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Abstract—Linear Discriminant Analysis (LDA) has been a popular method for extracting features that preserves class separability.

The projection functions of LDA are commonly obtained by maximizing the between-class covariance and simultaneously minimizing

the within-class covariance. It has been widely used in many fields of information processing, such as machine learning, data mining,

information retrieval, and pattern recognition. However, the computation of LDA involves dense matrices eigendecomposition, which

can be computationally expensive in both time and memory. Specifically, LDA has Oðmntþ t3Þ time complexity and requires

Oðmnþmtþ ntÞ memory, where m is the number of samples, n is the number of features, and t ¼ minðm;nÞ. When both m and n

are large, it is infeasible to apply LDA. In this paper, we propose a novel algorithm for discriminant analysis, called Spectral

Regression Discriminant Analysis (SRDA). By using spectral graph analysis, SRDA casts discriminant analysis into a regression

framework that facilitates both efficient computation and the use of regularization techniques. Specifically, SRDA only needs to solve

a set of regularized least squares problems, and there is no eigenvector computation involved, which is a huge save of both time and

memory. Our theoretical analysis shows that SRDA can be computed with OðmsÞ time and OðmsÞ memory, where sð� nÞ is the

average number of nonzero features in each sample. Extensive experimental results on four real-world data sets demonstrate the

effectiveness and efficiency of our algorithm.

Index Terms—Linear Discriminant Analysis, spectral regression, dimensionality reduction.
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1 INTRODUCTION

DIMENSIONALITY reduction has been a key problem in
many fields of information processing, such as data

mining, information retrieval, and pattern recognition.
When data are represented as points in a high-dimensional
space, one is often confronted with tasks like nearest
neighbor search. Many methods have been proposed to
index the data for fast query response, such as K-D tree,
R tree, R� tree, etc. [11]. However, these methods can only
operate with small dimensionality, typically less than 100.
The effectiveness and efficiency of these methods drop
exponentially as the dimensionality increases, which is
commonly referred to as the “curse of dimensionality.”

During the last decade, with the advances in computer
technologies and the advent of the World Wide Web, there
has been an explosion in the amount of digital data being
generated, stored, analyzed, and accessed. Much of this
information is multimedia in nature, including text, image,
and video data. The multimedia data are typically of very
high dimensionality, ranging from several thousands to
several hundreds of thousand. Learning in such high
dimensionality in many cases is almost infeasible. Thus,
learnability necessitates dimensionality reduction. Once the
high-dimensional data is mapped into a lower dimensional
space, conventional indexing schemes can then be applied.

One of the most popular dimensionality reduction
algorithms is the Linear Discriminant Analysis (LDA) [8],
[10]. LDA searches for the project axes on which the data
points of different classes are far from each other while
requiring data points of the same class to be close to each
other. The optimal transformation (projection) of LDA can
be computed by applying an eigendecomposition on the
scatter matrices of the given training data. LDA has been
widely used in many applications such as text processing
[24] and face recognition [1]. However, the scatter matrices
are dense, and the eigendecomposition could be very
expensive in both time and memory for high-dimensional
large-scale data. Moreover, to get a stable solution of LDA,
the scatter matrices are required to be nonsingular, which is
not true when the number of features is larger than the
number of samples. Some additional preprocessing steps
(for example, Principal Component Analysis (PCA) and
Singular Value Decomposition (SVD)) are required to
guarantee the nonsingularity of scatter matrices [1], [25],
which further increase the time and memory costs. There-
fore, it is almost infeasible to apply LDA on large-scale
high-dimensional data.

In this paper, we propose a novel algorithm for
discriminant analysis, called Spectral Regression Discriminant
Analysis (SRDA). SRDA is essentially developed from LDA
but has a significant computational advantage over LDA.
Benefiting from recent progresses on spectral graph
analysis, we analyze LDA from a graph embedding point
of view that can be traced back to [15]. We show how the
LDA solution can be obtained by solving a set of linear
equations that links LDA and classical regression. Our
approach combines spectral graph analysis and regression
to provide an efficient and effective approach for discrimi-
nant analysis.
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The points below highlight the contributions of this
paper:

. The classical LDA is well analyzed from a new
graph embedding point of view. The singularity
issue in classical LDA is clearly analyzed, and we
show how various kinds of LDA extensions, for
example, the two-stage PCA+LDA approach [1] and
LDA/Generalized SVD (GSVD) approaches [16],
[25], can be unified in an SVD+LDA framework.

. The projective functions obtained by those classical
LDA approaches and LDA/GSVD approaches are
optimal with respect to the objective function.
However, in a small sample size situation, these
solutions tend to overfit the training data and thus
may not be optimal on the test set. The regularized
solution of LDA usually achieves better performance.

. A new approach for discriminant analysis based on
the graph embedding formulation of LDA is devel-
oped, which is called SRDA. In SRDA, the transfor-
mation vectors are obtained by solving a set of linear
regression problems, which can be very efficient.
Since it contains regression as a building block,
SRDA provides a natural framework for regularized
discriminant analysis.

. LDA has Oðmntþ t3Þ time complexity and re-
quires Oðmnþmtþ ntÞ memory, where m is the
number of samples, n is the number of features,
and t ¼ minðm;nÞ. When both m and n are large,
it is infeasible to apply LDA. On the other hand,
SRDA can be computed with OðmsÞ time and
OðmsÞ memory, where sð� nÞ is the average
number of nonzero features in each sample. It
can be easily scaled to very large high-dimensional
data sets.

. For the binary classification problem, LDA has
been shown to be equivalent to the regression [14].
We extend this relation to the multiclass case. With
regression as the building block, various kinds of
regularization techniques can be easily incorpo-
rated in SRDA (for example, an L1-norm regular-
izer to produce sparse projections [3]).

. Our algorithm may be conducted in the original
space or in the reproducing kernel Hilbert space
(RKHS) into which data points are mapped. This
gives an efficient algorithm for Kernel Discriminant
Analysis [2].

