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Abstract 

In this paper, we describe the evaluation results for TRECVID 2012 Multimedia Event Detection (MED) 

and Multimedia Event Recounting (MER) tasks as a part of SRI-Sarnoff AURORA system that is devel-

oped under the IARPA ALDDIN program. In AURORA system, we incorporated various low-level fea-

tures that capture color, appearance, motion, and audio information in videos. Based on these low-level 

features, we developed Fixed-Pattern and Object-Orientated spatial feature pooling, which result in signif-

icant performance improvement to our system. In addition, we collected more than 1800 concepts and 

designed a set of concept pooling approaches to build the Concept Based Event Representation (CBER, 

i.e., high-level features). We submitted six runs exploring various fusions of low-level features, high-level 

features, and ASR/OCR features for MED task. All runs achieve satisfactory results. In particular, two 

EK10Ex runs for both pre-specified events (PS-Events) and ad-hoc events (AH-Events) obtain relatively 

better results. In MER task, we developed an approach to provide a breakdown of the evidences of why 

the MED decision has been made by exploring the SVM-based event detector. Furthermore, we designed 

evidence specific verification and detection to reduce uncertainty and improve key evidence discovery. 

Our MER evaluation results for MER-to-Event are very good.          

1 Introduction 

Retrieving complex events from a huge number of open source videos is very challenging due to the 

characteristics of events and videos “in the wild”. For example, even a very specific event usually covers 

a great diversity of contents involving various objects, atomic human actions, scenes, and audio infor-

mation. On the other hand, open source videos are unconstrained which are typically recorded under un-

controlled conditions with large variations in camera motion, illumination, object appearance and scale, as 

well as viewpoint. Therefore, to capture different aspects of an event, we developed various low-level 

features and concept features (high-level features) in the AURORA system, and explored different fusion 

strategies to inquire discriminative information from all aspects of an event. Moreover, the MER compo-

nent enables the AURORA system to disclose the evidences of MED decision made by the system.  



2 Multimedia Event Detection 

The AURORA system incorporates two types of features: low-level features and high-level features. 

Low-level features are designed to acquire the first-hand characteristics of an event, such as the involved 

object appearance, color and motion information, and scene structure. These low-level features are quan-

tized into visual-words, which is used to model an event as a Bag of Visual Words (BOW). We treat this 

BOW as an average feature pooling over the whole frame. However, a specific event typically has its own 

Region of Interests that produce most informative evidence of this event. Hence, we propose a new strat-

egy for spatial pooling of the low-level features, which result in an event model capturing spatial infor-

mation. However, the low-level feature based event model training usually needs a large number of train-

ing examples for better model generalization. This is because of the diversity of visual/audio contents.  To 

achieve better model generalization with less training examples, we developed over 1,800 visual concepts, 

from which we derived various concept features. The concept features also enable us to do better MER. 

We describe all the details in the following sections.  

2.1 Low-Level Visual Features 

We developed a variety of low-level features to capture various aspects of an event, such as scene, object, 

action, and so on. There features are extracted either from sample frames (static features), or spatio-

temporal windows of frames (i.e., XYT-volumes, dynamic features) of a video.  

2.1.1 Static Features 

Static features are computed from sampled frames (i.e., one sample every second). They are assumed to 

provide object or scene appearance information of an event. Following static features are extracted: 

A. GIST [1]: This feature was proposed to capture the structure/shape of real world scenes. Basically it is 

a holistic statistical signature of an image, representing the scene with Spatial Envelope consisting of a set 

of perceptual dimensions (e.g., naturalness, openness, roughness, expansion, and ruggedness).  It is a fast 

approach to coarsely capture the event scene structure. We quantize the GIST feature of each frame, and 

represent the video as a bag of quantized gist features.  

B. SIFT [2]: SIFT feature is a widely used feature descriptor for image matching and classification. The 

128 dimensional SIFT descriptor is rotation invariant, which captures the local texture structure of an im-

age. We extracted two types of SIFT features: sparse SIFT (S-SIFT) and dense SIFT (D-SIFT). S-SIFT is 

computed around an interest point detected by corner detector, and D-SIFT is computed for dense sam-

pled image patches. The former one is used to describe informative patches of an object, while the latter is 

good to capture local patch distribution over a scene.    

C. colorSIFT [3] : This feature is an extension of SIFT. Instead of computing SIFT based on intensity 

gradient, colorSIFT detects interest points and create descriptors on color gradients. It actually contains 3 

128 dimensional vector with first one from intensity gradient and the other two from color gradient. As a 

result, it is able to capture both intensity and color information. 

