; static code analysis; source transformation

I. INTRODUCTION
The research and practice of software maintenance and

evolution almost always, in some manner, requires the
exploration, analysis, or manipulation of source code. Here we
demonstrate the features of a powerful infrastructure, namely
srcML, which supports these tasks via an underlying format,
parser, and tool set.

While srcML [3, 4] has been publicly available to the
research community since the mid 2000’s it has recently gained
more traction in both industry and the research community.
Much of this is due to a number of new usability features
recently added, expanded language support, scalability, and
robustness of the platform.

In short, srcML is an XML format for source code.
Specifically, the parsing technology supports C/C++ and Java.
However, we will soon be releasing support for C#. The XML
markup identifies elements of the abstract syntax for the
language. This allows us to leverage XML tools to support
various tasks of exploration, analysis, and manipulation.

A number of underlying features make srcML particularly
useful for evolution and maintenance. The main philosophy is
to take a programmer-centric view of the code rather than a
compiler-centric one. First, the conversion from source code to
srcML is lossless. That is, no formatting, comments, or actual
code is lost. There is a round-trip equivalency from source
code to srcML and back to the original source code.
Additionally, macros, templates, and preprocessor statements
are marked up. That is, the preprocessor is not run (or need not
be run) prior to conversion to srcML. This also implies that
code with missing includes, libraries, or code fragments can be
converted to well-formed srcML. Lastly, the conversion to

srcML is extremely efficient, running faster than a compiler
(over 25KLOC/sec).

srcML has been used for a variety of maintenance
problems. This includes, but not limited to, such things as the
analysis of large systems to automatically reverse engineer
class and method stereotypes [9], supporting syntactic
differencing [12], and applying transformations to support API
and compiler migration [5].

In the demonstration we will provide an introduction of
how to use srcML. It is a command-line tool with a number of
options for converting one file, multiple files, or complete
source archives to srcML. Then, a number of basic features to
explore and analyze source code using the infrastructure and
XPath are presented. Means to develop specialized programs
using such things as XML utility libraries and Python programs
are also demonstrated. Lastly, simple ways to manipulate the
source code to produce complex transformations are given.

The srcML infrastructure, including the format, parsing
technology, and a select set of tools is currently open source
and licensed under GPL. It is available for download at:

http://srcml.org

II. THE SRCML PLATFORM
The srcML platform is based on the srcML format, which

is an XML format where the syntactic aspects of the source
code are marked with srcML elements. An example of srcML
is given in Figure 1. The main element is unit which contains
some optional attributes about the source code, including
filename, directory, and version. The required attribute
language includes the programming language, which must be
specified when the srcML is created. The unit element
contains the srcML form of the source code. This includes all
of the original source code for that translation unit, and the
srcML markup elements. srcML includes elements for all
syntactic statements, e.g., if, while, for, expr_stmt, decl_stmt,
and program structural elements, e.g., function, class,
namespace, all in the namespace
http://www.sdml.info/srcML/src. C-preprocessor statements
are also marked, e.g., cpp:include, in their own namespace
http://www.sdml.info/srcML/cpp. Special elements include
escape for invalid XML characters, e.g., formfeeds. Optional
markup is provided for literals, operators, and type modifiers.
The complete list of srcML elements are on the website.

The main architectural elements of the srcM
are presented in Figure 2. Underlying everyth
format. Directly on top of that is the parsing te
XML technologies can be used to build v
applications. On the left are the abstract m
software engineers to conduct maintenance
These models cross the various layers. On th
the srcML community and support.

