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SREBP-1 inhibitor Betulin enhances the antitumor
effect of Sorafenib on hepatocellular carcinoma via
restricting cellular glycolytic activity
Fan Yin1, Fan Feng2, Lei Wang3, Xiaoning Wang4, Zongwei Li3 and Yu Cao 5

Abstract
Lipid metabolism that correlates tightly to the glucose metabolic regulation in malignant cells includes hepatocellular

carcinoma (HCC) cells. The transcription factor Sterol Regulatory Element Binding Protein 1 (SREBP-1), a regulator of

fatty acid synthesis, has been shown to pivotally regulate the proliferation and metastasis of HCC cells. However, the

intrinsic mechanism by which SREBP-1 regulates the survival of HCC cells remains unclear. In this study, among HCC

patients who had dismal responses to Sorafenib, a high SREBP-1 level was found in the tumors and correlated to poor

survival. This observation suggested the negative role of SREBP-1 in clinical HCC prognosis. Our mechanistical studies

reveal that the inhibition of SREBP-1 via its inhibitor Betulin suppresses cellular glucose metabolism. In addition to the

reduced glycolytic activity, a thwarted metastatic potential was observed in HCC cells upon Betulin administration.

Moreover, our data show that SREBP-1 inhibition facilitated the antitumor effects of Sorafenib on HCC cells and

xenograft tumors.

Introduction
In China, the population of chronic asymptomatic

Hepatitis B Virus (HBV) infection-associated patients

exceeds 80 million1–3. Hepatocellular carcinoma (HCC) is

the final malignant disease developed from liver lesions

such as HBV infection; it is a fatal threat to life and an

increasing burden to the public medical service4–6. Thus,

it is urgent to develop effective therapeutic approaches for

HCC. At present, kinase inhibitors represented by Sor-

afenib are the major treatment choice for advanced HCC

patients7,8. As an oral administrative multi-target protein-

kinase inhibitor, Sorafenib downregulates the activity of

RTKs (receptor protein tyrosine kinases include vascular

endothelial growth factor receptor 2/3 [VEGFR-2/3], the

hepatocyte factor receptor [c-Kit], Fms-like tyrosine

kinase [FLT-3], and platelet-derived growth factor

receptor-β [PDGFR-β]) and inhibits the proliferation,

metastasis, and angiogenesis of HCC cells9–11. The ran-

domized controlled phase III trials, represented by the

SHARP (Sorafenib HCC Assessment Randomized Proto-

col) clinical trial, have shown that Sorafenib significantly

prolongs the median survival of patients compared with

the placebo group, making it a first-line antitumor agent

for advanced HCC treatment12–15. However, the sensi-

tivity of Sorafenib in HCC patients varies, with a large

proportion finally developed for Sorafenib resistance

unexpectedly16,17. Thus, it is of great importance to dis-

cover a new drug and/or to develop a novel therapeutic

strategy that increases the efficacy of Sorafenib.

Cellular metabolisms related to ATP production in

malignant cells are more active than normal cells18. HCC

cells have exaggerated glucose uptake capability for their

intensive anaerobic glycolysis which provides them
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enough energy to survive in harsh tumor microenviron-

ment19,20. The chemoresistance of HCC cells closely

correlates to the cellular metabolism; through the over-

whelming anaerobic glycolytic activity, the accommoda-

tion of metabolites and the enhanced

epithelial–mesenchymal transition (EMT) afterward take

place21,22. Thus, glucose metabolism is a potential target

of developing antagonistic therapy for chemoresistance.

It is known that 60% of the carbons in glucose are used

for fatty acid synthesis, and lipid metabolism also plays

vital roles in regulating glucose uptake and glycolytic

activities23. SREBP-1 is a core transcription factor in lipid

metabolism; it induces the transcription of a series of

genes involved in fatty acid and triglyceride synthesis24.

