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Abstract

Geometric characteristic plays an important role in the

representation of an object in 3D point clouds. For example,

large objects often contain more points, while small ones

contain fewer points. The points from objects near the cap-

ture device are denser, while those from far-range objects

are sparser. These issues bring new challenges to 3D object

detection, especially under the domain adaptation scenar-

ios. In this work, we propose a new cross-dataset 3D ob-

ject detection method named Scale-aware and Range-aware

Domain Adaptation Network (SRDAN). We take advantage

of the geometric characteristics of 3D data (i.e., size and

distance), and propose the scale-aware domain alignment

and the range-aware domain alignment strategies to guide

the distribution alignment between two domains. For scale-

aware domain alignment, we design a 3D voxel-based fea-

ture pyramid network to extract multi-scale semantic voxel

features, and align the features and instances with simi-

lar scales between two domains. For range-aware domain

alignment, we introduce a range-guided domain alignment

module to align the features of objects according to their

distance to the capture device. Extensive experiments un-

der three different scenarios demonstrate the effectiveness

of our SRDAN approach, and comprehensive ablation study

also validates the importance of geometric characteristics

for cross-dataset 3D object detection.

1. Introduction

With the advance of autonomous driving, increasing at-

tention has been attracted to 3D object detection [63, 56,

8, 27, 69, 78, 68, 29, 43, 30, 54, 71, 42, 53]. Although

significant progress has been made, most of these works

considered only the constrained setting, where the train-

ing data used to learn the detection model and the test

data for performance evaluation are collected from a sim-

ilar scenario. However, in practical applications, we of-

ten face the more challenging situation, where the train-

ing data and the test data captured by various devices

at different time/places often exhibit considerable distri-

bution mismatch. This could lead to significant perfor-

mance drop when deploying the trained model in a new sce-
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Figure 1. Motivation of the Scale-aware and Range-aware Domain

Alignment strategies in our SRDAN method. (a) A Bird’s-Eye-

View (BEV) image is presented for better illustration. (b) A point

cloud map collected by the LiDAR sensor (i.e., the car with gray

box in (a)) is presented to illustrate the 3D geometric characteris-

tics. (c) At similar distances to the LiDAR sensor, large objects

(e.g., the car with orange box) often contain more points, while

small ones (e.g., the cyclist with purple box) contain fewer points.

(d) The 3D points of objects (e.g., the car with blue box) near the

LiDAR sensor are denser, while those of far-range ones (e.g., the

car with red box) are sparser. We incorporate these geometric

characteristics (i.e., size and distance) into our method, and learn

domain-invariant representation to ensure objects with similar ge-

ometric characteristics are well aligned between two domains.

nario, which is also known as the domain adaptation prob-

lem [19, 35, 36, 37, 13, 61, 74, 58, 3, 33, 25].

While many works have been proposed to address the

domain adaptation problem for 2D images, little attention

was paid to the cross-dataset object detection task for 3D

point clouds. Different from the traditional cross-dataset

object detection task for 2D images [9, 49, 26, 80, 66], the

texture information is absent in 3D point cloud data, which

makes it more challenging to deal with the data distribu-

tion mismatch issue. Consequently, the intrinsic geometric

information becomes especially important when addressing

the domain adaptation issue for the 3D object detection task.

However, it is non-trivial to capture intrinsic geometric

information. As shown in Fig. 1, the point cloud of an ob-

ject can vary significantly when the geometric characteris-
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tics (e.g., the object scale and the distance of an object to the

capture device like LiDAR) changes. The large-scale ob-

jects often contain more points, while the small-scale ones

contain fewer points. The point clouds of objects near the

capture device are denser, while those of far-range objects

are sparser. Such geometric variance brings challenges to

the 3D object detection task, especially in the domain adap-

tation scenarios where objects from the source and target

domains with different geometric characteristics may be in-

correctly aligned, leading to poor object detection results.

In this work, we propose a new cross-dataset 3D ob-

ject detection method named Scale-aware and Range-aware

Domain Adaptation Network (SRDAN). To deal with the

issues related to geometric variance when performing dis-

tribution alignment, we propose to learn domain-invariant

representation by incorporating the object geometric char-

acteristic into deep neural networks. Ideally, with a good

domain-invariant representation, the objects with similar

geometric characteristics (e.g., size and distance) should be

well aligned between two domains. In other words, the large

objects (resp., the small objects) from the source domain

should be aligned to the large ones (resp., the small ones)

from the target domain. The same criterion should also be

applied to the objects in a similar range around the sensor.