Figure 2. Architecture of the srcML infr

A. srcML Archive
For simple code fragments and individua

srcML format works well. But, as is done
archives such as the tar format for systems wi
of files, it is much more convenient to combi
files into one large srcML file, which is a sr
basically consists of separate unit elements
code file, wrapped in an outer unit element.
input, the srcML archive is the default. Th
automatically adjusts to basic and archive srcM

B. Implementation
The srcML parser takes full advantage

format. The parser is custom built using a mo
the LL(k) ANTLR 2.7.7 parsing toolkit. A
stream is used for white space and comments,
be completely preserved. Another separate p
used for preprocessor statements. Both o
streams allow for the primary parser to work w
the language. Before output, the tokens fr
parsing streams are merged back into the
stream. Preprocessor statements can affe
parsing, so information from the preprocesso
with a set of heuristics to deal with these cases

<unit xmlns="http://www.sdml.info/src
filename="ex.cpp">
<comment type="line">// copy the inpu
<while>while <condition>(<expr><name>
<name>n</name></expr>)</condition>
 <expr_stmt><expr><name><name>std</n
'\n'</expr>;</expr_stmt></while>
</unit>

Figure 1. A code fragment in the srcML form
XML markup is placed to indicate syntactic

ML infrastructure
hing is the srcML
echnology. Then

various tools and
models we use as
e and evolution.
he right we have

astructure.

al files, the basic
 for source-code
ith large numbers
ne these separate

rcML archive. It
for each source
For multiple file

he srcML toolkit
ML files.

e of the srcML
odified version of

separate parsing
allowing them to

parsing stream is
of these separate
with the syntax of
rom the separate
e primary parser
fect the primary
or stream is used
s.

In addition to ANTLR, many o
by the libraries libxml2 and libarc
libxml2 is for generating XML whe
conversion of srcML back to source
for accepting http URLs, executin
encoding issues (using the libico
associated libraries libxslt and libex
XSLT transformations.

The other library used extensi
supports encoded and archive file ty
libarchive is combined with libxm
access of these file types, e.g., an htt

III. EXPLORATION

The first step in using the srcM
original source code into the srcML
entire system, a few select files,
system may be a single language
following command can be used to
in KOffice into srcML directly fro
archive:

src2srcml --registe
http://download.kde.org/stable

2.3.3.tar.bz2 -o ko
In this example, files with the e

C++. At this point a srcML ver
source code project is generated
koffice.xml. The remote access an
code archive (tar.bz2) is handled au
srcML file is about 164 MB, while t
text) takes about 48 MB, producin
increase in size.

In addition to an input source f
be given an individual file, a list o
either case, the language of an in
automatically from the filename's
has multiple options for specifying i
(e.g., Latin1) and optional markup
and operators.

Once in the srcML format, the c
XPath. To find the number of a pa
can directly count them. For examp
of for-statements in KOffice:

srcml2src --xpath "count(//s
In this case, the result is 6,813.

by default prefixed with src for the
for c-preproccesor elements. To fin
we can also use XPath. The resul

cML/src" xmlns:cpp="http://www.sdml.info/srcML/cp

ut to the output</comment>
><name>std</name>::<name>cin</name></name> >&g

name>::<name>cout</name></name> << <name>n<

mat. Note that all original text is preserved, including white s
c context. The srcML format can also represent complete so

complete projects in a srcML archive.
of the features are provided
chive. The primary use of
en creating srcML, and for
 code. Libxml2 is also used
ng XPath queries, and in
nv library). The libxml2

xslt are used for performing

ively is libarchive, which
ypes, e.g., gz, tar, cpio, etc.
ml2 to provide for remote
tp tar.gz file.