Inhibition of the activity of SREBP-1 decreased the

synthesis and accommodation of fat and impeded the

glucose uptake25–27. Betulin belongs to lupane-type pen-

tacyclic triterpenoids, which are widely found in plants

such as Pulsatilla chinensis (Bunge) Regel; they have

multiple biological functions, including antitumor activ-

ity28–30. Betulin directly binds to the SCAP (SREBP

cleavage-activating protein) to inhibit the cleavage and

activation of SREBP-131,32. In the present study, we per-

formed gene expression analysis on HCC patients after

Sorafenib treatment, and found that the high SREBP-1

expression correlates to a poor clinical outcome.

Mechanistically, our results indicate that SREBP-1 inhi-

bition represses the cellular glycolytic activity of HCC

cells, and restricts the metastasis of those malignant cells

both in vitro and in vivo. We also found that Betulin

works synergistically with Sorafenib on s.c. and in situ

HCC tumors. Our study suggests that the SREBP-1

inhibitor and Sorafenib combination can be a novel

therapeutic option for advanced HCC treatment.

Materials and methods
Cell lines and reagents

The hepatic cell lines: non-tumor cell line L-02, HCC

cell lines HepG2, Hu7, SMMC-7721, and BEL-7402, a

lowly aggressive HCC cell line (MHCC97-L), or highly

aggressive HCC cell lines (malignant cells) MHCC97-H

was purchased from Type Culture Collection of the

Chinese Academy of sciences (Shanghai, P.R. China).

Cells were cultured in DMEM (Dulbecco’s Modified Eagle

Medium) with 10% fetal bovine serum (FBS). The cDNA

samples derived from HCC clinical specimens were gifts

from Dr. Fan Feng in No. 302nd hospital, Chinese PLA.

The HCC clinical specimens were collected and obtained

with the informed consent of patients and with approval

for experiments from No. 302nd hospital, Chinese PLA. A

total of 52 HCC cases were included (Supplementary

Table 1)33,34. Antitumor agents: Betulin was purchased

from MCE Corporate (NJ, USA, Cat. No. HY-N0083);

Sorafenib was purchased from Selleck Corporation

(Houston, TX, USA, Cat. No. S7397). The expression

vector of SREBP-1 and SREBP-1 siRNA was purchased

from Vigene Corporation, Jinan, China. The siRNA

sequence of SREBP-1 is 5ʹ-GCUCCUCACUU-

GAAGGCUUTT-3ʹ. A lentivirus particle of siSREBP-1

was prepared by Vigene Corporation, Jinan, China.

Real-time quantitative PCR

After treating the cells with a series of concentrations of

Betulin or Sorafenib (Supplementary Table 2), the RNA

samples of the cells were collected and reverse transcribed

into cDNA according to the manufacturer’s instructions

(Thermo Fisher Scientific, Waltham, MA, USA). For

cDNA samples derived from clinical specimens and cells,

quantitative PCR assays were performed according to the

manufacturer’s instructions (Thermo Fisher Scientific,

Waltham, MA, USA) and methods described by Liang

et al. and Ji et al.35,36. For primers used in quantitative

PCR detection, see Supplementary Table 3.

Western blot experiments

For cell-based experiments, L-02, HepG2, MHCC97-H,

MHCC97-L, BEL-7402, SMMC-7721, and Hu7 cells were

cultured and harvested after the indicated times. For

animal experiments, tumor tissues were harvested and

digested. Protein samples were extracted from cells and

analyzed for SDS-PAGE. Then, protein samples were

trans-printed into PVDF membranes. Next, the mem-

branes were blocked by 5% BSA diluted with TBST at

37 °C for 2 h. After blocking, the membranes were in turn

incubated by primary antibodies (anti-SREBP-1 antibody

[Santa Cruz, USA] or anti-β-Actin antibody [Abcam

Corporation, UK]) and the secondary antibody (HRP-

coupling antibody, Abcam Corporation, UK). The anti-

bodies of PARP or ki67 were described in our previous

work. Membrane exposure was performed in chemilu-

minescence by using an ECL kit (Amersham Biosciences,

Piscataway, NJ, USA)37,38.