To achieve this goal, in our SRDAN, we propose the

scale-aware domain alignment and the range-aware do-

main alignment approach to guide distribution alignment

between the two domains. For scale-aware domain align-

ment, we design a 3D voxel-based feature pyramid network,

which can extract multiple feature maps at different scales

for detecting the objects with different sizes. Then, we align

the features and instances with similar scales between the

two domains at each feature map. For range-aware domain

alignment, we take advantage of range information in 3D

data and further enhance domain alignment at both anchor-

level and feature-level. For anchor-level alignment, we in-

troduce a range-guided domain alignment (RLA) module to

align the local features of objects with different sparsity lev-

els. For feature-level alignment, we introduce a Location-

related Global Alignment (LGA) module to learn a global

weight map for finer alignment, which can guide our model

to focus more on aligning the foreground objects.

Extensive experiments on four datasets (i.e.,

Nuscenes [4], A*3D [39], PreSIL [22] and KITTI [14])

under three autonomous driving scenarios (i.e., cross-scene

adaptation, day-to-night adaptation and synthetic-to-real

adaptation) clearly demonstrate the effectiveness of our

approach for the cross-dataset 3D object detection task.

2. Related Work

2.1. 3D Object Detection

With the emergence of 3D data and high-performance

computing resources, 3D object detection attracted increas-

ing attention in many recent works, which can be roughly

divided into point-based methods, voxel-based methods and

fusion-based methods. The point-based methods [43, 54,

71, 42, 6, 55] directly process the unordered point clouds

and extract the features with PointNet/PointNet++ [44, 45].

Different sampling and grouping strategies are usually ap-

plied in these methods to reduce memory and computa-

tional costs. On the other hand, the voxel-based meth-

ods [63, 69, 78, 68, 29, 28, 72, 7, 64] rasterize the 3D point

clouds into the fix-sized voxel grids and then use the hand-

crafted or learnt voxel representation to further extract se-

mantic features for 3D object detection. Finally, the fusion-

based methods [56, 8, 27, 30, 53, 41, 62, 73, 11] generally

learn 3D features by aggregating different types of data rep-

resentations (e.g., RGB, depth, points, etc.).

Our work builds upon the voxel-based method SEC-

OND [68]. Different from the general 3D detection meth-

ods, our method aims at improving the generalization ca-

pability of the learnt model on the target domain for the

cross-dataset 3D object detection task.

2.2. Domain Adaptation

In recent years, domain adaptation has been widely in-

vestigated for various computer vision tasks [18, 2, 9, 49,

46, 32] (e.g., recognition, detection, segmentation). Since

deep learning has achieved promising results in different ar-

eas, recently several deep domain adaptation methods have

been proposed based on the convolutional neural networks

(CNNs), which can be roughly categorized as the statistic-

based approaches and the adversarial learning-based ap-

proaches. The statistic-based approaches [38, 58, 5, 37, 35,

36, 40, 67, 59] usually employed the statistic-based metrics

to model the differences between two domains. On the other

hand, the adversarial learning-based approaches [60, 12, 13,

3, 33, 61, 52, 20, 48, 75, 76, 50, 47, 77, 16, 10, 21, 70, 57]

used Generative Adversarial Networks (GANs) [15] to learn

domain-invariant representation, which can be explained by

minimizing the H-divergence [1] or the Jensen-Shannon di-

vergence [17] between two domains. Most of these domain

adaptation approaches are designed for the general 2D im-

age recognition tasks, while direct adoption of these 2D

techniques for the large-scale 3D object detection task may

not work well due to the distinct characteristics of 3D data,

especially point clouds. The works in [51, 65] projected

the point clouds into 2D bird’s-eye-view images or front-

view images for further processing. However, the original

3D structural information of point clouds cannot be fully

exploited. While the works in [46, 24] also extracted 3D

domain-invariant representation, these methods [46, 24] are

not specifically designed for the 3D object detection task.

To the best of our knowledge, our method is the first do-

main adaptation method that takes advantage of the voxel-

based features for the 3D object detection task by effectively

exploiting the characteristics of point cloud data.
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Figure 2. Overview of our SRDAN method for cross-dataset 3D object detection. (a) Our method builds upon the 3D Sparse Voxel CNN

method SECOND [68], which voxelizes the point cloud data to extract the semantic features from both source and target domains. (b) We

introduce a simple domain adaptive 3D object detection approach vanilla DAN, which uses the adversarial learning strategy to jointly align

the features from two domains both locally at the anchor feature level and globally at the overall feature level. (c) To address the issue of

objects with different sizes, we employ a 3D voxel-based feature pyramid network with three more CNN blocks and concatenate the two

output features of SECOND from CNN block 3 (L3) and block 4 (L4) to the features of the feature pyramid network from block 7 (L7)

and block 6 (L6) with the same feature map sizes to further enrich the representations at different scales. After that, at each scale (i.e.,

as shown in Blue, Green and Yellow colors), we propose a newly designed Scale-aware and Range-aware Domain Alignment (SaRaDA)

module to independently align the features from the two domains with similar 3D geometric characteristics (i.e., size and distance). The

detailed structure of our SaRaDA module is illustrated in Fig. 3. Finally, we add a detection head to generate the proposals at each scale

based on source domain supervision and aggregate the proposals from all scales to produce the final detection results for the target samples.