& ANALYSIS
ML toolkit is to translate the

L format. This can be the
or a code fragment. The

e or multi-language. The
convert all the source code

om the url of the KOffice

er-ext h=C++
e/koffice-2.3.3/koffice-
office.xml
extension '.h' are treated as
sion of the entire KOffice
d and put into the file
d conversion of the source
utomatically. The resulting
the original source code (as
ng a reasonable 3.42 times

from a URL, src2srcml can
of files, or a directory. In
nput source is determined
extension. src2srcml also
input source-code encoding
for literals, type modifiers,

code can be explored using
articular syntactic item, we
ple, to find the total number

src:for)" koffice.xml
 Elements in the XPath are
syntactic elements and cpp

nd a list of particular items,
lt is a srcML archive with

pp" language="C++"

gt;

</name> <<

space and comments. The
ource code files and even

each query result in a separate unit element. The following
will find these names, and then count the number of them using
the --longinfo option:

srcml2src --xpath "//src:class/src:name" koffice.xml |
srcml2src --longinfo

This query took about 6 seconds on a MacBook Pro 2.66 GHz

Intel Core i7 with 8GB RAM.
Figure 3. Main loop from a Python program using the

libxml2 xmlTextReader API to generate data for a call graph.
The program reads nodes (Line 2) until a function element is

found (Line 3). The tree for that function is expanded (Line 5),
and XPath extracts the name of the function (Line 12) and the list
of calls (Line 14). This function subtree is then deleted (Line 21).

When it is necessary to further analyze the system, XPath

querying can still be used, either entirely alone, or as a first
step of further analysis. This further analysis can be performed
by any XML tool or API. As an example, the Python program
in Figure 3 takes each function in a system and generates call
information. The output is each function name followed by a
list of calls made by that function.

The Python program (Figure 3) uses the libxml2 TextReader
interface. The main loop (Line 1) reads each node in the
srcML file. When a function element is detected (Line 2), the
entire XML subtree for that function is created by the call to
the method Expand() (Line 5). Since we now have the
complete tree for this function, we use XPath to extract the
necessary information. First, the XPath evaluation is setup
(Lines 7 – 10). Then the function name is extracted using the
XPath src:name (Line 12). Note that the XPath expressions
are written from the context of this src:function element.
Lastly for this function, all of the calls are extracted using the
XPath src:block//src:call/src:name (Line 14). It is relatively
straightforward to extend this example to the extraction of

other parts of methods/functions. Additional cases for other
elements are easy to add.

This approach is highly scalable, as it takes about a minute
to run this on a srcML archive of the entire linux kernel.
General evaluation of XPath requires a complete XML tree in
memory (similar to DOM). However, in this case, we only
create a tree for the current function, and then remove it when
finished. This general approach can be used with other
programming languages and other XML APIs, especially with
pull parsers. For instance, a similar approach is built into the
srcML toolkit for XPath and XSLT evaluation.

IV. MANIPULATION
We now show a simple XSLT transformation that uses

srcML to instrument source code to gather and report basic
profiling information. Figure 4 shows parts of the XSLT
program. The full program is available at the demo website.
The source code is transformed in three ways: 1) access to a
global profiling object is added to each source file, 2) functions
are instrumented to update the global profile object, and 3) the
main function is modified to report the profiling information.
A sample program is provided on the accompanying website to
illustrate the program. The instrumentation of the sample
program can be performed using the following command:

src2srcml sort.cpp sort_lib.cpp | srcml2src –xslt profile.xsl
| srcml2src –to-dir profiled

First, the source files are converted to the srcML format.
Then the XSLT program profile.xsl is applied to all of the files
in the srcML archive. After the profile code is inserted, the
transformed source code files are extracted.

The profile.xsl transformation program consists of separate
templates to insert the required code. Note that any inserted
source can be put as plain text, i.e., it is not necessary to insert
srcML markup. It also contains an identity copy XSLT
template that assures that any unmodified code is copied over.

For efficiency, the XSLT program is applied to the srcML
of each individual source code file one at a time. The result of
applying the XSLT to each individual unit is then merged into
the output srcML archive. This provides scalability of the
transformation to very large systems.

Although our example was an XSLT program (using the
builtin srcml2src feature), transformations can be written using
any XML tool or API, e.g., LINQ, SAX2, DOM, etc. For
example, the approach used in the Python program with
TextReader (as shown previously) can be extended into a
transformation. A potential complexity is an identity copy of
all of the unchanged parts of the source code being
transformed. In XSLT, the identity template handles this.