MTT assay

After treating HCC cells with the indicated concentra-

tions of agents (Supplementary Table 3), the MTT assay

was performed. The amount of HCC cells was determined

by the absorbance values of the cell samples at a wave-

length of 490 nm. On this basis, the inhibition rate of the

drug action was calculated by the OD values. The calcu-

lation formula of the inhibition rate is (absorbance value

at 490 nm in the control group−absorbance at 490 nm in

the experimental group)/ absorbance at the wavelength of

490 nm in the control group × 100%39–41.

In vitro cell migration and invasion

After the HCC cells were transfected with the expres-

sion vectors or treated with the indicated concentration of
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agents, the cells were collected for Transwell experiments:

the Transwell chamber was pre-plated with ECM glue,

and the cells were added to the chamber, fixed for

12–16 h, stained, and photographed. For the obtained

photographs, quantitative analysis was performed by

using image analysis software Image J42,43. The specific

calculation formula is relative invasion/migration cell

number= cell total pixel/image total pixel; drug inhibi-

tion rate= (control group relative invasion/migration cell

number–experiment group) / (control group relative

invasion/migration cell number) × 100%.

Metabolic examinations

Metabolic examinations were carried out according to

the methods provided by Li et al.44,45. Glycolytic activity

examinations were performed in either cultured tumor

cells or cells isolated from tumors. The glucose uptake

(Glucose Uptake Assay Kit (Colorimetric), (ab136955),

Abcam), lactate (Lactate-Glo™ Assay Kit, Promega), and

ATP (ATP Assay Kit (Colorimetric/Fluorometric)

(ab83355), Abcam) production, LDH activity (Lactate

Dehydrogenase Activity Assay Kit, Cat#: MAK066,

Sigma), extracellular acidification rate (ECAR, Seahorse

XF Glycolysis Stress Test Kit, Agilent), and oxygen-

consumption rate (OCR, Seahorse XF Cell Mito Stress

Test Kit, Agilent) were measured according to the man-

ufacturer's instructions. On this basis, the inhibition rate

was calculated: (control group biochemical

index–experimental group biochemical index)/(control

group biochemical index) × 100%.

Subcutaneous HCC tumor model

All animal experiments and protocols were approved by

the Animal Care and Use Committee of the General

hospital, Chinese PLA, and all animal experiments were

carried out in accordance with the UK Animals (Scientific

Procedures) Act, 1986 and its associated guidelines. The

4–6-week-old nude mice (Bal B/c mice with T cell/thy-

mus deletion features) were used. HCC cells were cul-

tured, and the cells were injected subcutaneously into

nude mice. Then, antitumor agents were intragastrically

administered 2–3 days after injection of HCC cells46,47.

The concentration gradient of the agents used in the

subcutaneous tumor formation experiments is shown in

Supplementary Table 4. Animals were intragastrically

administered with different concentrations of Betulin,

Sorafenib, or Betulin+ Sorafenib. The drug was admi-

nistered once per 2 days, and after 10 times’ treatments

(21 days), the animals were killed to collect tumor tissue.

The tumor size was calculated and the tumor was

weighed. The inhibition rate of the drug acting on the

subcutaneous tumor formation of HCC cells was calcu-

lated according to tumor size and tumor weight: the

inhibition rate calculated based on tumor size [(control

tumor size)−(tumor size of the drug treatment group)]/

(control tumor size) × 100%; the inhibition rate calculated

based on tumor weight [(control tumor weight)−(tumor

weight of the drug treatment group)]/(control group

tumor weight) × 100%.

Intrahepatic tumor models in nude mice

The collected HCC subcutaneous tumors were pre-

pared into tissue microblocks, and the tissue microblocks

were transplanted into the liver of the nude mice48,49.