The remainder of the paper is organized as follows: In
Section 2, we provide a brief review of LDA and its variant
extensions. Section 3 gives a detailed analysis of LDA from
a graph embedding point of view. Section 4 introduces our
proposed SRDA algorithm. The extensive experimental
results are presented in Section 5. Finally, we provide some
concluding remarks in Section 6.

2 A BRIEF REVIEW OF LDA

LDA seeks directions on which data points of different
classes are far from each other while requiring data points
of the same class to be close to each other. Suppose we
have a set of m samples x1;x2; � � � ;xm, belonging to

c classes (see Table 1 for a list of notations used in this
paper). The objective function of LDA is given as follows:

a� ¼ argmax
a

aTSba

aTSwa
; ð1Þ

Sb ¼
Xc

k¼1

mkð��ðkÞ � ��Þð��ðkÞ � ��ÞT ; ð2Þ

Sw ¼
Xc

k¼1

Xmk

i¼1

ðxðkÞ
i � ��ðkÞÞðxðkÞ

i � ��ðkÞÞT
 !

; ð3Þ

where �� is the total sample mean vector, mk is the number
of samples in the kth class, ��ðkÞ is the average vector of the
kth class, and x

ðkÞ
i is the ith sample in the kth class. We call

Sw the within-class scatter matrix and Sb the between-class
scatter matrix.

Define St ¼
Pm

i¼1ðxi � ��Þðxi � ��ÞT as the total scatter
matrix, and we have St ¼ Sb þ Sw [10]. The objective
function of LDA in (1) is equivalent to

a� ¼ argmax
a

aTSba

aTSta
: ð4Þ

When l projective functions A ¼ ½a1; � � � ; al� are needed, the
objective function of LDA can be written as

A� ¼ argmax
A

trðATSbAÞ
trðATStAÞ

; ð5Þ

where trðÞ denotes matrix trace. The optimization problem
in (5) is equivalent to finding the l eigenvectors of the
following generalized eigenproblem associated with max-
imum eigenvalues:

Sba ¼ �Sta: ð6Þ

Since the rank of Sb is bounded by c� 1, there are at
most c� 1 eigenvectors corresponding to nonzero eigen-
values [10].

To get a stable solution of the above generalized
eigenproblem, St is required to be nonsingular, which is
clearly not true when the number of features is larger than

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 1, JANUARY 2008

TABLE 1
Notations

Authorized licensed use limited to: University of Illinois. Downloaded on January 9, 2009 at 12:55 from IEEE Xplore.  Restrictions apply.



the number of samples. In the past few decades, various

approaches have been proposed to solve this problem. One

of the most well-known approaches is to perform dimen-

sionality reduction in two stages. LDA is performed after

another stage of dimension reduction. Some popular

methods for the first stage include PCA and SVD. Both

Swets and Weng [23] and Belhumeur et al. [1] have utilized

PCA+LDA for face recognition. Torkkola [24] implemented

SVD+LDA for document classification. All these ap-

proaches use the LDA objective function in (1). Since the

rank of Sw is bounded from above by m� c [1], the PCA

(SVD) step should reduce the dimension to at most m� c.
Recently, Howland and Park [16] solved the singularity

problem of LDA by using GSVD. They rewrite the LDA

objective function as the following equivalent form:

A� ¼ argmax
A

tr ðATStAÞ�1ðATSbAÞ
� �

;

which can be solved by the GSVD algorithm. One limitation

of this method is the high computational cost of GSVD,

especially for large and high-dimensional data sets. In [25],

Ye extended such approach by solving the optimization

problem using simultaneous diagonalization of the scatter

matrices.

Another way to deal with the singularity of Sw is to apply

the idea of regularization, by adding some constant values to

the diagonal elements of Sw, as Sw þ �I, for some � > 0. It is

easy to see that Sw þ �I is nonsingular. This approach is

called Regularized Discriminant Analysis (RDA) [9], [13].

However, Sw þ �I is a very large dense matrix for high-

dimensional data that incurs a high computational cost on

directly solving the eigenproblem in (6). By noticing that the

eigendecomposition of Sw þ �I is the sum of the eigende-

composition of Sw and �I, Ye and Wang [27] developed an

efficient algorithm to compute the projective functions of

RDA. The computational cost of this approach will be

comparable to those of two-stage PCA+LDA approaches.

The computation of all the above LDA extensions

involves the SVD of the data matrix, which is computation-

ally expensive in both time and memory for high-dimen-

sional large-scale data sets. In some applications (for

example, text processing), the data matrix is sparse, which

can be fit into the memory even with a large number of both

samples and features. However, the singular vector matrices

are dense and thus may not be able to be fit into the

memory. In this case, all these LDA approaches cannot be

applied. To solve this problem, Ye et al. proposed a new

algorithm called IDR/QR in which QR decomposition is

applied rather than SVD [26]. Experiments on some data

sets showed that IDR/QR is much more efficient than LDA

and achieves comparable performance as LDA [26]. How-

ever, there is no theoretical relation between the optimiza-

tion problem solved by IDR/QR and that of LDA. It is not

clear under what situation IDR/QR can achieve similar or

even better performance than LDA.

3 COMPUTATIONAL ANALYSIS OF LDA

In this section, we provide a computational analysis of
LDA. Our analysis is based on a graph embedding
viewpoint of LDA that can be traced back to [15]. We start
by analyzing the between-class scatter matrix Sb.

Let �xi ¼ xi � �� denote the centered data point and �XðkÞ ¼
½�xðkÞ

1 ; � � � ; �xðkÞ
mk
� denote the centered data matrix of kth class.

We have

Sb ¼
Xc

k¼1

mkð��ðkÞ � ��Þð��ðkÞ � ��ÞT

¼
Xc

k¼1

mk
1

mk

Xmk

i¼1

ðxðkÞ
i � ��Þ

 !

1

mk

Xmk

i¼1

ðxðkÞ
i � ��Þ

 !T

¼
Xc

k¼1

1

mk

Xmk

i¼1

�x
ðkÞ
i

Xmk

i¼1

ð�xðkÞ
i ÞT

 !