V. RELATED WORK
It has been observed that automated source code

transformations intended to be handed back to a developer
must preserve the programmer's view of the document, i.e.,
preserve white space, comments, and the expressions of
literals, and failure to do so may mean the rejection of the
result [6, 14] and tool. It has been observed that these
compiler-centric approaches are often not a good match to the
problems that they are trying to solve [10, 14]. There are
exceptions to this problem with compiler-centric approaches,
with one example being the DMS system by Baxter [2].

 1 reader =
libxml2.newTextReaderFilename(sys.argv[1])
 2 while reader.Read():
 3 if reader.NodeType() == 1 and
 reader.Name() == 'function':
 4 # expand the subtree
 5 node = reader.Expand()
 6 # setup for XPath evaluation
 7 ctxt = node.doc.xpathNewContext()
 8 ctxt.setContextNode(node)
 9 ctxt.xpathRegisterNs("src",

"http://www.sdml.info/srcML/src")
10 ctxt.xpathRegisterNs("cpp",

"http://www.sdml.info/srcML/cpp")
11 # output the function name
12 print
ctxt.xpathEval("src:name")[0].getContent() + ',',
13 # extract the call names
14 calls =
ctxt.xpathEval("src:block//src:call/src:name")
15 calllist = [call.getContent() for call in
calls]
16 # output the list of calls
17 print ','.join(set(calllist))
18 # finish up
19 ctxt.xpathFreeContext()
20 # delete this subtree
21 reader.Next()

Baxter has gone to great lengths to address this specific issue
by storing important textual items within the underlying
abstract-syntax graph.

One approach is to move down to the level of lexical
analysis and provide for the transformation at that level, as in
[8]. This allows for the preservation of all of the text, but at a
cost of complex regular expressions. Another approach that
preserves the programmer’s view is to move the transformation
to the level of the grammar as in TXL [7]. Using this
approach, the transformations are written as part of the
grammar for parsing the language. The approach shares many
of the advantages of our approach: preservation of
programmer’s view, scalability, robustness, etc. The difference
is in the format of the transformation. Instead of grammar
rules, our approach treats the text of the source code as data in
XML, and the transformations are XML transformations.
ASF+SDF and Rascal [11] use a similar approach. Stratego
[15] also support various means to apply transformation rules.

The Proteus system [16] addresses similar problems of
performing transformations on large C++ systems while
preserving the layout and handling code before preprocessing.
Other approaches include JavaML [1] and others using an
intermediate language to describe the source, as in the case of
the C Intermediate Language (CIL) [13].

VI. CONCLUSIONS AND FUTURE WORK
The srcML platform has shown itself to be highly useful for

the exploration, analysis, and transformation of source code.
The principle of the format and tools to preserve all elements
of the original source code text allows for any information
present in the code to be extracted, whether lexical,
documentary, or syntactic. Although all of this information
may not be needed for a particular task, using XPath, the
srcML toolkit, or a particular XML tool, unneeded information
is easy to avoid. The reasonable increase in file sizes of srcML
over that of the original source code lessens the cost of this
potentially unneeded information.

For the future, plans are to increase language support for
Java and the new features of C++11. At the request, primarily
from industry, the plan is to include language support for C#.
As the number of supported languages increases, the use with
mixed-language systems becomes more important, and the plan
is to include full support for this. The current internal
architecture of the system makes it difficult for anybody
(except the coauthors) to fix bugs or support new languages
and language features. The plan is to change to a plug-in

parser architecture. We envision
that srcML parsers for new
languages would be specified
using a ANTLR-type declaration.
Our goal is to first implement this
for DSLs, and then eventually
move currently supported
programming languages (e.g.,
C++) to this format. This would

greatly increase the ability of
other developers to support new
language features and versions.

