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Abstract. In this paper, we present a new tool SReach, which solves
probabilistic bounded reachability problems for two classes of models of
stochastic hybrid systems. The first one is (nonlinear) hybrid automata
with parametric uncertainty. The second one is probabilistic hybrid au-
tomata with additional randomness for both transition probabilities and
variable resets. Standard approaches to reachability problems for lin-
ear hybrid systems require numerical solutions for large optimization
problems, and become infeasible for systems involving both nonlinear
dynamics over the reals and stochasticity. SReach encodes stochastic in-
formation by using a set of introduced random variables, and combines δ-
complete decision procedures and statistical tests to solve δ-reachability
problems in a sound manner. Compared to standard simulation-based
methods, it supports non-deterministic branching, increases the cover-
age of simulation, and avoids the zero-crossing problem. We demonstrate
SReach’s applicability by discussing three representative biological mod-
els and additional benchmarks for nonlinear hybrid systems with multiple
probabilistic system parameters.

1 Introduction

Stochastic hybrid systems (SHSs) are dynamical systems exhibiting discrete, con-
tinuous, and stochastic dynamics. Due to the generality, they have been widely
used in various areas, including biological systems, financial decision problems,
and cyber-physical systems [2, 6]. One elementary question for the quantitative
analysis of SHSs is the probabilistic reachability problem, considering that many
verification problems can be reduced to reachability problems. It is to compute
the probability of reaching a certain set of states. The set may represent certain
unsafe states which should be avoided or visited only with some small proba-
bility, or dually, good states which should be visited frequently. This problem is
no longer a decision problem, as it generalizes that by asking what is the proba-
bility that the system reaches the target region. For SHSs with both stochastic
and non-deterministic behavior, the problem results in general in a range of
probabilities, thereby becoming an optimization problem.
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To describe stochastic dynamics, uncertainties have been added to hybrid
systems in various ways. One way expresses random initial values and stochas-
tic dynamical coefficients using random variables, resulting in hybrid automata
(HAs) [13] with parametric uncertainty. Another approach integrates determin-
istic flows with probabilistic jumps. When state changes forced by continuous
dynamics involve discrete random events, we refer to such systems as proba-
bilistic hybrid automata (PHAs) [20]. When continuous probabilistic events are
also involved, we call them stochastic hybrid automata (SHAs) [9]. Other models
substitute deterministic flows with stochastic ones, such as stochastic differential
equations (SDEs) [1], where the random perturbation affects the dynamics con-
tinuously. When all such modifications have been applied, the resulting models
are called general stochastic hybrid systems (GSHSs) [15]. Among these different
models, of particular interest for this paper are HAs with parametric uncertainty
and PHAs with additional randomness for both transition probabilities and vari-
able resets. Note that, in the following, we use notations - HAp and PHAr - for
these two model classes respectively.

When modeling real-world systems, such as biological systems and cyber-
physical systems, using hybrid models, parametric uncertainty arises naturally.
Although its cause is multifaceted, two factors are critical. First, probabilistic
parameters are needed when the physics controlling the system is known, but
some parameters are either not known precisely, are expected to vary because
of individual differences, or may change by the end of the system’s operational
lifetime. Second, system uncertainty may occur when the model is constructed
directly from experimental data. Due to imprecise experimental measurements,
the values of system parameters may have ranges of variation with some associ-
ated likelihood of occurrence. Clearly, the HAps are suitable models considering
these major causes. Note that, in both cases, we assume that the probability dis-
tributions of probabilistic system parameters are known and remain unchanged
throughout the systems evolution.

As another interesting and more expressive class of models, PHAs extend HAs
with discrete probability distributions. More precisely, for discrete transitions in
a model, instead of making a purely (non)deterministic choice over the set of
currently enabled jumps, a PHA (non)deterministically chooses among the set of
recently enabled discrete probability distributions, each of which is defined over
a set of transitions. Although randomness only influences the discrete dynamics
of the model, PHAs are still very useful and have interesting practical appli-
cations [21]. In this paper, we consider a variation of PHAs, where additional
randomness for both transition probabilities and resets of system variables are
allowed. In other words, in terms of the additional randomness for jump prob-
abilities, we mean that the probabilities attached to probabilistic jumps from
one mode, instead of having a discrete distribution with predefined constant
probabilities, can be expressed by equations involving random variables whose
distributions can be either discrete or continuous. This extension is motivated
by the fact that some transition probabilities can vary due to factors such as in-
dividual and environmental differences in real-world systems. When it comes to
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the randomness of variable resets, we allow that a system variable can be reset
to a value obtained according to a known discrete or continuous distribution,
instead of being assigned a fixed value.