¼
Xc

k¼1

�XðkÞW ðkÞð �XðkÞÞT ;

where W ðkÞ is a mk �mk matrix with all the elements equal
to 1=mk.

Let �X ¼ ½ �Xð1Þ; � � � ; �XðcÞ�, which is the centered data
matrix, and define a m�m matrix W as

W ¼

W ð1Þ 0 � � � 0

0 W ð2Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � W ðcÞ

2

6
6
6
4

3

7
7
7
5
: ð7Þ

We have

Sb ¼
Xc

k¼1

�XðkÞW ðkÞð �XðkÞÞT ¼ �XW �XT : ð8Þ

Since St ¼ �X �XT , we have

Sw ¼ St � Sb ¼ �XðI �WÞ �XT ¼ �XL �XT : ð9Þ

If we take the W as the edge weight matrix of a graph G.Wij

is the weight of the edge joining vertices i and j. Wij ¼ 0

indicates that there is no edge between vertices i and j.
Thus, L ¼ I �W is called graph Laplacian1 [7].

We have

rankðStÞ ¼ rankð �X �XT Þ � rankð �XÞ � minðm� 1; nÞ:

Since St is of size n� n, in the case of n > m, St is singular,
and the eigenproblem of LDA in (6) cannot be stably solved.
With the new formulation of Sb, it is clear that we can use
SVD to solve this singularity problem.

Suppose rankð �XÞ ¼ r, the SVD of �X is

�X ¼ U�V T ; ð10Þ

where � ¼ diagð�1; � � � ; �rÞ and �1 � �2 � � � � � �r > 0 are
the singular values of �X, U ¼ ½u1; � � � ;ur� 2 IRn�r and uis are
called left singular vectors, and V ¼ ½v1; � � � ;vr� 2 IRm�r and
vis are called right singular vectors.
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1. A subtlety needs to be addressed here. The graph Laplacian is actually
defined as L ¼ D�W , where D is a diagonal matrix, with its ði; iÞ-element
equal to the sum of the ith column (or row, since W is symmetric) of W .
With the W defined in (7), we can easily see that D ¼ I.
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Substituting �X in (5), we get

A� ¼ argmax
A

trðATU�V TWV�UTAÞ
trðATU�V TV�UTAÞ :

We proceed to variable modification using B ¼ �UTA

and get

B� ¼ argmax
B

trðBTV TWVBÞ
trðBTBÞ ;

and the columns of B� are the eigenvectors of V TWV

associated with the nonzero eigenvalues.
After we get B�, A� can be obtained by solving a set of

linear equation systems �UTA ¼ B�. Notice that given U

and B�, there will be infinitely many solutions of A that

satisfy this equations system.2 Among all these solutions

A� ¼ U��1B� ð11Þ

is obviously one of them and can be used as the

transformation matrix of LDA.
Since �X has zero mean, the SVD of �X is exactly the same

as the PCA of �X and, therefore, the same as the PCA of X.

Our analysis here justifies the rationale behind the two-

stage PCA+LDA approach. The Fisherface approach [1]

keeps at mostm� c dimensions in the PCA step to make Sw

nonsingular and thus may lose some useful information.

Our analysis shows that based on the modified but

equivalent LDA objective function in (4), we can keep all

the nonzero eigenvalues in the PCA step, which avoids

information loss.
By using this transformation matrix A�, the features in

the reduced space are uncorrelated to each other. We have

the following theorem:

Theorem 1. Let A be the transformation matrix of LDA

calculated in (11). The original feature vectors X is

transformed into Y ¼ ATX, where the ith feature component

of Y (ith row of Y ) is denoted as yT
i , yi ¼ XTai. Thus, yi and

yj are uncorrelated for any i 6¼ j.

Proof. Let �i ¼ meanðyiÞ ¼ ��Tai and e be the vector of all

ones; it is sufficient to prove that ðyi � e�iÞT ðyj � e�jÞ ¼
0 for i 6¼ j. We have

ðyi � e�iÞT ðyj � e�jÞ
¼ ðXTai � e��TaiÞT ðXTaj � e��TajÞ
¼ ð �XTaiÞT ð �XTajÞ
¼ aTi

�X �XTaj

¼ aTi U�V TV�UTaj

¼ bT
i bj ¼ 0; ði 6¼ jÞ:

The last equation holds since bis are eigenvectors of

V TWV [12]. tu
In this sense, the SVD+LDA approach described above can

also be called Uncorrelated LDA (ULDA) [25].

3.1 Computational Complexity of LDA

Now, let us analyze the computational complexities of
LDA. The main computation of LDA is solving the
generalized eigenproblem:

�XW �XTa ¼ � �X �XTa: ð12Þ

Suppose we have the SVD of �X shown in (10); we have

�XW �XTa ¼ � �X �XTa

) U�V TWV�UTa ¼ �U��UTa

)��1UTU�V TWV
�

�UTa
�

¼ ���1UTU�
�

�UTa
�

)V TWV b ¼ �b;

where b ¼ �UTa, and V 2 IRm�r is the right singular matrix
of �X. The above algebraic steps show that the LDA
projective functions can be obtained through the following
three steps:

1. SVD of �X to get U , V , and �,
2. computing bs, the eigenvectors of V TWV , and
3. computing a ¼ U��1b.

Since there are at most c� 1 projective functions in

LDA, we do not need to compute all the eigenvectors of

V TWV . The following trick can be used to save computa-

tional cost. We denote the ith row vector of V as zi, which

corresponds to the data point xi. Let z
ðkÞ
i denote the row

vector of V that corresponds to x
ðkÞ
i . Define ��ðkÞ ¼

1
lk

Plk
i¼1 z

ðkÞ
i and H ¼ ½

ffiffiffiffi
l1

p
��ð1Þ; � � � ;

ffiffiffiffi
lc

p
��ðcÞ� 2 IRd�c. We have

V TWV ¼
Xc

k¼1

1

lk

Xlk

i¼1

z
ðkÞ
i

Xlk

i¼1

ðzðkÞi ÞT
 !