D. Transformed Color Histogram [4]: It is a normalized color histogram as describe in [4]. 

2.1.2 Dynamic Motion Features 

Dynamic features are computed from detected XYT-volumes of a video. These XYT-volumes are sam-

pled by detecting spatio-temporal interesting points or 2D corner point trajectories. They are supposed to 



Figure 1. Fixed-Pattern based spatial feature pooling.   

capture the motion information of a video. But with the design of various descriptors, they are able to cap-

ture the appearance information too. The following dynamic features have been extracted. 

A. STIP [5]: The Space-Time Interest Points (STIP) detects 3D interest points in the spatio-temporal do-

main, which is the extension of 2D Harris corner detector. It assumes the detected points have the most 

intensive motions in a video. STIP generate a descriptor on the intensity gradient of frames (HOG) and on 

the optical flow space (HOF). The final descriptor encodes both HOG and HOF feature description.  

B. Dense Trajectory Feature (DTF) [6]:   Rather than detecting interest point in XYT space, DTF de-

tects 2D corner points and tracks them in a short time period. The 2D corners are usually associated with 

objects in a video. By analyzing the velocity or shape of trajectories, we are able to select trajectories with 

strong enough motions to represent the characteristics of a video.  The corners are tracked by KLT track-

ing. From these trajectories, various features/descriptors can be extracted, such as shape, velocity. The 

AURORA adopts two types of descriptors:  HOG (histogram of orientated gradient) and MBH (Motion 

Boundary Histogram). HOG captures the static appearance information along the trajectory, while MBH 

captures the motion information along the trajectory.   

C. MoSIFT [11]: Motion SIFT (MoSIFT) extends the 2D SIFT descriptor to the temporal dimension. 

Unlike SIFT, it combines both local appearance and motion information to detect interest points. The mo-

tion information is obtained by computing optical flow.   

2.1.3 Low-Level Feature Based Event Representation 

The above set of features is computed either on single frames or on spatio-temporal windows of frames 

(XYT-cubes) throughout a given video clip. The event represented by a video clip is represented as an 

aggregate feature as the histogram of “words” corresponding to each feature type computed over the en-

tire video clip. This is popularly known as a “Bag-of-Words” (BoW) representation. In order to compute 

BoW descriptors for each feature type, feature specific vocabularies are first learned using k-means clus-

tering of raw features. Other than GIST feature having 1000 words, the other features such as SIFT, DTF, 

STIP have a vocabulary of of 10000 words. Once the features in a video are quantized using the respec-

tive vocabularies, a BoW is computed per feature. Event models are trained using SVM [10] with inter-

section kernel.  

2.1.4 Spatial Feature Pooling 

Bag of Features (BoF) based visual representation has been successfully applied to our AURORA system 

and produced good results for MED 11. This success is due to the fact that the statistics information of the 

bag of local features in terms of histogram of visual-words captures the major cues of events to some ex-

tent. However, one obvious disadvantage of BoF is that it ignores the spatial or temporal distribution of 



the features, which might be discriminative for some events. For example, the motion features usually 

concentrate on the central regions of a video for “sewing project”, while “flash a mop” produces motion 
from the entire frame.   

Fixed-Pattern Based Feature Pooling: The basic idea is similar to Spatial Pyramid Match, which con-

structs a pyramid structure for two images, and the matches happening to the fine level will contribute 

more to the final match score. Instead of having a strict pyramid structure, we pre-define 12 Region of 

Interests (ROI) including the full frame to pool features as shown in Fig. 1. Since we adopt the average 

pooling, each ROI is represented by an m-dimensional vector where m is the vocabulary size (e.g., 10,000 

in our system for most features). We can concatenate the m-dimensional vectors of all ROIs to build an 

event model. However, this results in a high dimensional vector with N*m bins (where N is the number of 

ROIs, e.g., 12), which makes the training infeasible. Instead, we treat each ROI individually as an infor-

mation provider, and train a detector for each of them. The video level decision is made by aggregating 

the evidence provided by the detectors of all ROIs.  

2.2 High-Level Visual Features 

One of the challenges for event recognition is to bridge the semantic gap between low-level features and 

high-level events. There are a variety of reasons to represent events in terms of semantic concept features. 