In this paper, we describe our tool SReach which supports probabilistic
bounded δ-reachability analysis for the above two model classes. It combines
the recently proposed δ-complete bounded reachability analysis technique [11]
with statistical testing techniques. SReach saves the virtues of the Satisfiability
Modulo Theories (SMT) based Bounded Model Checking (BMC) for HAs [7,23],
namely the fully symbolic treatment of hybrid state spaces, while advancing
the reasoning power to probabilistic models. Furthermore, by utilizing the δ-
complete analysis method, the full non-determinism of models will be considered.
The coverage of simulation will be increased, as the δ-complete analysis method
results in an over-approximation of the reachable set, whereas simulation is only
an under-approximation of it. The zero-crossing problem can be avoided as, if a
zero-crossing point exists, it will always return an interval containing it. By us-
ing statistical tests, SReach can place controllable error bounds on the estimated
probabilities. We discuss three biological models - an atrial fibrillation model, a
prostate cancer treatment model, and our synthesized Killerred biological model
- to show that SReach can answer questions including model validation/falsi-
fication, parameter synthesis, and sensitivity analysis. To further demonstrate
its applicability, we also apply it to additional real-world hybrid systems with
parametric uncertainty.

Related work. Hahn et al. promoted an abstraction-based method where
the given PHA is abstracted into an n-player stochastic game [12], albeit be-
ing limited to linear dynamics. Fränzle at al. proposed a Stochastic SMT-based
procedure [10]. But their tool SiSAT supports only discrete random variables.
Ellen et al. [8] proposed a statistical model checking technique for verifying hy-
brid systems with continuous non-determinism, thereby expanding the class of
systems analyzable, yet confined dynamics to (non-linear) pre-post conditions
rather than ODEs. SReach supports both discrete and continuous random vari-
ables, and ODEs. ProbReach [19] also uses the δ-complete procedures and offers
verified estimated probability interval containing the real probability, yet can
only deal with hybrid systems with initial random variables. While SReach is
able to handle probabilistic transitions as well.

The paper proceeds by introducing two model classes of SHSs under consider-
ation in Section 2. Section 3 formally states probabilistic bounded δ-reachability
problems and explains how SReach solves these problems by combining δ-complete
decision procedures with statistical tests. Case studies and additional experi-
ments are discussed in Section 4. Section 5 concludes the paper.

2 Stochastic Hybrid Models

Before introducing the algorithm implemented by SReach and the problems that
it can handle, we first define two model classes that SReach considers formally.
For HAps, we follow the definition of HAs in [13], and extend it to consider
probabilistic parameters in the following way.
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Definition 1 (HAp). A hybrid automaton with probabilistic parameters is a
tuple Hp = 〈(Q,E), V, RV, Init, Flow, Inv, Jump, Σ〉, where

– The vertices Q = {q1, · · · , qm} is a finite set of discrete modes, and edges in
E are control switches.

– V = {v1, · · · , vn} denotes a finite set of real-valued system variables. We
write V̇ to represent the first derivatives of variables during the continuous
change, and write V ′ to denote values of variables at the conclusion of the
discrete change.

– RV = {w1, · · · , wk} is a finite set of independent random variables, where
the distribution of wi is denoted by Pi.

– Init, Flow, and Inv are labeling functions over Q. For each mode q ∈ Q, the
initial condition Init(q) and invariant condition Inv(q) are predicates whose
free variables are from V ∪RV , and the flow condition Flow(q) is a predicate
whose free variables are from V ∪ V̇ ∪RV .

– Jump is a transition labeling function that assigns to each transition e ∈ E
a predicate whose free variables are from V ∪ V ′ ∪RV .

– Σ is a finite set of events, and an edge labeling function event : E → Σ
assigns to each control switch an event.

Another class is PHArs, which extend HAs with discrete probability transi-
tions and additional randomness for transition probabilities and variable resets.