¼
Xc

k¼1

lk ��
ðkÞð��ðkÞÞT

¼ HHT :

ð13Þ

It is easy to check that the left singular vectors of �X
(column vectors of U) are the eigenvectors of �X �XT and the
right singular vectors of �X (column vectors of V ) are the
eigenvectors of �XT �X [22]. Moreover, if U or V is given, then
we can recover the other via the formula �XV ¼ U� and
UT �X ¼ �V T . In fact, the most efficient SVD decomposition
algorithm (that is, cross product) applies this strategy [22].
Specifically, if m � n, we compute the eigenvectors of �X �XT ,
which gives us U and can be used to recover V ; ifm < n, we
compute the eigenvectors of �XT �X, which gives us V and
can be used to recover U . Since the matrix H is of size r� c,
where r is the rank of X, and c is the number of classes, in
most of the cases, r is close to minðm;nÞ, which is far larger
than c. Thus, compared to directly calculating the eigen-
vectors of HHT , computing the eigenvectors of HTH and
then recovering the eigenvectors of HHT can achieve a
significant saving. The computational approach described
here is exactly identical to the ULDA approach in [25].

We use the term flam [21], a compound operation
consisting of one addition and one multiplication, to
measure the operation counts. When m � n, the calcula-
tion of �X �XT requires 1

2
mn2 flam, computing the eigen-

vectors of �X �XT requires 9
2
n3 flam [22], [12], recovering V

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 1, JANUARY 2008

2. This is true unless n < m and rankð �XÞ ¼ n. In this case, U will be an
orthogonal matrix, and there is a unique solution of equation �UTA ¼ B�,
which is exactly U��1B�.
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from U requires mn2 flam by assuming that r is close to

minðm;nÞ, computing the c eigenvectors of HHT requires
1
2
nc2 þ 9

2
c3 þ nc2 flam, and, finally, calculating as from bs

requires n2c flam. When m < n, we have a similar

analysis. We conclude that the time complexity of LDA

measured by flam is

3

2
mntþ 9

2
t3 þ 3

2
tc2 þ 9

2
c3 þ t2c;

where t ¼ minðm;nÞ. Considering that c 	 t, the time

complexity of LDA can be written as 3
2
mntþ 9

2
t3 þOðt2Þ.

For the memory requirement, we need to store �X, U , V ,

and as. All summed up, this is

mnþ ntþmtþ cn:

It is clear that LDA has cubic-time complexity with

respect to minðm;nÞ, and the memory requirement is

OðmnÞ. When both m and n are large, it is not feasible to

apply LDA. In the next section, we will show how to solve

this problem with the new formulation of Sb.

4 SPECTRAL REGRESSION DISCRIMINANT

ANALYSIS

In order to solve the LDA eigenproblem in (12) efficiently,

we use the following theorem:

Theorem 2. Let �y be the eigenvector of eigenproblem

W �y ¼ ��y ð14Þ

with eigenvalue �. If �XTa ¼ �y, then a is the eigenvector of the

eigenproblem in (12) with the same eigenvalue �.

Proof. We have W �y ¼ ��y. At the left side of (12), replace
�XTa by �y and we have

�XW �XTa ¼ �XW �y ¼ �X��y ¼ � �X�y ¼ � �X �XTa:

Thus, a is the eigenvector of the eigenproblem in (14)

with the same eigenvalue �. tu
Theorem 2 shows that instead of solving the eigenpro-

blem in (12), the LDA basis functions can be obtained

through two steps:

1. Solve the eigenproblem in (14) to get �y.
2. Find the a that satisfies �XTa ¼ �y. In reality, such a

may not exist. A possible way is to find the a that can
best fit the equation in the least squares sense:

a ¼ argmin
a

Xm

i¼1

ðaT �xi � �yiÞ2; ð15Þ

where �yi is the ith element of �y.

The advantages of this two-step approach are given as

follows:

1. We will show later how the eigenproblem in (14) is
trivial and we can directly get those eigenvectors �y.

2. Compared to all the other LDA extensions, there is
no dense matrix eigendecomposition or SVD decom-
position involved. There exist many efficient itera-
tive algorithms (for example, LSQR [19]) that can

handle very large-scale least squares problems.
Therefore, the two-step approach can be easily
scaled to large data sets.

In the situation that the number of samples is smaller
than the number of features, the minimization problem (15)
is ill posed. We may have an infinite number of solutions for
the linear equation system �XTa ¼ �y (the system is under-
determined). The most popular way to solve this problem is
to impose a penalty on the norm of a:

a ¼ argmin
a

Xm

i¼1

�
aT �xi � �yi

�2 þ �kak2
 !

: ð16Þ

This is the so-called regularization and is well studied in
statistics. The regularized least squares is also called ridge
regression [14]. � � 0 is a parameter to control the amounts
of shrinkage. Now, we can see the third advantage of the
two-step approach:

3. Since the regression was used as a building block,
the regularization techniques can be easily incorpo-
rated and produce more stable and meaningful
solutions, especially when there exist a large amount
of features [14].