Concepts are directly connected to the Event Kit Descriptions. Thanks to the semantic meaning of con-

cepts, the concept-based event representation (CBER) [7] potentially has better generalization capability, 

which is significantly important for event recognition, especially when only a few training examples are 

available. In addition, CBER enables the system to integrate multi-modality information such as human 

knowledge and Internet resources for event detection. What is more, it offers a natural schema for multi-

media event recounting. 

2.2.1 Concept Detectors 

In MED12, we collected two types of concepts: data-relevant concepts and data-irrelevant concepts. Data-

relevant concepts, which are annotated from the event kit, are directly related to the pre-specified events. 

To contrast, the data-irrelevant concepts are provided by a third party, such as ImageNet scenes and ob-

jects, and TRECVID SIN concepts. They may contain both event related and unrelated concepts. Table 1 

lists the number of concepts in each of our concept set.  

Action Concepts: Actions are typically atomic and localized motion and appearance patterns, which are 

strongly associated with some specific event. Our action concepts cover general actions such as “person 
walking”, “person running”, “person climbing”, as well as event specific actions such as “standing on top 

of bike”, and “running next to a dog”. We employ well-established techniques to build our concept detec-

tors. In particular dynamic features (i.e., STIP [5] and Dense Trajectory Based features [6]), and the bag-

of-word representations [12] defined over codebooks of these features are used to represent action con-

cepts. Binary SVM classifiers with Histogram Intersection kernel are used for concept classification.  

TRECVID SIN concept detectors are provided by CMU, which are trained on images. Pseudo Annotation 

is detailed in subsection 2.2.3. 

Table 1: Concept Sets Used in MED12 



2.2.2 Concept Based Event Modeling  

Given a video x, a concept detector    can return a confidence value   . In practice, however, it is not 

wise to feed a long length video into a detector and get a single detection confidence for the entire video, 

because concept detectors are trained on single frames or short video segments. In this section, we discuss 

how to derive various semantic features from videos over the semantic space.  

Our method uses the atomic concept detectors as filters that are applied to a given XYT segment of a vid-

eo clip to capture the similarity of content to the given concept. So as a first step towards representing a 

video clip with concepts, each concept detector is applied to each XYT window in a video to obtain an 

K*W matrix C of scores, where      (  |  )  Each     is the detection confidence of concept   applied 

to window  . 
Given the raw detection scores of concepts over the full video, the event depicted in the clip can be repre-

sented using a number of features derived from    . One option is to select the maximum detection score       over all sliding windows as the detection confidence of concept detector   . As a result, we are able 

to obtain a K-dimensional vector      to represent a video. Meanwhile, we have embedded a video into 

the concept space defined above. What is more, based on the K-dimensional semantic space, we also ex-

plore the following four representations: 

MAX pooling: for each concept detector, only the maximum detecting score over all sliding windows is 

pooled to show the probability of concept given a video. 

Max-Avg-Std (MAS): Other than the maximum detecting score, we believe other information of the con-

cept distribution over a video, such as average and standard deviation, is also discriminative for an event. 

Hence, for each concept detector, the maximum, average, and standard deviation values over all sliding 

windows are selected to form MAS feature.  

Bag of Concepts (BOC): Akin to the bag of words descriptors used for visual word like features, a bag of 

concepts features measures the frequency of occurrence of each concept over the whole video clip. To 

compute this histogram feature, the SVM output is binarized to represent the presence or absence of each 

concept in each window. 

Co-occurrence Matrix (CoMat): A histogram of pairwise co-occurrences can be used to represent the 

pairwise presence of concepts.  

Max Outer Product (MaxCoMat): Since concepts represent semantic content in a video, the max value 

of each concept across the whole video represents the confidence in the presence of a concept in a video. 

The outer product of the vector of max values of each of the concepts represents both the strength of the 

presence of each concept (diagonal values) as well as the strength of co-occurrence of pairwise concepts 

(off-diagonal values): 

Short of capturing the temporal structure of an event, the above event representations derived from con-

cept detectors capture the first and second order distributional content in a video. In the event recognition 

phase, a classifier (e.g., SVM classifier) can be trained on each type of event representation, the recogni-

tion scores are fused to make the final decision.     