Definition 2 (PHAr). A probabilistic hybrid automaton with additional ran-
domness Hr consists of Q, E, V, RV, Init, Flow, Inv, Σ as in Definition 1, and
Cmds, which is a finite set of probabilistic guarded commands of the form:
g → p1 : u1 + · · · + pm : um,
where g is a predicate representing a transition guard with free variables from
V , pi is the transition probability for the ith probabilistic choice which can be ex-
pressed by an equation involving random variable(s) in RV and the pi’s satisfy∑m
i=1 pi = 1, and ui is the corresponding transition updating function for the ith

probabilistic choice, whose free variables are from V ∪ V ′ ∪RV .

To illustrate the additional randomness allowed for transition probabilities
and variable resets, an example probabilistic guarded command is x ≥ 5 →
p1 : (x′ = sin(x)) + (1 − p1) : (x′ = px), where x is a system variable, p1 has
a Uniform distribution U(0.2, 0.9), and px has a Bernoulli distribution B(0.85).
This means that, the probability to choose the first transition is not a fixed
value, but a random one having a Uniform distribution. Also, after taking the
second transition, x can be assigned to either 1 with probability 0.85, or 0 with
0.15. In general, for an individual probabilistic guarded command, the transition
probabilities can be expressed by equations of one or more new random variables,
as long as values of all transition probabilities are within [0, 1], and their sum is
1. Currently, all four primary arithmetic operations are supported. Note that, to
preserve the Markov property, only unused random variables can be used, so that
no dependence between the current probabilistic jump and previous transitions
will be introduced.
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3 SReach algorithm

A recently proposed δ-complete decision procedure [11] relaxes the reachabil-
ity problem for HAs in a sound manner: it verifies a conservative approxima-
tion of the system behavior, so that bugs will always be detected. The over-
approximation can be tight (tunable by an arbitrarily small rational parameter
δ), and a false alarm with a small δ may indicate that the system is fragile,
thereby providing valuable information to the system designer (see Appendix
?? for details). We now define the probabilistic bounded δ-reachability problem
based on the bounded δ-reachability problem defined in [11] .

Definition 3. The probabilistic bounded k step δ-reachability for a HAp Hp is to
compute the probability that Hp reaches the target region T in k steps. Given the
set of independent random variables r, Pr(r) a probability measure over r, and
Ω the sample space of r, the reachability probability is

∫
Ω
IT (r)dPr(r), where

IT (r) is the indicator function which is 1 if Hp with r reaches T in k steps.

Definition 4. For a PHAr Hr, the probabilistic bounded k step δ-reachability
estimated by SReach is the maximal probability that Hr reaches the target region
T in k steps: maxσ∈EPr

k
Hr,σ,T

(i), where E is the set of possible executions of
H starting from the initial state i, and σ is an execution in the set E.

Algorithm 1 SReach

1: function SReach(MP , ST , δ, k)
2: if MP is a HAp then
3: MP ← EncRM1(MP ) . encode uncertain system parameters
4: else . otherwise a PHAr

5: MP ← EncRM2(MP ) . encode probabilistic jumps and extra randomness
6: end if
7: Succ,N ← 0 . number of δ-sat samples and total samples
8: Assgn← ∅ . record unique sampling assignments and dReach results
9: RV ← ExtractRV(MP ) . get the RVs from the probabilistic model

10: repeat in parallel
11: Si ← Sim(RV ) . sample the parameters
12: if Si ∈ Assgn.sample then
13: Res← Assgn(Si).res . no need to call dReach
14: else
15: Mi ← Gen(MP,Si) . generate a dReach model
16: Res← dReach(Mi, δ, k) . call dReach to solve k-step δ-reachability
17: end if
18: if Res = δ-sat then Succ← Succ+ 1
19: end if
20: N ← N + 1
21: until ST.done(Succ,N) . perform statistical test
22: return ST.output
23: end function