Now, let us analyze the eigenvectors of W , which is
defined in (7).W is block-diagonal; thus, its eigenvalues and
eigenvectors are the union of the eigenvalues and eigenvec-
tors of its blocks (the latter padded appropriately with
zeros). It is straightforward to show that W ðkÞ has eigen-
vector eðkÞ 2 IRmk associated with eigenvalue one, where
eðkÞ ¼ ½1; 1; � � � ; 1�T . Also, there is only one nonzero eigenva-
lue of W ðkÞ because the rank of W ðkÞ is one. Thus, there are
exactly c eigenvectors of W with the same eigenvalue 1.
These eigenvectors are

yk ¼ ½0; � � � ; 0
|fflfflfflffl{zfflfflfflffl}
Pk�1

i¼1
mi

; 1; � � � ; 1
|fflfflfflffl{zfflfflfflffl}

mk

; 0; � � � ; 0
|fflfflfflffl{zfflfflfflffl}
Pc

i¼kþ1
mi

�T k ¼ 1; � � � ; c: ð17Þ

Since one is a repeated eigenvalue of W , we could just pick
any other c orthogonal vectors in the space spanned by fykg
and define them to be our c eigenvectors. Notice that in
order to guarantee that there exists a vector a that satisfies
the linear equation system �XTa ¼ y, y should be in the
space spanned by the row vectors of �X. Since �Xe ¼ 0, the
vector of all ones e is orthogonal to this space. On the other
hand, we can easily see that e is naturally in the space
spanned by fykg in (17). Therefore, we pick e as our first
eigenvector of W and use the Gram-Schmidt process to
orthogonalize the remaining eigenvectors. The vector e can
then be removed, which leaves us exactly c� 1 eigenvectors
of W ; we denote them as follows:

f�ykgc�1
k¼1; ð�yT

i e ¼ 0; �yT
i �yj ¼ 0; i 6¼ jÞ: ð18Þ

In the two-class case, the above procedure will produce one
response vector:

�y ¼ ½m=m1; � � � ;m=m1
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m1

;�m=m2; � � � ;�m=m2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m2

�T : ð19Þ

This is consistent with the previous well-known result on
the relationship between LDA and regression for the binary
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problem [14]. Our approach here extends this relation to the
multiclass case.

The above two-step approach essentially combines the
spectral analysis of the graph matrix W and the regression
technique. Therefore, we named this new approach as
SRDA. It is important to note that our approach can be
generalized by constructing the graph matrix W in the
unsupervised or semisupervised way. Please see [4], [5], [6]
for more details.

4.1 Theoretical Analysis

In the following discussions, �y is one of the eigenvectors
in (18).

The regularized least squares problem of SRDA in (16)
can be rewritten in matrix form as

a ¼ argmin
a

�
�XTa� �y

�T � �XTa� �y
�
þ �aTa

� �

: ð20Þ

Requiring that the derivative of the right side with respect
to a vanish, we get

�

�X �XT þ �I
�

a ¼ �X�y

) a ¼
�

�X �XT þ �I
��1

�X�y:
ð21Þ

When � > 0, this regularized solution will not satisfy the
linear equation system �XTa ¼ �y, and a is also not the
eigenvector of the LDA eigenproblem in (12). It is
interesting and important to see the relationship between
the projective function of ordinary LDA and SRDA.
Specifically, we have the following theorem:

Theorem 3. If �y is in the space spanned by row vectors of �X,
the corresponding projective function a calculated in SRDA
will be the eigenvector of the eigenproblem in (12) as �
deceases to zero. Therefore, a will be one of the projective
functions of LDA.

Proof. See Appendix A. tu

When the number of features is larger than the number
of samples, the sample vectors are usually linearly
independent, that is, rankðXÞ ¼ m. In this case, we have a
stronger conclusion, which is shown in the following
corollary:

Corollary 4. If the sample vectors are linearly independent, that
is, rankðXÞ ¼ m, all the c� 1 projective functions in SRDA
will be identical to those of ULDA described in Section 3 as �
deceases to zero.

Proof. See Appendix B. tu

It is easy to check that the values of the ith and jth entries
of any vector y in the space spanned by fykg in (17) are the
same as long as xi and xj belong to the same class. Thus, the
ith and jth rows of �Y are the same, where �Y ¼ ½�y1; � � � ; �yc�1�.
Corollary 4 shows that when the sample vectors are linearly
independent, the c� 1 projective functions of LDA are
exactly the solutions of the c� 1 linear equation systems
�XTak ¼ �yk. Let A ¼ ½a1; � � � ; ac�1� be the LDA transformation
matrix that embeds the data points into the LDA subspace as

ATX ¼ AT ð �X þ ��eT Þ ¼ �Y T þAT��eT :

The columns of matrix �Y T þAT��eT are the embedding

results of samples in the LDA subspace. Thus, data points

with the same label correspond to the same point in the

LDA subspace when the sample vectors are linearly

independent.
These projective functions are optimal in the sense of

separating training samples with different labels. However,

they usually overfit the training set and thus may not be

able to perform well for the test samples; thus, the

regularization is necessary.

4.2 The Algorithmic Procedure

Notice that we need first to calculate the centered datamatrix
�X in the algorithm. In some applications (for example, text

processing), the data matrix is sparse, which can be fit into

the memory even with a large number of both samples and

features. However, the center data matrix is dense and thus

may not be able to be fit into the memory. Before we give the

detailed algorithmic procedure of SRDA, we present a trick

to avoid the center data matrix calculation first.
We have

argmin
a

Xm

i¼1

ðaT �xi � �yiÞ2

¼ argmin
a

Xm

i¼1

ðaTxi � aT��� �yiÞ2:

If we append a new element “1” to each xi, the scalar aT��

can be absorbed into a, and we have

argmin
a0

Xm

i¼1

ðða0ÞTx0
i � �yiÞ2;

where both a0 and x0
i are ðnþ 1Þ-dimensional vectors. By

using this trick, we can avoid the computation of the

centered data matrix, which can save the memory a lot for

sparse data processing.
Given a set of data points x1; � � � ;xm 2 IRn that belong to

c classes, let mk denote the number of samples in the

kth class ðPc
k¼1 mk ¼ mÞ. The algorithmic procedure of

SRDA is given as follows:

1. Response generation. Let

yk ¼ ½0; � � � ; 0
|fflfflfflffl{zfflfflfflffl}
Pk�1

i¼1
mi

; 1; � � � ; 1
|fflfflfflffl{zfflfflfflffl}

mk

; 0; � � � ; 0
|fflfflfflffl{zfflfflfflffl}
Pc

i¼kþ1
mi

�T k ¼ 1; � � � ; c

and y0 ¼ ½1; 1; � � � ; 1�T denote a vector of ones. Take y0

as the first vector and use the Gram-Schmidt process

to orthogonize fykg. Since y0 is in the subspace

spanned by fykg, we will obtain c� 1 vectors:

f�ykgc�1
k¼1; ð�yT

i y0 ¼ 0; �yT
i �yj ¼ 0; i 6¼ jÞ:

2. Regularized least squares. Append a new element
“1” to each xi, which will be still denoted as xi for
simplicity. Find c� 1 vectors fakgc�1

k¼1 2 IRnþ1, where
ak is the solution of the regularized least squares
problem:
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ak ¼ argmin
a

Xm

i¼1

ðaTxi � �yki Þ
2 þ �kak2

 !