2.2.3 Pseudo Annotation Concept for Event Modeling 

Concept detectors are classifiers and often fire on multiple concepts or objects in the image. For example, 

a dog detector may respond to many other things besides dogs. Instead of finding concepts one may want 



to look at the distribution of concepts in an image or video. This distribution may be a better description 

of an image or video since the distribution may be consistent for videos of the same event while the indi-

vidual concepts may be poorly detected. We propose a technique called pseudo-annotations for event de-

tection. Pseudo-annotations are detected as follow. First, a multi-class SVM detector is trained for a 1000 

arbitrary concepts using concepts and their images from ImageNet. The concepts are then detected in a set 

of subsampled frames in each video. Instead of detecting all 1000 concepts in a frame we only detect the 

top k (k is usually 10 or 20 and is estimated using training). These top k binary concepts are called pseu-

do-annotations.  Each video is described by a histogram of pseudo-annotations by pooling the pseudo-

annotation histograms for the frames in a video. For each event a set of training videos is used to train a 

SVM model using the pseudo-annotation histograms. Test videos are classified as belonging to an event 

by running a SVM classifier using the corresponding model. 

2.2.4 ASR/OCR Information 

An information retrieval based approach is adopted to retrieve the videos based on OCR/ASR. The event 

kit is used to automatically construct the query. All fields in the event kit are used for ASR query while 

the audio field is dropped in the OCR query. A sequential dependence model is used for retrieval both 

OCR and ASR.  The model takes both ordered and unordered phrases into account. Terms are weighted 

based on event kit fields. The weighting is set manually. In order to fuse OCR/ASR results with low-level 

and high level features, an expected-precision is computed. Since many videos do not have OCR/ASR 

data, a video-level fusion is carried out; where a low OCR/ASR retrieval score does not affect the feature 

based retrieval score, while a very high OCR/ASR retrieval score significantly increases the final score. 

3 Multimedia Event Recounting 

An event is typically a complex activity occurring at a specific place and time. On the other hand, a video 

may contain a lot of other irrelevant information as well.  Thus, for  each  recognized  event  occurrence  

in  a  video  clip, the goal of recounting is to describes  the  spatial  and  temporal  details  of  the occur-

rence. The recounting includes key observations regarding the scene, people, objects, and activities per-

taining to the event occurrence. Such recounting provides user a semantic description that is useful to per-

form further analyses. As the concept features that we are using by definition contain semantic infor-

mation, it has the advantages for recounting purpose compared with low-level features. 

As our event classification is based on Support Vector Machines (SVMs), we present an approach to per-

form the recounting in the context of SVMs. Given the feature vector x      where n is the feature di-

mension, the SVM decision function   x  can be represented as follows,   x  ∑     x  x            , 
where x  is one of m support vectors, ie.        .   x x   is the kernel value between x and  x .     is 

the signed weight of x  and b is the bias. If the kernel functions have the following form,   x     ∑             , where f is the function and    and    are the ith feature value of x and z. For example, inter-

section kernel satisfies such a form where               . Linear kernel also follows this form. Now the 

decision function can be rewritten as follows,      ∑ ∑                      , 

where    is the ith feature value of lth support vector. Supporse    x  ∑                , we can decom-

pose the decision value of   x  as   x  ∑    x       , 



Figure 2. Miss Detection of different ROI based event detectors at 6% False Alarm. This evaluation use EC+DEVT for 

training, and test on dEVO data. 

where    x  encodes how encodes how much ith feature contributes towards the final decision value. For 

our event recounting application, as each feature has semantic information, we are able to retrieve the im-

portant evidences by sorting    x . We have shown our recounting approach in the context of SVMs. In 

fact, the approach can be applied to any additive classifiers as in Eq 1, which cover a wide spectrum of 

classification approaches. 

4 Experiments 

4.1 Training/Testing Methodology 

We adopt the Support Vector Machine (SVM) as our basic classifiers and use intersection kernel for all 

histogram-based features and RBF (Radial Basis Function) kernel for concept-based features. Other SVM 

parameters are default values. We apply L1 normalization to histogram-based features. Event videos are 

used as positive samples and all non-event videos are used as negative samples to train a binary classifier 

for each event independently. Each classifier outputs a probability of detection as a score. LibSVM [10] is 

used as the SVM solver.  

Standard Training/Testing Evaluation Folds: For MED11 PS-Events, we use EC+DEVT as training 

data, and test on DEVO dataset. As for the MED PS-Events and AH-Events, we separate the Event Col-

lection (EC) and DEVT data into a set of standard evaluation folds (e.g., three folds) to avoid the differ-

ence caused by dataset. All of our experiments, from exploring good features to fusing features from dif-

ferent modalities, are based on the standard evaluation folds. 