3. Methodology

3.1. Problem Statement

In this work, we consider the 3D object detection under

the domain adaptation scenario. In this scenario, we are

given a set of labeled source samples and a set of unlabeled

target samples. The source and target samples often have

different data distributions. For example, in autonomous

driving, the data collected in day-time can be used to help

learn a model that is robust for the night-time data, without

consuming time to manually annotate the night-time data.

In this example, the day-time samples are used as the source

domain data and the night time samples are used as the tar-

get domain data.

Formally, let us denote a point cloud as X = {pk|
nk

k=1
},

which is a set of unordered points, where pk is a point con-

taining the 3D coordinate values, and nk is the total number

of points in X. Under the domain adaptation scenario, we

denote the source domain as X s = {(Xs
i ,Y

s
i )|

Ns

i=1
}, where

Ns is the total number of source samples (i.e., point clouds),

Xs
i is a point cloud in the source domain, and Ys

i is its anno-

tation containing the bounding box locations and categories

of all the objects in the i-th point cloud. Similarly, we are

also given a set of unlabeled target samples X t={Xt
i|
Nt

i=1
},

where N t is the total number of target samples and Xt
i is

the i-th point cloud in the target domain without any anno-

tation. The goal of our task is to learn a robust detector,

which can accurately predict the bounding box locations

and categories for all the instances in the unlabeled target

samples.

3.2. A Vanilla Method

We first introduce a simple domain adaptive 3D object

detection method based on which we will establish our SR-

DAN. We refer to this method as the vanilla domain adap-

tive method, or vanilla DAN in short. Our vanilla DAN

builds upon SECOND [68], which is a voxel-based 3D ob-

ject detection method. As shown in Fig 2, in SECOND,

a point cloud is first voxelized as a regular grid in the 3D

space. Then, a few 3D convolutional layers are stacked to

extract the semantic representation for the voxelized point

cloud. After that, an SSD-like [34] detection head is used

for detecting the objects in the point cloud.

Let us denote the 3D convolutional layers for extracting

the voxelized feature as F (X;θ), where θ denotes the pa-

rameters of the feature extraction network. Then, the detec-

tion head can be represented as P (F (X;θ);β) where β is

the network parameters of the detection head. During train-

ing, the detection head outputs both bounding box coordi-

nates and the predicted object categories in the point cloud

X, and we use the ground-truth annotation Y to supervise

the training process. In our problem, we only have source
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domain supervision, so the detection loss is written as,

Ldet=
1

Ns

Ns

∑

i=1

Lsec(P (F (Xs
i ;θ);β),Y

s
i ), (1)

where Lsec is the detection loss from the SECOND detec-

tor, which contains a smooth-L1 regression loss for bound-

ing box regression, and a class-balanced focal loss for clas-

sifying the objects. Please refer to [68] for more details.

However, under the domain adaptation scenario, due to

data distribution mismatch, 3D detection performance may

be degraded in the target domain by only using source do-

main supervision to train the model. To address this issue,

as inspired by the recent domain adaptation works [13, 9],

we employ the adversarial training strategy to align the fea-

ture distributions between two domains. In particular, a

global domain alignment strategy and a local domain align-

ment strategy are used, which are described below.

Global Domain Alignment: Similar to [13], we apply a

global average pooling layer and a domain classifier with

two fully connected layers to align the overall features from

the two domains. Let us denote Dg(·;wg) as the global

domain classifier with wg as its parameters. Then, the ob-

jective for global domain alignment can be written as,

max
θ

min
w

g
Lg=

1

N

N
∑

i=1

Ld(D
g(F (Xi;θ);w

g), di), (2)

where di ∈ {0, 1} is the domain label with 0 (resp., 1) in-

dicating X is from the source (resp., the target) domain,

N = Ns + N t is the total number of source and target

samples, and Ld is the binary cross-entropy loss. As shown

in [13], the above max-min optimization problem can be

solved by simply introducing a gradient reversal layer.

Local Domain Alignment: Besides global alignment, we

also propose a local domain alignment module to align the

distribution at finer level. As in the SECOND method,

the SSD-like detection head performs prediction based on

the anchors at each location of the feature map, we thus

apply a patch-based domain classifier similar to [23] to

align the anchor-level feature distributions. Let us denote

F (X;θ)(u,v) as the anchor feature vector located at the po-

sition (u, v) of the feature map, and Dl(·;wl) as the patch-

based domain classifier with wl being its corresponding pa-

rameters, then the objective for anchor-level local domain

alignment can be written as,

max
θ

min
w

l
Ll=

1

N

N
∑

i=1

∑

u,v

Ld(D
l(F (Xi;θ)

(u,v);wl), di), (3)

where di and Ld are similarly defined as in Eq. (2).