; ð22Þ

where �yki is the ith element of �yk.
3. Embedding to ðc� 1Þ-dimensional subspace. The

c� 1 vectors fakg are the basis vectors of SRDA. Let
A ¼ ½a1; � � � ; ac�1�, which is a ðnþ 1Þ � ðc� 1Þ trans-
formation matrix. The samples can be embedded
into the ðc� 1Þ-dimensional subspace by

x ! z ¼ AT x

1

h i

:

4.3 Computational Complexity Analysis

In this section, we provide a computational complexity

analysis of SRDA. Our analysis considers both time

complexity and memory cost. The term flam, a compound

operation consisting of one addition and one multiplication,

is used for presenting operation counts [21].
The computation of SRDA involves two steps: response

generation and regularized least squares. The cost of the

first step is mainly the cost of the Gram-Schmidt method,

which requires ðmc2 � 1
3
c3Þ flam and mcþ c2 memory [21].

We have two ways to solve the c� 1 regularized least

squares problems in (22):

. Differentiate the residual sum of squares with
respect to the components of a and set the results
to zero, which is the textbook way to minimize a
function. The result is a linear system called the
normal equations [21], as shown in (21).

. Use iterative algorithm LSQR [19].

These two approaches have different complexities, and we

provide the analysis below separately.

4.3.1 Solving Normal Equations

As shown in (21), the normal equations of the regularized

least squares problem in (22) are

ðXXT þ �IÞak ¼ X�yk: ð23Þ

The calculation of XXT requires 1
2
mn2 flam and the

calculation of c� 1 X�yk requires cmn flam. Since the matrix

XXT þ �I is positive definite, it can be factored uniquely in

the form XXT þ �I ¼ RTR, where R is the upper triangular

with positive diagonal elements. This is the so-called

Cholesky decomposition, and it requires 1
6
n3 flam [21].

With this Cholesky decomposition, the c� 1 linear equa-

tions can be solved within cn2 flam [21]. Thus, the

computational cost of solving regularized least squares by

normal equations is

1

2
mn2 þ cmnþ 1

6
n3 þ cn2:

When n > m, we can further decrease the cost. In the

proof of Theorem 3, we used the concept of the pseudoin-

verse of a matrix [20], which is denoted as ð�Þþ. We have [20]

Xþ ¼ lim
�!0

ðXTX þ �IÞ�1XT ¼ lim
�!0

XðXXT þ �IÞ�1:

Thus, the normal equations in (23) can be solved by solving

the following two linear equation systems when � is

decreasing to zero:

ðXTX þ �IÞck ¼ �yk;

ak ¼ Xck:
ð24Þ

The cost of solving c� 1 linear equation systems in (24) is

1

2
nm2 þ 1

6
m3 þ cm2 þ cmn:

Finally, the time cost of SRDA (including the responses

generation step) by solving normal equations is

mc2 � 1

3
c3 þ 1

2
mntþ cmnþ 1

6
t3 þ ct2;

where t ¼ minðm;nÞ. Considering that c 	 t, this time

complexity can be written as 1
2
mntþ 1

6
t3 þOðt2Þ þOðmnÞ.

We also need to store X, XXT (or XTX), yk, and the

solutions ak. Thus, the memory cost of SRDA by solving

normal equations is

mnþ t2 þmcþ nc:

4.3.2 Iterative Solution with LSQR

LSQR is an iterative algorithm designed to solve large-scale
sparse linear equations and least squares problems [19]. In
each iteration, LSQR needs to compute two matrix-vector
products in the form of Xp and XTq. The remaining
workload of LSQR in each iteration is 3mþ 5n flam [18].
Thus, the time cost of LSQR in each iteration is
2mnþ 3mþ 5n. If LSQR stops after k iterations, the total
time cost is kð2mnþ 3mþ 5nÞ. LSRQ converges very fast
[19]. In our experiments, 20 iterations are enough. Since we
need to solve c� 1 least squares problems, the time cost of
SRDA with LSQR is

kðc� 1Þð2mnþ 3mþ 5nÞ;

which can be simplified as 2kcmnþOðmÞ þOðnÞ.
Besides storing X, LSQR needs mþ 2n memory [18].

We need to store ak. Thus, the memory cost of SRDA with
LSQR is

mnþmþ 2nþ cn;

which can be simplified as mnþOðmÞ þOðnÞ.
When the data matrix is sparse, the above computational

cost can be further reduced. Suppose each sample has
around only s 	 n nonzero features, the time cost of SRDA
with LSQR is 2kcsmþ 5kcnþOðmÞ, and the memory cost is
smþ ð2þ cÞnþOðmÞ.

4.3.3 Summary

We summarize our complexity analysis results in Table 2,
together with the complexity results of LDA. For simplicity,
we only show the dominant part of the time and memory
costs. The main conclusions include the following:

. SRDA (by solving normal equations) is always faster
than LDA. It is easy to check that when m ¼ n, we
get the maximum speedup, which is nine.
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. LDA has cubic-time complexity with respect to
minðm;nÞ. When both m and n are large, it is not
feasible to apply LDA. SRDA (iterative solution with
LSQR) has linear-time complexity with both m and
n. It can be easily scaled to high-dimensional large
data sets.