After 2–3 days of tumor transplantation, oral adminis-

tration of agents was performed, and a solvent control,

Betulin or Sorafenib was administered. After 4–6 weeks,

the animals were imaged in vivo. Nude mice were inhaled

with isoflurane, and the nude mice were injected with

200 μCi (7.4MBq) of the 18F-FDG radionuclide probe via

the tail-vein injection, and the PET testing of animal was

performed after about 40–50min. According to the

results of PET, the animal's anatomy was collected to

obtain liver specimens. The specimen was photographed,

and the image analysis software Image J was used to

analyze the image to determine the relative area of the

tumor lesions: [(the total number of pixels in the tumor

lesion)/(the total number of pixels in the image)]/[(the

total number of pixels in the liver lesion)/(total number of

pixels in the image)] × 100%; using the Geiger counter to

analyze the intensity of the specimen, the liver nuclide

intensity is (unit weight of liver organ nuclides)/(unit

weight of blood nuclides). The inhibition rate calculated

based on the relative area of the tumor lesions [(relative

area of tumor lesions in the control group)− (relative area

of tumor lesions in the drug treatment group)]/(relative

area of tumor lesions in the control group) × 100%; based

on tumor weight, the calculated inhibition rate was

[(control liver nuclide intensity)–(hepatic nuclide inten-

sity in the drug treatment group)]/(control liver nucleus

intensity) × 100%50–52.

Statistical analysis

Statistical analysis was performed by Bonferroni’s cor-

rection with or without two-way ANOVA by using SPSS

statistical software (IBM Corporation, Armonk, NY,

USA). The IC50 and EC50 value of each agent was calcu-

lated by the Origin (Origin 6.1; OriginLab Corporation,

Northampton, MA, USA). A P-value of <0.05 was con-

sidered statistically significant.

Results
SREBP-1 level negatively correlates to the prognosis of

HCC patients

The expression of SREBP-1 in 52 fine-needle aspiration

tumor specimens derived from HCC patients who

received Sorafenib treatment was measured and analyzed.

Then these patients were divided into two groups

Yin et al. Cell Death and Disease          (2019) 10:672 Page 3 of 12

Official journal of the Cell Death Differentiation Association



according to the median value of the SREBP-1 expression:

high and low SREBP-1 groups (Fig. 1a, b). After analysis,

we found that the prognosis of patients with low SREBP-1

levels was better than that of patients with high SREBP-1

levels (Fig. 1c, d). The time to progression (TTP) and the

overall survival (OS) time of the high SREBP-1 group were

shorter compared with those of the low SREBP-1 group

(Table 1), suggesting that SREBP-1 negatively correlates

to HCC treatment outcomes. In addition, we found that

the level of SREBP-1 in HCC cells was significantly higher

than that of L-02 nonmalignant liver cells (Fig. 1e, f). High

aggressive MHCC97-H cells have the highest SREBP-1

expression among the tested HCC cell lines, suggesting

that SREBP-1 correlates with a higher metastatic capacity.

SREBP-1 promotes HCC cell proliferation and metastasis

We further tested the role of SREBP-1 in the pro-

liferation and metastasis of HCC cells. Knockdown of

SREBP-1 expression in MHCC97-H cells led to an

inhibited proliferation and metastasis (Supplementary

Fig. 1 High SREBP-1 level correlates to poor prognosis of advanced HCC patients who received Sorafenib treatment. a Patients were divided

into SREBP-1 high and SREBP-1 low groups based on the expression level. b PCR results from ten representative specimens (five high and five low). c

Overall survival (OS) comparison of HCC patients in the SREBP-1 high group and the SREBP-1 low group. d Time to progress (TTP) of HCC patients in

the SREBP-1 high group and the SREBP-1 low group. e, f The relative SREBP-1 expressions at both mRNA (e) and protein levels (f) in different cell lines.

Survival analysis was performed by the Kaplan–Meier method and compared by the log-rank test. Paired samples were tested by the paired-sample t-

test. Significant: *p < 0.05 in all figures
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Fig. 1). Accordingly, SREBP-1 overexpression in

MHCC97-L cells, which has the lowest SREBP-1 expres-

sion level among the tested HCC cell lines, promoted cell

proliferation and metastasis (Supplementary Fig. 2).

Similarly, SREBP-1 inhibition through its inhibitor Betulin

in MHCC97-H cells mimicked the effects of gene

knockdown (Supplementary Fig. 3A–C). To further verify

the specificity of Betulin, we constructed a luciferase

reporter gene vector which harbored a SREBP-1-binding

element, transfected MHCC97-H cells with the reporter

vectors, and performed Betulin or vehicle administration.