By summing up Eq. (1), (2) and (3), the overall objective

for our vanilla DAN can be written as,

min
θ

{

min
β

Ldet − λ min
w

g,wl

(

Ll + Lg
)

}

, (4)

where λ is the trade-off parameter which is set to 0.1. Note,

for ease of presentation, we change the maximization prob-

lem (w.r.t.θ) in the outer problem of Eq. (2) or (3) to a min-

imization problem (w.r.t.θ) in Eq. (4) by reversing the sign

of the objective of the inner problem.

3.3. Scale­aware Domain Alignment

Now we consider how to use the geometric character-

istics to guide feature distribution alignment in our vanilla

DAN method. As discussed in Section 1, the object size and

the distance to the LiDAR sensor are important factors that

influence the point cloud representation.

Regarding the object size, in the ideal case, we expect

the small objects in one domain to be well aligned with

the small ones in another domain, and the same case for

large objects. To achieve this, as inspired by the 2D image-

based Feature Pyramid Network (FPN) [31], we design a

3D voxel-based feature pyramid network to extract multi-

scale features. With multi-scale features, the anchors on

the low-resolution feature map tend to predict large ob-

jects, while the anchors on the high-resolution feature map

tend to predict small objects. Therefore, if we individu-

ally perform feature distribution alignment based on mul-

tiple feature maps at different scales, the object scales will

be roughly considered when performing domain distribu-

tion alignment. We refer to this strategy as Scale-aware

Domain Alignment.

As shown in Fig. 2, we add three additional CNN blocks1

(represented in blue, green and yellow colors, respectively)

after the original feature extraction network F . The fea-

ture map of the firstly introduced CNN block (denoted as

L5) is half size of the last CNN block (denoted as L4) in

F to capture larger objects. The following block (denoted

as L6) shares the same size of L4 to capture similar object

size as the original SECOND model, and the size of the last

block is doubled to capture smaller objects. Then, we use

the same domain alignment strategy on each of these three

CNN blocks as in our vanilla DAN, respectively. Let us

denote the losses for the detection head, the global domain

alignment module, and the local domain alignment module

from these blocks as Ldet
c ,Ll

c andLg
c with c=5, 6, 7, respec-

tively. The objective in Eq. (4) can be updated as follows,

min
Θ

∑

c

{

min
βc

Ldet
c − λ min

w
g
c ,w

l
c

(

Ll
c + Lg

c

)

}

, (5)

where βc, wg
c and wl

c are the parameters for the detection

head, the global domain alignment module, and the local

domain alignment module at the c-th block defined simi-

larly as in Eq. (1), (2) and (3), and Θ = {θc|
7
c=5} with

θc being the parameters for the corresponding feature ex-

traction network consisting of all 3D convolutional layers

before the c-th CNN block (inclusively).

We want to highlight that although our SRDAN employs

a similar design for the backbone network as in FPN, the

1In our work, each CNN block consists of several sparse CNN layers.
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purposes are intrinsically different. In [31], FPN is used to

extract multi-scale features for boosting the detection per-

formance across scales, while in our work we take advan-

tage of FPN to align the feature distributions across domains

based on their scale-aware representation capability.

3.4. Range­aware Domain Alignment

When extracting the point cloud representation, another

issue is the distance to the capture device. For example, for

the 3D point cloud captured by the widely used LiDAR sen-

sor in the autonomous driving scenario, the 3D points near

the LiDAR sensor can be quite dense, while those from far-

range objects are sparser. However, we can hardly achieve

results performance by simply using the same strategy for

both near-range objects and far-range objects from different

domains.

To this end, we design two modules, the Range-guided

Local Alignmnet (RLA) module (as shown in the upper

part of Fig. 3) and the Location-related Global Alignment

(LGA) module (as shown in the lower part of Fig. 3) to ef-

fectively exploit range information and further strengthen

domain alignment. The proposed range-aware domain

alignment strategy is used to strengthen scale-aware domain

alignment, so these two modules will be used on each of the

three feature maps from L5, L6 and L7 as described in Sec-

tion 3.3, which forms our overall Scale-aware and Range-

aware Domain Alignment (SaRaDA) module. The details

of the RLA and LGA modules are described below.

Range-guided Local Alignment (RLA): Since the sparsity

levels of the 3D points from objects are correlated to their

distances to the LiDAR sensor, we therefore propose to use

the distance information to guide local domain alignment,

namely, the objects from two domains with similar sparsity

levels or distances to the LiDAR sensor should be aligned

together.