. In many high-dimensional data processing tasks, for
example, text processing, the data matrix is sparse.
However, LDA needs to calculate centered data
matrix �X, which is dense. Moreover, the left and
right singular matrices are also dense. When both m
and n are large, the memory limit will restrict the
ordinary LDA algorithms (for example, PCA+LDA,
ULDA, and RLDA) to be applied.

. On the other hand, SRDA (iterative solution with
LSQR) can fully explore the sparseness of the data
matrix and gain significant computational saving on
both time and memory. SRDA can be successfully
applied as long as the data matrix X can be fit into
the memory.

. Even when the data matrix X is too large to be fit
into the memory, SRDA can still be applied with
some reasonable disk I/O. This is because in each
iteration of LSQR, we only need to calculate two
matrix-vector products in the form of Xp and XTq,
which can be easily implemented with X and XT

stored on the disk.

5 EXPERIMENTAL RESULTS

In this section, we investigate the performance of our

proposed SRDA algorithm for classification. All of our

experiments have been performed on a Pentium 4 3.20-GHz

Windows XP machine with 2 Gbytes of memory. For the

purpose of reproducibility, we provide our algorithms and

data sets used in these experiments at http://www.cs.uiuc.

edu/homes/dengcai2/Data/data.html.

5.1 Data Sets

Four data sets are used in our experimental study,

including face, handwritten digit, spoken letter, and text

databases. The important statistics of these data sets are

summarized below (see also Table 3):

. The Carnegie Mellon University (CMU) PIE face
database3 contains 68 subjectswith 41,368 face images
in total. The face imageswere captured under varying

pose, illumination, and expression. We choose the
five near-frontal poses (C05, C07, C09, C27, and C29)
and use all the images under different illuminations
and expressions; thus, we get 170 images for each
individual. All the face images are manually aligned
and cropped. The cropped images are 32 � 32 pixels
with 256 gray levels per pixel. The features (pixel
values) are then scaled to [0, 1] (divided by 256). For
each individual, lð¼ 10; 20; 30; 40; 50; 60Þ images are
randomly selected for training, and the rest are used
for testing.

. The Isolet spoken letter recognition database4

contains 150 subjects who spoke the name of each
letter of the alphabet twice. The speakers are
grouped into sets of 30 speakers each and are
referred to as isolets 1 through 5. For the purposes
of this experiment, we chose isolets 1 and 2, which
contain 3,120 examples (120 examples per class) as
the training set, and test on isolets 4 and 5, which
contains 3,117 examples (three examples are miss-
ing due to the difficulties in recording). A random
subset with lð¼ 20; 30; 50; 70; 90; 110Þ examples per
letter from isolets 1 and 2 was selected for training.

. The MNIST handwritten digit database5 has a
training set of 60,000 samples (denoted as set A)
and a test set of 10,000 samples (denoted as set B). In
our experiment, we take the first 2,000 samples from
set A as our training set and the first 2,000 samples
from set B as our test set. Each digit image is of size
28 � 28, and there are around 200 samples of each
digit in both the training and test sets. A random
subset with lð¼ 30; 50; 70; 100; 130; 170Þ samples per
digit from the training set was selected for training.

. The popular 20 Newsgroups6 is a data set
collected and originally used for document classi-
fication by Lang [17]. The “bydate” version is
used in our experiment. The duplicates and
newsgroup-identifying headers are removed,
which leaves us with 18,846 documents, evenly
distributed across 20 classes. This corpus contains
26,214 distinct terms after stemming and stop
word removal. Each document is then represented
as a term-frequency vector and normalized to one.
A random subset with lð¼ 5 percent, 10 percent,
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6. http://people.csail.mit.edu/jrennie/20Newsgroups/.

TABLE 2
Computational Complexity of LDA and SRDA

Authorized licensed use limited to: University of Illinois. Downloaded on January 9, 2009 at 12:55 from IEEE Xplore.  Restrictions apply.



20 percent, 30 percent, 40 percent, and 50 percent)
samples per category are selected for training, and
the rest are used for testing.

The first three data sets have relatively smaller numbers of
features, and the datamatrices are dense. The last data set has
a very large number of features, and the datamatrix is sparse.

5.2 Compared Algorithms

The four algorithms that are compared in our experiments
are listed below:

1. ULDA [25], which was also analyzed in Section 3.
2. Regularized LDA (RLDA) [9]. Solving the singular-

ity problem by adding some constant values to the
diagonal elements of Sw, as Sw þ �I, for some � > 0.
In [27], Ye and Wang proposed an efficient algo-
rithm to compute the solution of RLDA.

3. SRDA, our approach proposed in this paper.
4. IDR/QR [26], an LDA variation in which QR

decomposition is applied rather than SVD. Thus,
IDR/QR is very efficient.

We compute the closed-form solution of SRDA (by solving
normal equations) for the first three data sets and use LSQR
[19] to get the iterative solution for 20Newsgroup. The
iteration number in LSQR is set to be 15. Notice that there is a
parameter � that controls the smoothness of the estimator in
both RLDA and SRDA. We simply set the value of � as one,
and the effect of parameter selection will be discussed later.

5.3 Results

The classification error rate and the runtime (second) of
computing the projection functions for each method on the
four data sets are reported in Tables 4, 5, 6, 7, 8, 9, 10, and
11, respectively. These results are also shown in Figs. 1, 2, 3,
and 4. For each given l (the number of training samples per
class), we average the results over 20 random splits and
report the mean, as well as the standard deviation.