After encoding uncertainties using random variables, SReach samples them
according to the given distributions. For each sample, a corresponding interme-
diate HA is generated by replacing random variables with their assigned values.
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Then, the δ-complete analyzer dReach is utilized to analyze each intermedi-
ate HA Mi, together with the desired precision δ and unfolding depth k. The
analyzer returns either unsat or δ-sat for Mi. This information is then used
by a chosen statistical testing procedure to decide whether to stop or to re-
peat the procedure, and to return the estimated probability. The full procedure
is illustrated in Algorithm 1, where MP is a given stochastic model, and ST
indicates which statistical testing method will be used (See Appendix ?? for
various statistical tests that supported by SReach and the way to control the
induced statistical error bounds). Succ and N are used to record the number
of δ-sat instances and total samples generated so far respectively, and are then
the inputs of ST . Note that, for a PHAr, sampling and fixing the choices of
all the probabilistic transitions in advance results in an over-approximation of
the original PHAr, where safety properties are preserved. To promise a tight
over-approximation and correctness of estimated probabilities, SReach supports
PHArs with no or subtle non-determinism. That is, in order to offer a reason-
able estimation, for PHArs, SReach is supposed to be used on models with no or
few non-deterministic transitions, or where dynamic interleaving between non-
deterministic and probabilistic choices are not important, such as our KillerRed
biological model. To improve the performance of SReach, each sampled assign-
ment and its corresponding dReach result are recorded for avoiding redundant
calls to dReach. This significantly reduces the total calls for PHArs, as the size
of the sample space involving random variables describing probabilistic jumps
is comparatively small. For the example PHA (as shown in Figure 1), with this
heuristic, the total checking time has been decreased from 11291.31s for 658
samples (17.16s per sample) to 3295.82s (5.01s per sample). Furthermore, a par-
allel version of SReach has been implemented using OpenMP, where multiple
samples and corresponding HAs are generated, and passed to dReach simultane-
ously. Using this parallel SReach on a 4-core machine, the running time for the
example PHA has been further decreased to 2119.55s for 660 samples (3.33s per
sample).

Mode 1

d/dt[x] = x * y;
d/dt[y] = 3 * x - y;

invt:
 (x <= 2);
 (x >= 0);
 (y <= 7.7);
 (y >= -3);

Mode 2

d/dt[x] = x;
d/dt[y] = 3 * x - y ^ 2;

invt:
 (x <= 200);
 (x >= -2.2);
 (y <= 85.1);
 (y >= 2)

(0.1<= x <= 1.4)  
(y = 1.1) abs(y) * x ^ 2 <= x / 2

cos(x) <= 0

0.5

0.5

(x' >= sin(y))
 (y' <= 4 * y)

(x' <= 3.1) 
(y' = 2 * x)

(x' = x) (y' = y)

(x <= 1000)
(x >= -1000) 
(y <= 1000) 
(y >= -1000)

1

0.5

0.5

(x' = x)
(y' = y)

(x' = x)
(y' = y)

Fig. 1: An example probabilistic hybrid automaton

Currently, SReach supports a number of hypothesis testing and statistical es-
timation techniques including: Lai’s test [17], Bayes factor test [16], Bayes factor
test with indifference region [25], Sequential probability ratio test (SPRT) [24],
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Chernoff-Hoeffding bound [14], Bayesian Interval Estimation with Beta prior
[26], and Direct Sampling. All methods produce answers that are correct up to a
precision that can be set arbitrarily by the user. See Appendix ?? for more details
about these statistical testing techniques. With these hypothesis testing meth-
ods, SReach can answer qualitative questions, such as “Does the model satisfy
a given reachability property in k steps with probability greater than a certain
threshold?” With the above statistical estimation techniques, SReach can offer
answers to quantitative problems. For instance, “What is the probability that
the model satisfies a given reachability property in k steps?” SReach can also
handle additional types of interesting problems by encoding them as bounded
reachability problems. The model validation/falsification problem with prior
knowledge can be encoded as a bounded reachability question. After expressing
prior knowledge about the given model as reachability properties, is there any
number of steps k in which the model satisfies a given property? If none exists,
the model is incorrect regarding the given prior knowledge. If, for each property,
a witness is returned, we can conclude that the model is correct with regard to
the prior knowledge. The parameter synthesis problem can also be encoded
as a k-step reachability problem. Does there exist a parameter combination for
which the model reaches the given goal region in k steps? If so, this parameter
combination is potentially a good estimation for the system parameters. The
goal here is to find a combination with which all the given goal regions can be
reached in a bounded number of steps. Moreover, sensitivity analysis can be
conducted by a set of bounded reachability queries as well: Are the results of
reachability analysis the same for different possible values of a certain system
parameter? If so, the model is insensitive to this parameter with regard to the
given prior knowledge.