To achieve this goal, as shown in the upper part of Fig 3,

for the c-th CNN block where c=5, 6, 7, we construct a 2-

dimensional range guidance map Ml
c, which has the same

size as the feature map at the c-th block. Each element of

Ml
c is its 2D coordinates2, which represents the relative lo-

cation to the LiDAR sensor (i.e., the center of Ml
c). In this

way, the locations with similar distances to the LiDAR sen-

sor will be assigned with the same coordinates.

After that, we concatenate the range guidance map to

the original feature map along the channel dimension, and

feed the concatenated feature into the local alignment mod-

ule. Intuitively, it is much easier for the domain classifier

to distinguish the features from two domains with different

location information. However, for the features with similar

relative locations, we still need to exploit more useful infor-

mation to better distinguish them when learning the domain

classifier. In other words, the domain classifier will focus

2Note, the feature maps along each z-axis in SECOND are converted

to a scalar in each channel, so we use 2D coordinates.

(2,2)

(2,2)

(0,0)

Location 

Related 

Map

σ

Avg

pool

Range 

Guidance 

Map

Local Domain Classifier

Global Domain Classifier

D
g
c

F(X;θc)

F̂(X;θc) L̂l

c
D

l

c

Mg
c

Ml

c

(2,0)

(0,2) (2,2)

(2,2)(0,2)

(2,0)

L̂g
c

Figure 3. Overview of our Scale-aware and Range-aware Domain

Alignment (SaRaDA) module. We take the SaRaDA module at the

c-th CNN block as an example for better illustration. At each scale,

our SaRaDA module takes the feature from the feature pyramid

network (e.g., F (X, θc)) as the input and jointly uses a Range-

guided Local Alignment (RLA) module (i.e., the upper part of

Fig. 3) and a Location-related Global Alignment (LGA) module

(i.e., the lower part of Fig. 3) to respectively align the local and

global features from different domains. The light gray and dark

gray lines correspond to the back-propagation processes of the lo-

cal and global domain alignment modules, respectively.

on aligning the features with the same relative location be-

tween the two domains.

Recall the original feature map in the 3D voxel-based

FPN at the c-th block can be denoted as F (X;θc), then

the concatenated feature can be represented as F̂ (X;θc) =
F (X;θc) ⊕ Ml

c, where ⊕ is the concatenation operator

along the channel dimension. Then, the local domain align-

ment loss at the c-th CNN block can be updated as,

L̂l
c=

1

N

N
∑

i=1

∑

u,v

Ld(D
l
c(F̂ (Xi;θc)

(u,v); ŵl
c), di), (6)

where Dl
c and ŵl

c are respectively the local domain classi-

fier and its corresponding parameters at the c-th CNN block

and both of them are similarly defined as in Eq. (3).

Location-related Global Alignment (LGA): We also use

range information to enhance global domain alignment. For

this purpose, we learn one location-related map to learn

global statistics over the whole point clouds and re-weight

the features from all patches for better global alignment of

features from different domains. Specifically, based on the

locally domain-aligned features from the RLA module at

each CNN block, we learn one weight map (i.e., the multi-

colored map in the lower part of Fig. 3) for each domain

adaptation task to learn the global adaptation weights for

the features at different locations. Then, at each patch loca-
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tion, we multiply the features by the corresponding weight

in the location-related map, so that the features from differ-

ent patches make different contributions to ensure the do-

main invariance of the entire feature.

Let us denote the location-related map at the c-th block

as Mg
c , then the global domain alignment loss is updated as,

L̂g
c =

1

N

N
∑

i=1

Ld(D
g
c (F̂ (Xi;θc)⊗Mg

c ;w
g
c ), di), (7)

where ⊗ denotes the matrix multiplication operation be-

tween Mg
c and each channel of F̂ (Xi;θc), D

g
c and wg

c are

respectively the global domain classifier and its parameters

at the c-th CNN block defined similarly as in Eq. (2). In this

way, after performing the patch-wise feature re-weighting

process, different importance values are learnt for different

locations, which lead to better alignment of the global fea-

tures from different domains.

3.5. Network Overview

By considering scale-aware and range-aware domain

alignment strategies simultaneously, we arrive at the objec-

tive of our Scale-aware and Range-aware domain adapta-

tion network (SRDAN). We use both range-aware local do-

main alignment and global domain alignment strategies as

in Eq. (6) and (7), and update the objective in Eq. (5) for

scale-aware domain alignment. The overall objective of our

SRDAN can be rewritten as follows,

min
Θ,Mg

∑

c

{

min
βc

Ldet
c − λ min

ŵ
g
c ,ŵ

l
c

(

L̂l
c + L̂g

c

)

}

, (8)

whereMg = {Mg
c |

7
c=5},λ is defined in Eq. (4),Ldet

c is de-

fined in Eq. (5), and L̂l
c and L̂g

c are defined in Eq. (6) and (7).