One of the main roadblocks
to usage of any system is the support in the form of examples,
tutorials, documentation, etc. The plan is to increase and
organize these materials at our new website (srcml.org). We
especially want to support more integration into other APIs and
tools. Finally, for srcML to grow in both capability and usage,
a broader community needs to be formed.

REFERENCES
[1] Badros, G. J., "JavaML: a markup language for Java source code",
Computer Networks, vol. 33, no. 1–6, 2000, pp. 159-177.
[2] Baxter, I. D., Pidgeon, C., and Mehlich, M., "DMS: Program
Transformations for Practical Scalable Software Evolution", in ICSE, May 23
-28 2004, pp. 625-634.
[3] Collard, M. L., Decker, M., and Maletic, J. I., "Lightweight
Transformation and Fact Extraction with the srcML Toolkit", in SCAM, Sept
25-26 2011, pp. 10 pages.
[4] Collard, M. L., Kagdi, H. H., and Maletic, J. I., "An XML-Based
Lightweight C++ Fact Extractor", in IWPC, May 10-11 2003, pp. 134-143.
[5] Collard, M. L., Maletic, J. I., and Robinson, B. P., "A Lightweight
Transformational Approach to Support Large Scale Adaptive Changes", in
ICSM, Sept 12-18 2010, pp. 10 pages.
[6] Cordy, J. R., "Comprehending Reality - Practical Barriers to Industrial
Adoption of Software Maintenance Automation", in IWPC, May 10-11 2003,
pp. 196-206.
[7] Cordy, J. R., Dean, T. R., Malton, A. J., and Schneider, K. A., "Source
transformation in software engineering using the TXL transformation
system", Info and Software Technology, vol. 44, no. 13, 2002, pp. 827-837.
[8] Cox, A. and Clarke, C., "Relocating XML Elements from Preprocessed to
Unprocessed Code", in IWPC , June 2002, pp. 229-238.
[9] Dragan, N., Collard, M. L., and Maletic, J. I., "Automatic Identification of
Class Stereotypes", in ICSM, 2010, pp. 10 pages.
[10] Klint, P., "How Understanding and Restructuring Differ from Compiling
- A Rewriting Perspective", in IWPC, May 10-11 2003, pp. 2-12.
[11] Klint, P., Storm, T. v. d., and Vinju, J., "RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation", in SCAM, 2009, pp.
168-177.
[12] Maletic, J. I. and Collard, M. L., "Supporting Source Code Difference
Analysis", in ICSM, September 11-17 2004, pp. 210-219.
[13] Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W., "CIL:
Intermediate language and tools for analysis and transformation of C
programs", Lecture Notes in Computer Science 2002, pp. 213-228.
[14] Van De Vanter, M. L., "The Documentary Structure of Source Code",
Info and Software Technology, vol. 44, no. 13, October 1 2002, pp. 767-782.
[15] Visser, E., "Stratego: A Language for Program Transformation Based on
Rewriting Strategies", in Proceedings of the 12th International Conference on
Rewriting Techniques and Applications, 2001, pp. 357-362.
[16] Waddington, D. and Yao, B., "High-fidelity C/C++ code transformation",
Science of Computer Programming, vol. 68, no. 2, 2007, pp. 64-78.

<!-- Insert call to global profile object to record call of this function -->
<xsl:template match="src:function/src:block">
<xsl:copy-of select="node()[1]"/>
<xsl:text>functions.count(__LINE__, "</xsl:text><xsl:value-of select="../src:name"/><xsl:text>");
</xsl:text><xsl:apply-templates select="node()[position()!=1]"/></xsl:template>

<!-- identity copy -->
<xsl:template match="@*|node()"><xsl:copy><xsl:apply-templates
select="@*|node()"/></xsl:copy></xsl:template>

Figure 4. Templates from an XSLT program to insert profiling information into source code.
Other templates insert the proper includes, and output at the return of the main() function. The

identity copy template makes sure that all other source code is preserved.