4 Experiments

Both sequential and parallel versions of SReach are available on https://github.

com/dreal/SReach (see Appendix ?? for its usage). Experiments for the follow-
ing three biological models were conducted on a server with 2* AMD Opteron(tm)
Processor 6172 and 32GB RAM (12 cores were used), running on Ubuntu 14.04.1
LTS. In our experiments we used 0.001 as the precision for the δ-decision prob-
lem, and Bayesian sequential estimation with 0.01 as the estimation error bound,
coverage probability 0.99, and a uniform prior (α = β = 1). All the details
(including discrete modes, continuous dynamics that described by ODEs, non-
determinism, and stochasticity) of models in the following case studies and ad-
ditional benchmarks can be found on the tool website.

Atrial Fibrillation. The minimum resistor model reproduces experimentally
measured characteristics of human ventricular cell dynamics [5]. It reduces the
complexity of existing models by representing channel gates of different ions with
one fast channel and two slow gates. However, due to this reduction, for most
model parameters, it becomes impossible to obtain their values through mea-
surements. After adding parametric uncertainty into the original hybrid model,
we show that SReach can be adapted to synthesize parameters for this stochastic
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model, i.e., identifying appropriate ranges and distributions for model parame-
ters. We chose two system parameters - EPI TO1 and EPI TO2, and varied their
distributions to see which ones allow the model to present the desired patterns.
As in Table 1, when EPI TO1 is either close to 400, or between 0.0061 and 0.007,
and EPI TO2 is close to 6, the model can satisfy the given bounded reachability
property with a probability very close to 1.

Model #RVs EPI TO1 EPI TO2 #S S #T S Est P A T(s) T T(s)

Cd to1 s 1 U(6.1e-3, 7e-3) 6 240 240 0.996 0.270 64.80

Cd to1 uns 1 U(5.5e-3, 5.9e-3) 6 0 240 0.004 0.042 10.08

Cd to2 s 1 400 U(0.131, 6) 240 240 0.996 0.231 55.36

Cd to2 uns 1 400 U(0.1, 0.129) 0 240 0.004 0.038 9.15

Cd to12 s 2 N(400, 1e-4) N(6, 1e-4) 240 240 0.996 0.091 21.87

Cd to12 uns 2 N(5.5e-3, 10e-6) N(0.11, 10e-5) 0 240 0.004 0.037 8.90
Table 1: Results for the 4-mode atrial fibrillation model (k = 3). For each sample generated, SReach
analyzed systems with 62 variables and 24 ODEs in the unfolded SMT formulae. #RVs = number of
random variables in the model, #S S = number of δ-sat samples, #T S = total number of samples,
Est P = estimated probability of property, A T(s) = average CPU time of each sample in seconds,
and T T(s) = total CPU time for all samples in seconds. Note that, we use the same notations in
the remaining tables.

Prostate cancer treatment. This model is a nonlinear hybrid automaton
with parametric uncertainty. We modified the model of the intermittent andro-
gen suppression (IAS) therapy in [22] by adding parametric uncertainty. The
IAS therapy switches between treatment-on, and treatment-off with respect to
the serum level thresholds of prostate-specific antigen (PSA), namely r0 and r1.
As suggested by the clinical trials [4], an effective IAS therapy highly depends
on the individual patient. Thus, we modified the model by taking parametric
variation caused by personalized differences into account. In detail, according
to clinical data from hundreds of patients [3], we replaced six system param-
eters with random variables having appropriate (continuous) distributions, in-
cluding αx (the proliferation rate of androgen-dependent (AD) cells), αy (the
proliferation rate of androgen-independent (AI) cells), βx (the apoptosis rate
of AD cells), βy (the apoptosis rate of AI cells), m1 (the mutation rate from
AD to AI cells), and z0 (the normal androgen level). To describe the variations
due to individual differences, we assigned αx to be U(0.0193, 0.0214), αy to be
U(0.0230, 0.0254), βx to be U(0.0072, 0.0079), βy to be U(0.0160, 0.0176), m1

to be U(0.0000475, 0.0000525), and z0 to be N(30.0, 0.001). We used SReach to
estimate the probabilities of preventing the relapse of prostate cancer with three
distinct pairs of treatment thresholds (i.e., combinations of r0 and r1). As shown
in Table 2, the model with thresholds r0 = 10 and r1 = 15 has a maximum pos-
terior probability that approaches 1, indicating that these thresholds may be
considered for the general treatment.