4. Experiments

We evaluate our proposed method SRDAN under three

cross-domain scenarios: 1) cross-scene adaptation, where

the data from the source and target domains are captured in

different cities; 2) day-to-night adaptation, where the data

in the source and target domains are collected at day-time

and night-time, respectively; 3) synthetic-to-real adapta-

tion, where the source domain data is captured from video

games, while the target domain data comes from the real

world. In addition, we also conduct ablation study to vali-

date the effectiveness of each component in our SRDAN.

4.1. Experiment Setup

We follow the standard unsupervised domain adaptation

protocol [35, 12, 13] for all methods, where the source train-

ing data contains both point clouds and their labels (includ-

ing bounding box locations and object categories) and the

training data from the target domain are unlabeled point

clouds. The results of all methods are evaluated on the tar-

get domain, where the mean average precision (mAP) is re-

ported with the IoU thresholds of 0.7 for cars and 0.5 for all

Boston → Singapore Car Pedestrian Barrier

PointPillars [29] 70.9 65.6 13.6

PointRCNN [54] 71.2 66.7 14.1

SECOND [68] 71.4 67.2 14.4

SWDA-3D [49] 72.4 69.1 14.6

vanilla DAN (Ours) 71.9 68.1 14.9

SRDAN(Ours) 74.6 71.8 16.7

Singapore → Boston Car Pedestrian Barrier

PointPillars [29] 67.6 66.4 12.8

PointRCNN [54] 68.8 68.3 13.0

SECOND [68] 69.2 68.9 13.1

SWDA-3D [49] 70.3 69.9 13.8

vanilla DAN (Ours) 69.9 69.8 13.7

SRDAN(Ours) 72.5 72.7 16.4

Table 1. 3D object detection results for the cross-scene scenario.

other classes in all scenarios. We use the OpenPCDet3 tool-

box to implement our SRDAN under the PyTorch4 frame-

work. SECOND [68] is used as our backbone network for

feature extraction. We use Adam as the optimizer and set

the initial learning rate as 0.003. Other settings (e.g., the

detection range) are the same as in [68].

4.2. Experimental Results

4.2.1 Cross-Scene Adaptation

Datasets: For the cross-scene adaptation scenario, we use

the two subsets from the challenging dataset Nuscenes [4]

captured in Boston and Singapore, respectively. We treat

one city as the source domain and the other as the target

domain, and vice versa. The Boston (resp., Singapore) do-

main contains 467 (resp., 383) driving scenes with 18,785

(resp., 15,364) samples. We use the three most common

classes (i.e., Car, Pedestrian and Barrier) to conduct the ex-

periments.

Baselines: We report the results of SECOND [68] and

two state-of-the-art 3D object detection methods PointR-

CNN [29] and PointPillars [29] trained based on the source

domain data, in which their released code is directly used.

PointRCNN [29] is a two-stage detection method, which

generates the proposals from the PointNet encoders [44,

45]. PointPillars [29] encodes the point features based on

vertical columns (pillars) for more efficiency. In addition,

we also report the results of the extended version (denoted

as SWDA-3D) of SWDA [49], for which we replace the 2D

feature extractor in SWDA [49] with SECOND[68]. We

also include the vanilla version of our SRDAN (i.e., vanilla

DAN) for comparison.

Results: The results of the different methods for both tasks

under the cross-scene scenario are summarized in Table 1.

Without considering the domain adaptation issue, the base-

line approach SECOND and the supervised method PointR-

CNN achieve similar results, while the PointPillars method

3https://github.com/open-mmlab/OpenPCDet
4https://github.com/pytorch/pytorch
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Day → Night

Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [29] 72.1 68.5 65.7 35.9 33.5 32.0 32.6 29.0 25.9

PointRCNN [54] 74.7 71.6 68.1 38.6 37.7 32.8 31.5 27.9 25.6

SECOND [68] 76.3 74.5 72.4 39.7 38.3 33.9 31.9 29.7 26.8

SWDA-3D [49] 78.7 76.2 73.9 44.0 41.4 36.8 35.2 33.4 29.5

vanilla DAN (Ours) 77.9 75.3 73.1 42.4 40.3 36.1 32.8 31.3 27.9

SRDAN(Ours) 80.8 78.4 76.2 47.5 43.2 39.8 40.3 37.2 33.6

Table 2. 3D object detection results for the day-to-night scenario.

is slightly worse. SWDA-3D and our vanilla DAN outper-

form SECOND, which show the necessity for dealing with

data distribution mismatch for 3D object detection under

the cross-scene scenario. However, the improvements of

both methods over SECOND are relatively limited, which

indicates we cannot effectively align the data distributions

of two domains by simply applying the domain adversar-

ial training strategy for 3D object detection, possibly due

to the geometric variance of 3D point clouds from two do-

mains. By exploiting the scale-aware alignment and range-

aware alignment strategies, our SRDAN method gains no-

table improvements over SECOND and achieves the best

results among all methods, which clearly demonstrates the

effectiveness of our approach for guiding distribution align-

ment with geometric characteristics.