We found that Betulin treatment decreased the luciferase

activity in a dose-dependent manner, compared with the

vehicle control (Supplementary Fig. 3D). Taken together,

these results validate that SREBP-1 promotes HCC cell

proliferation and metastasis, and the SREBP-1 inhibitor

Betulin blocks SREBP-1's transcription factor activity

specifically.

Knockdown or inhibition of SREBP-1 thwarts the glycolytic

activity of HCC cells

Next, we tested the role of SREBP-1 in the regulation of

glycolytic activity of HCC cells. Knockdown of SREBP-1

by siRNA decreased glucose uptake and lactate dehy-

drogenase (LDH) activity in MHCC97-H cells (Supple-

mentary Fig. 4A, B), suggesting that SREBP-1

downregulation impairs anaerobic glycolytic activity.

Accordingly, reduced ATP and lactate productions were

found upon SREBP-1 knockdown (Supplementary Fig.

4C, D). Moreover, in the SREBP-1-overexpressed

MHCC97-L cells, we detected higher glucose uptake,

increased LDH activity, and more lactate and ATP pro-

duction (Supplementary Fig. 4E–H). Next, the glycolysis

stress test showed that the SREBP-1 knockdown results in

the decreased extracellular acidification rate (ECAR),

indicating a lower overall glycolytic activity (Fig. 2a).

Similarly, SREBP-1 overexpression induced a higher

ECAR in MHCC97-L cells (Fig. 2b), suggesting the reg-

ulatory role of SREBP-1 on HCC cell glycolysis. As an

opposite oxidative phosphorylation activity is often

observed upon alterations of glycolysis occurrence in

tumor cells, which was also termed as the Warburg effect,

we performed mitochondrial respiration tests for the

oxygen-consumption rate (OCR) measurement. Our

results showed increased OCR in SREBP-1 knockdown,

whereas decreased OCR in SREBP-1 overexpression

groups (Fig. 2c, d). Administration of the SREBP-1 inhi-

bitor Betulin on MHCC97-H cells showed the similar

effects, compared with the SREBP-1 knockdown, on lac-

tate and ATP production, and glycolytic activity (Sup-

plementary Fig. 5). Taken together, these data suggest that

knockdown or inhibition of SREBP-1 dampens the glu-

cose uptake, anaerobic glycolytic activity, and ATP pro-

duction of HCC cells.

By testing the transcription level of the key genes in

metabolism pathways, we found that Betulin treatment

reduced the expression of lipid metabolism-associated

genes, including acetyl-CoA carboxylation (ACC), ATP

citrate lyase (ACLY), fatty acid synthase (FASN), and acyl-

CoA synthetase (ACS) as expected (Fig. 2e, Supplemen-

tary Fig. 6 and Supplementary Table 5). For glucose

metabolism, glucose uptake, and hypoxia stress, we found

decreased expression of GLUT1, LDHA, HIF-1α, and

EPAS-1 genes, which is in line with our discovery in the

present work. Moreover, given that an abnormal Warburg

effect in malignant cells may alter the EMT, which

induces the resistance of HCC cells to antitumor

chemotherapies, we tested EMT marker genes Twist,

Snail, N-cadherin, and Vimentin, and found that they

were downregulated after Betulin treatment, indicating a

correlation between SREBP-1 and chemoresistance.

SREBP-1 enhances the sensitivity of HCC cells to Sorafenib

To study the role of SREBP-1 in chemoresistance, we

performed SREBP-1 overexpression, knockdown, or

inhibition in HCC cells in the presence of Sorafenib

treatment. Silence of SREBP-1 in MHCC97-H cells

enhanced the cytotoxic effect of Sorafenib; the IC50 value

decreased from 0.57 ± 0.07 to 0.12 ± 0.01 μmol/L (Fig. 3a).