Model #RVs r0 r1 Est P #S S #T S Avg T(s) Tot T(s)

PCT1 6 5.0 10.0 0.496 8226 16584 0.596 9892

PCT2 6 7.0 11.0 0.994 335 336 54.307 18247

PCT3 6 10.0 15.0 0.996 240 240 506.5 121560
Table 2: Results for the 2-mode prostate cancer treatment model (k = 2). For each sample generated,
SReach analyzed systems with 41 variables and 10 ODEs in the unfolded SMT formulae.



SReach 9

Mode 1
ƛgenome=0
IPTG=0
light=0
DNA=1
DNAƛ=0
mRNA=0
KRim=0
KRm=0
KRmdS=0
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt 
=1

Mode 2
ƛgenome=1
IPTG=0
light=0
DNA=1
DNAƛ=0
mRNA=0
KRim=0
KRm=0
KRmdS=0
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt 
=1

Mode 3
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=0
KRim=0
KRm=0
KRmdS=0
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt 
=1

Mode 4
ƛgenome=0
IPTG=1
light=0
DNA=0
DNAƛ=1
mRNA=?
KRim=?
KRm=?
KRmdS=?
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt 
=1

Mode 5
ƛgenome=0
IPTG=1
light=L
DNA=0
DNAƛ=1
mRNA=?
KRim=?
KRm=?
KRmdS=?
KRmdS*=?
KRmdT*=?
SOX=?
SOXsod=?
SOD=?
d[mode_t]/dt 
=1

Mode 7
ƛgenome=0
IPTG=1
light=0
DNA=0
DNAƛ=1
mRNA=?
KRim=?
KRm=?
KRmdS=?
KRmdS*=?
KRmdT*=?
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt 
=1

Mode 8
ƛgenome=0
IPTG=0
light=L
DNA=0
DNAƛ=1
mRNA=a
KRim=b
KRm=c
KRmdS=d
KRmdS*=e
KRmdT*=f
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt 
=1

Mode 9
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=a
KRim=b
KRm=c
KRmdS=d
KRmdS*=e
KRmdT*=f
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt 
=1

Mode 10
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=a
KRim=b
KRm=c
KRmdS=d
KRmdS*=e
KRmdT*=f
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt 
=1
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light=0
DNA=0
DNAƛ=1
mRNA=a
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KRm=c
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Fig. 2: A probabilistic hybrid automaton for synthesized phage-based therapy model

Synthesized KillerRed Model. Due to the widespread misuse and overuse of
antibiotics, drug resistant bacteria now pose significant risks to health, agricul-
ture and the environment. An alternative to conventional antibiotics is phage-
based therapy. One approach to antibiotic resistance is to engineer a temperate
phage λ with light-activated production of superoxide (SOX). The incorporated
Killerred protein is phototoxic and provides another level of controlled bacteria
killing [18]. A PHAr with subtle non-determinism for this synthesized Killerred
model (as shown in Figure 2) has been constructed. Considering individual dif-
ferences of bacterial cells and distinct experimental environments, additional
randomness on transition probabilities have been considered. SReach was used
to validate this model by estimating the probabilities of killing bacterial cells
with different ks (see Table 3). We noticed that the probabilities of paths going
through mode 6 to mode 11 are close to 0. This remains even after increasing
the probability of entering mode 6, indicating that it is impossible for this model
to enter mode 6. SReach was also used to find out (a) the relation between the
time to turn on the light after adding the molecular biology reagent IPTG and
the total time to kill bacterial cells with probability larger than 0.5 (see the first
two rows of Table 4), (b) that the lower bound for the duration of exposure to
light is 3 for successful bacterial killing with with probability larger than 0.5 (see
row 3-4 of Table 4), (c) that the time to remove IPTG is insensitive considering
whether bacterial cells will be killed with probability larger than 0.5 (see row 5-6
of Table 4), and (d) that the upper bound of the necessary concentration of SOX
to kill bacterial cells, with probability larger than 0.5, is 0.6667 (see from row
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7-8 of Table 4). All these findings have been reported to biologists for further
checking.

k Est P #S S #T S Avg T(s) Tot T(s) k Est P #S S #T S Avg T(s) Tot T(s)

5 0.544 8951 16452 0.074 1219.38 8 0.004 0 240 0.004 0.88

6 0.247 3045 12336 0.969 11957.12 9 0.004 0 240 0.012 2.97

7 0.096 559 5808 5.470 31770.36 10 0.004 0 240 0.013 3.18
Table 3: Results for the 11-mode killerred model.