4.2.2 Day-to-Night Adaptation

Datasets: Under the day-to-night adaptation scenario, we

investigate the influence of different lighting conditions for

3D object detection by using the day-time and night-time

subsets from the A*3D dataset [39]. A*3D dataset contains

around 40,000 point cloud frames with heavy occlusions.

We use the day/night split file provided in the downloaded

dataset to construct the two domains in our experiments,

which include 4060 and 1147 high-density point cloud sam-

ples for the Day subset and the Night subset, respectively.

Note, the available day/night samples in the downloaded

dataset are different from those reported in their paper [39].

As a result, we use the available day-time data for the 3D

object detection task in the night time (i.e., the “Day →

Night” task), in which we utilize the three most common

classes (i.e., Car, Pedestrian and Cyclist) in our experi-

ments.

Results: Similar to the cross-scene scenario, we com-

pare our method with the baseline method SECOND [68],

two state-of-the-art methods PointRCNN [54] and Point-

Pillars [29], and the domain adaptation method SWDA-

3D [49]. The 3D object detection results of different meth-

ods under the day-to-night scenario are reported in Table 2.

We have similar observations as those from the cross-scene

scenario. Without dealing with the domain adaptation issue,

the existing approaches SECOND, PointRCNN and Point-

Pillars cannot achieve satisfactory performance. Our vanilla

DAN and SWDA-3D [49] gain limited improvements over

the baseline method SECOND. Our SRDAN method out-

PreSIL → KITTI

Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

AVOD-FPN [27] - - - 14.1 11.9 11.6 - - -

PointPillars [29] 16.3 15.0 14.7 9.9 9.0 8.9 4.5 4.3 4.3

PointRCNN [54] - 15.7 - - 9.6 - - 5.6 -

SECOND [68] 16.7 15.1 14.9 10.9 10.1 9.8 4.6 4.5 4.5

DABEV [51] - 17.1 - - 10.3 - - 5.9 -

CDN [57] - 19.0 - - 13.2 - - 9.1 -

SWDA-3D [49] 22.6 18.7 16.3 12.8 11.5 10.3 7.6 7.1 6.9

vanilla DAN (Ours) 19.7 16.8 15.6 11.3 10.4 9.9 6.3 6.1 6.0

SRDAN(Ours) 25.9 22.1 18.7 15.9 14.6 12.5 9.6 9.4 9.1

Table 3. 3D object detection results for the synthetic-to-real sce-

nario. ‘-’ indicates the results are not available in their works.

performs all existing methods as well as our vanilla DAN

method with considerable gains, which again validates the

effectiveness of our SRDAN approach.

4.2.3 Synthetic-to-Real Adaptation

Datasets: Learning from synthetic data has attracted more

and more attention in recent years, mainly due to the re-

quirement of large scale labeled training data for develop-

ing deep learning methods, and the difficulty in collecting

and annotating such large-scale data in the real-world sce-

narios. We also evaluate the effectiveness of our proposed

SRDAN method for 3D object detection by using the syn-

thetic data as the source domain, and the real data as the

target domain. In particular, we use the PreSIL dataset [22]

as the source domain, which contains 51075 synthetic Li-

DAR data generated from the Grand Theft Auto V (GTA

V) game. The well-known 3D object detection benchmark

dataset KITTI [14] is used as the target domain, which con-

tains 7,481 unlabeled samples. This leads to the “PreSIL

→ KITTI” task under the synthetic-to-real scenario. We

utilize the three most common classes (i.e., Car, Pedestrian

and Cyclist) that appeared in both datasets to conduct the

experiments.

Results: Besides the baseline methods discussed in the pre-

vious two scenarios, we also compare our work with one

general 3D object detection method (i.e., AVOD-FPN [27])

and two domain adaptation methods (i.e., DABEV [51] and

CDN [57]) as their results are reported for this scenario.

AVOD-FPN is a multi-view image-based detection method,

which aggregates the features from the RGB images, the

projected Bird’s-Eye-View images and 3D anchor grids

into a 2D Feature Pyramid Network. DABEV uses Cycle-

GAN [79] to transfer the style of the projected Bird-Eye-

View images and performs detection based on the style-

transferred 2D images. The results of DABEV [51] and

CDN [57] are reported in [57], while the results of AVOD-

FPN are reported in [22].

The results of different methods are reported in Table 3.