The resistance index (RI) was 4.97. On the other hand,

overexpression of SREBP-1 in MHCC97-L cells resisted

better to Sorafenib; the IC50 values increased from 0.78 ±

0.04 to 3.33 ± 0.23 μmol/L (Fig. 3b). Similarly, SREBP-1

knockdown synergized the effect of Sorafenib on cell

metastasis (Supplementary Fig. 7). Moreover, Betulin

administration augmented the killing effect of Sorafenib

on MHCC97-H cells, with a decline of IC50 from 0.58 ±

0.06 to 0.15 ± 0.02 μmol/L (Fig. 3c), and facilitated

Sorafenib-mediated suppression on metastasis (Fig. 3d).

These in vitro data indicate that SREBP-1 induces

Table 1 SREBP-1 expression and outcome of sorafenib

treatment

SREBP-1 mRNA expression P

High (n= 27) Low (n= 25)

TTP 9.1 11.8 0.012

7.7–10.4 (M) 10.1–13.5 (M)

OS 11.3 13.7 0.024

9.4–13.1 (M) 11.6–15.8 (M)

Overall response rate (CR+ PR) 1 (3.7%) 3 (12%)

Disease control rate (CR+ PR+

SD)

5 (18.5%) 8 (32%)

TTP time to progress, OS overall survival, PR partial remission, CR complete
remission, SD stable disease, M months
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Sorafenib resistance in HCC cells, suggesting the inhibi-

tion of SREBP-1 as a strategy to overcome

chemoresistance.

Betulin facilitates Sorafenib’s antitumor effect on s.c. HCC

tumors

We next examined the effect of SREBP-1 inhibition on

Sorafenib’s effects in vivo. We first found that Betulin oral

gavage administration significantly suppressed s.c.

MHCC97-H tumor growth (Supplementary Fig. 8). Gene

expression analysis showed that Betulin treatment decreased

glucose uptake, LDH activity, and lactate and ATP pro-

duction in tumor cells in a dose-dependent manner (Sup-

plementary Fig. 9A, B). Furthermore, gene expression

analysis of isolated tumor cells showed that Betulin treat-

ment reduced fatty acid and glucose metabolisms and EMT

in tumors (Supplementary Fig. 9C and Supplementary Table

6). In order to test whether Betulin works synergistically

with Sorafenib on HCC tumors, we administered Betulin at

2mg/kg, the mild concentration which did not have an

obvious tumor rejection effect but had SREBP-1 inhibition

activity, in the following experiments.

Fig. 2 SREBP-1 regulates the glycolytic activity of HCC cells. a Extracellular acidification rate (ECAR) measurement in high metastatic MHCC97-H

cells transfected with control or SREBP-1 siRNAs. b ECAR measurement in low metastatic MHCC97-L cells transfected with empty or SREBP-1-

expressing vectors. c Oxygen-consumption rate (OCR) measurement in MHCC97-H cells from a. d OCR measurement in MHCC97-L cells from c. e

MHCC97-H cells were treated with the indicated concentrations of Betulin (100, 30, 10, 3, 1, 0.3, or 0.1 μmol/L). Next, the cells were harvested for

quantitative RT-PCR. The inhibition rates of Betulin on gene expression were calculated and shown by a heatmap
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When combined with Sorafenib, Betulin significantly

enhanced the growth of MHCC97-H cells in s.c. tumors,

compared with Sorafenib treatment (Fig. 4). This result

suggests that Betulin and Sorafenib synergistically reject

HCC tumors. We next examined the specificity of Betulin

on promoting Sorafenib’s antitumor effect in vivo. We

administered HCC s.c. tumors with SREBP-1 siRNA

during Sorafenib or Sorafenib and Betulin combination

treatments, and found that Betulin could not further

control the growth of SREBP-1 knockdown tumors (Fig.

5a, b). However, the effect induced by SREBP-1 knock-

down was rescued by ectopic expression of a mutated

form of SREBP-1 (SREBP-1mut), which cannot be targeted

by the siRNA (Fig. 5a, b). On the other hand, SREBP-1-

overexpressed HCC tumors resisted to Sorafenib treat-

ment, but were susceptible to Sorafenib and Betulin

combinations (Supplementary Fig. 10A, B). These obser-

vations suggest that Betulin facilitates Sorafenib’s effect

through SREBP-1 inhibition specifically. Sorafenib indu-

ces tumor regression through tumor cell apoptosis. Thus,

we tested the level of pro-PARP, cleaved-PARP, and Ki67

in s.c. tumors treated as described above. We found that

the knockdown of SREBP-1 promoted apoptosis and

restricted cell proliferation, whereas SREBP-1 over-

expression reduced cell apoptosis (Fig. 5c and Supple-

mentary Fig. 10C).