tlightON (t.u.) 1 2 3 4 5 6 7 8 9 10

ttotal (t.u.) 16 17.2 18.5 20 21.3 22.7 23.5 24.1 25 30

tlightOFF1 (t.u.) 1 2 3 4 5 6 7 8 9 10

killed bacteria cells failed failed failed succ succ succ succ succ succ succ

trmIPTG3 (t.u.) 1 2 3 4 5 6 7 8 9 10

killed bacteria cells succ succ succ succ succ succ succ succ succ succ

SOXthres (M) 1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 1e-3

ttotal (t.u.) 5.1 5.2 5.4 17 19 48 61 71 36 42
Table 4: Formal analysis results for our KillerRed hybrid model

Additional benchmarks. To further demonstrate SReach’s applicability,
we also applied it to additional benchmarks including HAps, PHAs, and PHArs
with subtle non-determinism. Table 5 shows the results of these experiments.
These experiments were conducted with the sequential version of SReach on
a machine with 2.9GHz Intel Core i7 processor and 8GB RAM, running OS
X 10.9.2. In our experiments we used 0.001 as the precision for the δ-decision
problem; and Bayesian sequential estimation with 0.01 half-interval width, cov-
erage probability 0.99, and uniform prior (α = β = 1). In the following table,
BB refers to the bouncing ball models, Tld the thermostat model with linear
temperature decrease, Ted the thermostat model with exponential decrease, DT
the dual thermostat models, W the watertank models, DW the dual watertank
models, Que the model for queuing system which has both nonlinear functions
and nondeterministic jumps, 3dOsc the model for 3d oscillator, and QuadC the
model for quadcopter stabilization control. Following these hybrid systems with
parametric uncertainty, we also consider two example PHAs - exPHA01 and ex-
PHA02, and PHArs with trivial non-determinism - KR (our killerred models).
Moreover, the detailed description of some of additional benchmarks and above
case studies are presented in Appendix ??. The full descriptions of all the models
that mentioned in this paper can be found on the tool website.

5 Conclusions and future work

We have presented a tool that combines δ-decision procedures and statistical
tests. It supports probabilistic bounded δ-reachability analysis for HAps and
PHArs with no or subtle non-determinism. This tool has been used to analyze
three representative examples - a prostate cancer treatment model, a cardiac
model, and a synthesized Killerred model - and other benchmarks, which are
currently out of the reach of other formal tools. In the near future, we plan to ex-
tend support for more general stochastic hybrid models that include probabilistic
jumps with continuous distributions, and stochastic differential equations.
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Benchmark #Ms K #ODEs #Vs #RVs δ Est P #S S #T S A T(s) T T(s)

BBK1 1 1 2 14 3 0.001 0.754 5372 7126 0.086 612.836

BBK5 1 5 2 38 3 0.001 0.059 209 3628 0.253 917.884

BBwDv1 2 2 4 20 4 0.001 0.208 2206 10919 0.080 873.522

BBwDv2K2 2 2 4 20 3 0.001 0.845 7330 8669 0.209 1811.821

BBwDv2K8 2 8 4 56 3 0.001 0.207 2259 10901 0.858 9353.058

Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351

Ted 2 7 4 50 4 0.001 0.996 227 227 12.839 2914.448

DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714

DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078

W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082

W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771

W4mv2K7 4 7 8 50 6 0.001 0.004 0 227 0.120 27.240

DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817

DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806

DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688

Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315

3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969

QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507

exPHA01 2 2 4 20 2 0.001 0.524 345 658 5.01 3295.82

exPHA02 2 3 2 17 1 0.001 0.900 5361 5953 0.0004 2.35

KRk5 6 5 84 194 2 0.001 0.544 8946 16457 0.122 2015.64

KRk6 8 6 112 224 6 0.001 0.246 2032 8263 1.385 11444.22

KRk7 10 7 150 271 6 0.001 0.096 558 5795 16.275 94311.18

KRk8 7 8 105 303 6 0.001 0.004 0 227 0.003 0.58

KRk9 9 9 135 335 6 0.001 0.004 0 227 0.015 3.43

KRk10 11 10 165 367 6 0.001 0.004 0 227 0.026 5.92
Table 5: #Ms = number of modes, K indicates the unfolding steps, #ODEs = number of ODEs in
the unfolded formulae, #Vs = number of total variables in the unfolded formulae, #RVs = number
of random variables in the model, δ = precision used in dReach.
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