For the baseline methods and our vanilla DAN method, we

have similar observations as those in the previous scenar-

ios. We also observe the two domain adaptation methods

DABEV and CDN achieve better results than the baseline
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Methods SECOND +FPN +SaDA +RLA +LGA +RaDA SRDAN (Ours)

B → S 71.4 72.6 73.3 72.4 72.9 73.1 74.6

Table 4. Ablation study of our SRDAN for the B → S task (Car).

methods, which shows it is beneficial to deal with the do-

main distribution mismatch issue under the synthetic-to-real

scenario. However, these two methods fail to consider the

geometric characteristics for domain alignment. Our SR-

DAN outperforms all methods including those two domain

adaptation methods with a large margin. The results clearly

demonstrate the effectiveness of our method by exploiting

the geometric characteristics for cross-domain 3D object

detection.

4.2.4 Ablation Study

To validate the effectiveness of our proposed scale-aware

domain alignment and range-aware domain alignment

strategies, we further conduct comprehensive ablation study

by varying different components in our SRDAN.

In particular, we take the “Car” category from the Boston

→ Singapore (B → S) task as an example, and investigate

the scale-aware domain alignment and range-aware domain

alignment strategies individually. The method with ‘+’ sign

indicates the variant of our SRDAN by additionally apply-

ing each newly introduced component of our SRDAN on

the baseline method SECOND.

Scale-aware domain alignment: To validate the effective-

ness of our scale-aware domain alignment strategy, we tem-

porally remove all components (i.e., the RLA and LGA

modules) in our range-aware domain alignment strategy,

and report the results of SECOND with the 3D voxel-based

FPN (referred to as “+FPN”), and SECOND with the scale-

aware domain alignment strategy (referred to as “+SaDA”).

As shown in Table 4, while “+FPN” achieves better re-

sults than SECOND (72.6% vs. 71.4%) by using the FPN

approach, our “+SaDA” further boosts the result to 73.3%

by aligning the distributions between the two domains with

the aid of scale information, which clearly validates the ef-

fectiveness of our scale-aware domain alignment strategy.

Range-aware domain alignment: We further validate the

effectiveness of our range-aware domain alignment strat-

egy. In this ablation study, we temporally remove the com-

ponents (i.e., 3D voxel-based FPN) related to the scale-

aware domain alignment strategy, and directly apply the

range-aware domain alignment strategy on our vanilla DAN

method (referred to as “+RaDA”). Since our range-aware

domain alignment strategy consists of a Range-guided Lo-

cal Alignment (RLA) module and a Location-related Global

Alignment (LGA) module, we also report the results by ap-

plying two modules individually in combination with our

vanilla DAN model, which are referred to as “+RLA” and

“+LGA”, respectively.

From the results in Table 4, the mAP results can be im-

proved to 72.4% (resp.,72.9%) after adding the individual

RLA module (resp., LGA module) to the backbone network

Low 

weights

High 

weights

(a) Boston → Singapore (b) Singapore → Boston

Figure 4.Visualization of the learnt location-related map from our

LGA module.

SECOND, and the results can be further improved to 73.1%

after using both RLA and LGA modules (i.e., “+RaDA”).

The results clearly indicate the effectiveness of both mod-

ules in our RaDA approach. Finally, by combining both

SaDA and RaDA strategies in our SRDAN, we can achieve

the overall mAP of 74.6%, which significantly improves the

mAP by 3.5% from the baseline method SECOND. The re-

sults show both SaDA and RaDA strategies are effective,

which can also be well combined to further boost the re-

sults for the cross-dataset 3D object detection task.

4.3. Analysis for the LGA module

Based on the observation that the sparsity levels of 3D

points from objects may be different at different spatial lo-

cations and the labeled objects usually appear on certain

locations in the point cloud maps (i.e., the labeled objects

are rarely far away from or overlap with the driving car),

for each detection task, we use the Location-related Global

Alignment (LGA) module to learn one attention map. The

learnt attention map is used as the importance score map

and then multiplied to the original feature map to enhance

the domain invariance of foreground objects. We take the

LGA module at block 5 of CNN as an example to visualize

the learnt attention map in Fig. 4. The results clearly verify

the aforementioned assumption.

5. Conclusion

In this work, we have proposed a new unsupervised do-

main adaptation method named Scale-aware and Range-

aware Domain Adaptation Network (SRDAN) for the 3D

object detection task. Based on the sparse voxel CNN

method SECOND, we employ a voxel-based feature pyra-

mid network to extract multi-scale features to effectively

handle objects with different sizes. Then, we introduce the

scale-aware and range-aware domain alignment strategies

to address the data distribution mismatch issue for better do-

main adaptation, in which we exploit the distinct size and

distance information in 3D representations. Extensive ex-

periments under three scenarios together with comprehen-

sive ablation study and analysis demonstrate the effective-

ness of our approach for cross-dataset 3D object detection.
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