Betulin improves Sorafenib-mediated blockade of HCC

tumor in situ growth

To study the effect of Betulin on in situ HCC tumor

growth during Sorafenib treatment, we established in situ

HCC tumors in nude mice livers by using MHCC97-H

cell implantation. We then performed Sorafenib or Sor-

afenib plus Betulin treatment every other day 10 times in

total and in the endpoint (day 21 post injection) examined

tumor burden by PET/CT scanning. The analysis of the

imaging results indicated that Betulin enhanced the effect

of Sorafenib upon blocking HCC in situ growth (Fig.

6a–c). Meanwhile, we collected liver tissues and measured

tumor lesions (Fig. 6d). Our data showed that the tumor

nodule areas of Betulin- and Sorafenib-treated mice were

smaller than those of Sorafenib-treated or control mice

Fig. 3 SREBP-1 regulates the sensitivity of HCC cells to Sorafenib. a MHCC97-H cells transfected with control or SREBP-1 siRNAs were treated

with the indicated concentrations of Sorafenib for 48 h and then harvested for MTT experiments. All the results were shown as mean ± SD. b

MHCC97-L cells transfected with empty or SREBP-1-expressing vectors were treated with the indicated concentrations of Sorafenib for 48 h and then

harvested for MTT experiments. c MHCC97-H cells pretreated with 3 μM Betulin or vehicle control were treated with the indicated concentrations of

Sorafenib for 48 h and then harvested for MTT experiments. d MHCC97-H cells pretreated with 3 μmol/L Betulin or vehicle control were treated with

Sorafenib at the IC50 concentration for 48 h. Then, cells were harvested for transwell experiments
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(Fig. 6e, f). These results indicate that Betulin synergizes

Sorafenib in blocking HCC in situ growth, which supports

our findings in HCC s.c. tumor treatments. To further

study the specificity of Betulin, we performed Sorafenib or

Sorafenib plus Betulin treatment upon SREBP-1 knock-

down or SREBP-1 overexpressing HCC in situ tumor-

bearing mice. We found that SREBP-1 knockdown

diminished the effect of Betulin upon synergizing Sor-

afenib (Supplementary Fig. 11), whereas Betulin exerted a

considerable synergistic effect upon treating SREBP-1-

overexpressing tumors (Supplementary Fig. 12). These

results suggested that Betulin synergizes Sorafenib’s

effect upon controlling in situ HCC tumors by targeting

SREBP-1.

Discussion
Tumors are characterized by intensive anaerobic gly-

colysis, which benefits tumor cells via providing quick

energy for cell proliferation, altering the hostile tumor

microenvironment for immune cell infiltration, and

inducing drug resistance11,53,54. Therefore, targeting glu-

cose metabolism-related pathways is considered as an

effective approach to control tumor growth and enhance

the efficacy of antitumor chemotherapy. SREBP-1 is one

of the major regulators of cellular lipid metabolism25–27; it

controls lipid synthesis via transcriptional regulation of its

downstream genes: FASN, ACC, ACLY, SCD, and so

on25–27. Due to the close correlation of glucose and lipid

metabolisms, SREBP-1 is also known to regulate glucose

Fig. 4 Betulin synergizes Sorafenib’s effect on HCC s.c. tumor growth. a MHCC97-H cells were injected into nude mice subcutaneously. At day 6,

mice started receiving vehicle control, or the indicated concentrations of Sorafenib, or 2 mg/kg Betulin or the indicated concentration of Sorafenib+