The main observations from the performance compar-
isons include the following:

. Both ULDA and RLDA need the SVD of the data
matrix. They can be applied when minðm;nÞ is small
(the first three data sets). The 20Nesgroups data set
has a very large number of features ðn ¼ 26; 214Þ.
ULDA needs the memory to store the centered data
matrix and the left singular matrix, which are both
dense and have a size of m� n [25]. With the
increase in the size of the training sample ðmÞ, these
matrices cannot be fit into the memory, and ULDA
thus cannot be applied. The situation of RLDA is
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even worse since it needs to store a left singular
matrix with a size of n� n [27]. The IDR/QR
algorithm only needs to solve a QR decomposition
of a matrix with a size of n� c and an eigendecom-
position of a matrix with a size of c� c, where c is
number of classes [26]. Thus, IDR/QR is very
efficient. However, it still needs to store the centered
data matrix, which cannot be fit into the memory
when both m and n are large (in the case of using

more than 40 percent of the samples in 20News-
groups as the training set). SRDA only needs to solve
c� 1 regularized least squares problems, which
make it almost as efficient as IDR/QR. Moreover, it
can fully explore the sparseness of the data matrix
and gain significant computational saving in both
time and memory.

. ULDA seeks the projective functions that are optimal
on the training set. It does not consider the possible

overfitting in the small sample size case. RLDA and

SRDA are regularized versions of LDA. The Tikho-

nov regularizer is used to control the model complex-

ity. In all the test cases, RLDA and SRDA are

significantly better than ULDA, which suggests that

overfitting is a very crucial problem that should be

addressed in the LDA model.
. Although IDR/QR is developed from the LDA idea,

there is no theoretical relation between the optimiza-
tion problem solved by IDR/QR and that of LDA. In

all the four data sets, RLDA and SRDA significantly

outperform IDR/QR.
. Considering both accuracy and efficiency, SRDA is

the best choice among the four compared algo-

rithms. It provides an efficient and effective dis-

criminant analysis solution for large-scale data sets.

5.4 Parameter Selection for SRDA

� � 0 is an essential parameter in our SRDA algorithm
that controls the smoothness of the estimator. We
empirically set it to be one in the previous experiments.
In this section, we try to examine the impact of parameter
� on the performance of SRDA.

Fig. 5 shows the performance of SRDA as a function of

the parameter �. For convenience, the x-axis is plotted as

�=ð1þ �Þ, which is strictly in the interval [0, 1]. It is easy to
see that SRDA can achieve significantly better performance

than ULDA and IDR/QR over a large range of �. Thus,

parameter selection is not a very crucial problem in the

SRDA algorithm.

6 CONCLUSIONS

In this paper, we propose a novel algorithm for discriminant
analysis, called SRDA. Our algorithm is developed from a
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Fig. 1. Error rate and computational time as functions of the number of

labeled samples per class on PIE.

Fig. 2. Error rate and computational time as functions of the number of

labeled samples per class on Isolet.

Fig. 3. Error rate and computational time as functions of the number of

labeled samples per class on MNIST.

Fig. 4. Error rate and computational time as functions of the number of

labeled samples per class on 20Newsgroups.
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graph embedding viewpoint of the LDA problem. It
combines spectral graph analysis and regression to provide
an efficient and effective approach for discriminant analysis.
Specifically, SRDA only needs to solve a set of regularized
least squares problems, and there is no eigenvector
computation involved, which is a huge save of both time
and memory. To the best of our knowledge, our proposed
SRDA algorithm is the first one that can handle very large
scale high-dimensional data for discriminant analysis.
Extensive experimental results show that our method
consistently outperforms the other state-of-the-art LDA
extensions, considering both effectiveness and efficiency.

APPENDIX A

PROOF OF THEOREM 3

Proof. If rankð �XÞ ¼ r, the SVD decomposition of �X is

�X ¼ U�V T ; ð25Þ
where � ¼ diagð�1; � � � ; �rÞ, U 2 IRn�r, V 2 IRm�r, and
we have UTU ¼ V TV ¼ I. The �y is in the space
spanned by the row vectors of �X; therefore, �y is in
the space spanned by the column vectors of V . Thus, �y
can be represented as the linear combination of the
column vectors of V . Moreover, the combination is
unique because the column vectors of V are linearly
independent. Suppose the combination coefficients are
b1; � � � ; br. Let b ¼ ½b1; � � � ; br�T , we have

V b ¼ �y ) V TV b ¼ V T �y

) b ¼ V T �y

) V V T �y ¼ �y:

ð26Þ

To continue our proof, we need to introduce the concept
of the pseudoinverse of a matrix [20], which we denote
as ð�Þþ. Specifically, the pseudoinverse of the matrix �X

can be computed in the following two ways:

�Xþ ¼ V��1UT

and

�Xþ ¼ lim
�!0

ð �XT �X þ �IÞ�1 �XT :

The above limit exists even if �XT �X is singular and
ð �XT �XÞ�1 does not exist [20].

Thus, the regularized least squares solution of
SRDA is

a ¼
�

�X �XT þ �I
��1

�X�y

¼�!0 ð �XT Þþ�y
¼ U��1V T �y:

Combined with (26), we have

�XTa ¼ V�UTa

¼ V�UTU��1V T �y ¼ V V T �y ¼ �y:

By Theorem 2, a is the eigenvector of the eigenproblem
in (12). tu

APPENDIX B

PROOF OF COROLLARY 4

Proof. Since the m data points xis are linearly indepen-

dent, we have rankð �XÞ ¼ m� 1. Also, we have �Xe ¼ 0.

The space spanned by the row vectors of �X is

orthogonal to e and have dimension m� 1. Let us

examine the c� 1 vectors �yk in (18). We have �yk 2 IRm

and �yT
k e ¼ 0. Thus, all c� 1 vectors �yk are in the space

spanned by the row vectors of �X. By Theorem 3, all

c� 1 corresponding ak of SRDA are eigenvectors of the

eigenproblem in (12) as � decreases to zero. They are

aSRDA
k ¼ U��1V T �yk:

Consider the eigenvectors of V TWV . Since the

c� 1 vectors �yk are also in the space spanned by the
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column vectors of V , eigenvector bk will be the
solution of the linear equation system V bk ¼ �yk. The

column vectors of V are linearly independent; thus, bk

is unique, and

bk ¼ V T �yk:

Thus, the projective functions of LDA in Section 3 are

aULDA
k ¼ U��1bk ¼ U��1V T �yk ¼ aSRDA

k :

ut
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