2mg/kg Betulin orally every other day 10 times. At day 21 post treatment, mice were killed and tumors were obtained (N= 10). b Quantitative results

of tumor volume and tumor weight from a
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and glutamine metabolic pathways25–27,54. Betulin can

inhibit SREBP family protein activation by directly bind-

ing to the SCAP region of this molecule which further

blocks the cleavage of SREBP. Li et al. have reported that

inhibiting SREBPs by Betulin can suppress HCC tumor-

associated inflammation55. Inflammation in tumors, spe-

cifically induced by chronic viral infection, is critical for

tumor-associated immune suppression and drug resis-

tance56–59. Thus, we hypothesized that Betulin treatment

on HCC tumor models can induce tumor regression and

reduce drug resistance against chemotherapy. In the

present study, we showed that a high level of SREBP-1

correlates with poor prognosis of HCC patients treated

with the chemotherapy agent Sorafenib. Our study pro-

vides evidence that SREBP-1 protects the tumor cell via

enhancing glycolytic activities and SREBP-1 inhibition

induces cell death and promotes the antitumor effect of

Sorafenib. These results indicated that SREBP-1 is critical

for HCC tumor development and targeting to SREBP-1 is

therapeutically effective for HCC treatment.

The Warburg effect is characterized by the transfor-

mation of the energy acquisition from oxidative phos-

phorylation to anaerobic glycolysis, which is regarded as a

hallmark of tumor cells. Intracellular glucose can be

hydrolyzed into pyruvate during glycolysis; then pyruvate

goes into the tricarboxylic acid cycle when the oxygen

supply is sufficient and energy demand is low11,60. How-

ever, in the hypoxic tumor microenvironment, where

energy demand is very high, pyruvate is metabolized into

lactate acid via anaerobic glycolysis, and glucose uptake is

enhanced to increase the ATP production in tumor

cells61–63. To block glycolytic activity during HCC treat-

ment, there are three strategies: (1) using inhibitors of

glucose transporters63,64, (2) using inhibitors targeting

hypoxia-associated pathways11,65–67, and (3) inhibitors of

LDHA68 to ameliorate the accumulation of lactic acid.

Hypersynthesis of fatty acid in HCC cells is driving glu-

cose uptake61–65. Inhibition of SREBP-1 represses lipid

metabolism in tumor cells, and in turn inhibits glucose

uptake and glycolysis69–71. In this study, we showed that

knockdown or inhibition of SREBP-1 in HCC cells

impaired glucose uptake, LDH activity, and reduced ATP

and lactate production, which provide mechanistic

insights into the SREBP-1 function.

As a primary therapeutic choice of HCC treatment,

Sorafenib does not deliver a robust effect due to the

subsequent resistance that occurs soon after the initial

treatment9. It has been reported that inhibition of lipid

metabolism effectively represses the growth and metas-

tasis of tumor cells and reduces Sorafenib resistance72–74.

Thus, the inhibition of cellular metabolisms which facil-

itate tumor cell survival may enhance the efficacy of

therapeutic chemodrugs. Our results indicated that

Betulin as the SREBP-1 inhibitor overcomes the resistance

of HCC cells to Sorafenib. Further studies will attempt to

address two aspects: first, study the mechanism by which

Betulin-treated cells or SREBP-1 knockdown cells become

less resistant to Sorafenib; second, prove the accessibility

that SREBP-1 becomes a prognosis marker of HCC

patients.

Fig. 5 SREBP-1 knockdown synergizes Sorafenib’s effect on HCC s.c. tumor growth. a MHCC97-H s.c. tumors were established by using

MHCC97-H cells transfected with control or SREBP-1 siRNAs, or SREBP-1 siRNAs plus SREBP-1mut expressing vector. MHCC97-H s.c. tumor-bearing mice

received vehicle control, or Sorafenib at the IC50 concentration, or 2 mg/kg Betulin or Sorafenib+ Betulin orally every other day 10 times. At day 21

post treatment, mice were killed and tumors were obtained (N= 10). b Quantitative results of tumor volume and tumor weight from a. c Western

blotting of SREBP-1 and apoptosis and proliferation-associated proteins in tumors from a. β-actin was used as internal control
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Fig. 6 (See legend on next page.)
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