4.2 Feature-Based Experiments  

Experiments were performed to explore the advantages of fixed-pattern feature pooling over various static 

and dynamic features. We exactly follow the MED11 evaluation process using EC and DEVT for training 

and testing on DEVO.  Figure 2 shows the performance (Miss Detection at 6% False Alarm) of each ROI 

based event detectors over 10 MED PS-Events. Only DTF-HOG low-level features are used in this evalu-

ation. As we can see, although “Full” region is generally perform better, other regions may achieve better 

MD for some event, e.g., the “Ctr” performs better than “Full” for event “Parade”, and “Md” better than 
“Full” for event “Parkour”. This observation demonstrates the complementarity of the ROIs. What is 
more, the fusion of R01-11 consistently works better than “Full” ROI (e.g., vary from 2% to 11% ). We 
repeat this evaluation for all other features, and obtain similar conclusion. However, when we fuse all 



Figure 3. MED 12 evaluation results for PS-Events. Pfa is false alarm rate, and Pmiss is the miss detection rate. The 

last two columns list the number of events make the year goal of ALADDIN. Run-1 to Run-3 are EKFull runs, while 

Run-4 is an EK10Ex run, which uses 10 positive training examples. This year goal for PS-Events is 50%MD@4%FA. 

Act. Decision TER

Run-1 p-LLFeatHLFeatAsrOcrLFGM 0.6419 0.0305 0.2612 15 18

Run-2 c-LLFeatureLFGM 0.6395 0.0297 0.2682 19 19

Run-3 c-HLFeatAsrOcrLFGM 0.7447 0.0338 0.3228 19 19

Run-4 c-EK10xLLFeatHLFeatAsrLFGM 0.8913 0.0397 0.3952 12 14

# Events Meeting Goals
Run Name NDC Pfa Pmiss

low-level feature together, the pooling only improves 1.1% to 6.2% (average about 2%). We conjecture 

the fusion of low-level features leave a very small space for pooling to improve the overall performance.  

4.3 MED12 Results and Discussion 

All the computations reported in this notebook were performed on the SRI-Sarnoff AURORA system. 

This system comprises of a number of servers with web interfaces for managing experiments run over a 

distributed computational pipeline, annotating training data and just browsing the datasets. The computa-

tional pipeline currently consists of about 350 AMD Opteron nodes with 5GB RAM per node as well as a 

number of nVidia Tesla M2050 GPUs and is based on the Apache UIMA (Unstructured Information 

Management Architecture) which is essentially a highly configurable filter graph like architecture that 

allows for process distribution across multiple nodes.  

In MED12, we have two training modes: EKFull mode trained with all available positive examples and 

EK10Ex mode trained with 10 positive examples. Both training modes do not have constraint on the neg-

ative training examples. There are 25 events to evaluate including 20 pre-specified events (PS-Events) 

and 5 ad-hoc events (AH-Events).  

For PS-Events, we submitted one primary run and three contrastive runs as follows: 

 Run-1 p-LLFeatHLFeatAsr OcrLFGM (EKFull mode): this is the primary run which combines all 

low-level features, high-level features, and ASR/OCR features with Geometric Mean (GM) fusion.  

 Run-2 c-LLFeatureLFGM (EKFull mode): it is a pure low-level features based run with GM fusion. 

 Run-3 c-HLFeatAsrOcrLFGM (EKFull mode): it is a pure semantic features based run with GM 

fusion. 

 Run-4 c-EK10xLLFeatHLFeatAsrLFGM (EK10Ex mode): this run is similar to the primary run but 

under different training modes.  

For AH-Events, we have two runs: one primary run trained with EKFull mode and one EK10Ex run:  

 Run-5 p-LLFeatHL FeatAsrOcrLFGM ( EKFull mode): it is the correspondence run of Run-1 for 

AH-Events.  

 Run-6 c-EK10xLLFeatHLFeatOcrAsrLFGM (EK10Ex mode): this is the corresponding run of 

Run-4 for AH-Events.  



Figure 4. Multimedia Event Recouting (MER 12) evaluation results.  

Figure 3. MED 12 evaluation results for PS-Events. Pfa is false alarm rate, and Pmiss is the miss detection rate. The 

last two columns list the number of events make the year goal of ALADDIN. Run-5 is an EKFull run, while Run-6 is an 

EK10Ex run, which only uses 10 positive training examples. This year goal for AH-Events is 75%MD@%6FA.  

Act. Decision TER

Run-5 p-LLFeatHLFeatAsrOcrLFGM_1 0.6411 0.0274 0.2992 5 5

Run-6 c-EK10xLLFeatHLFeatOcrAsrLFGM 1.0097 0.0432 0.4704 5 5

Run Name NDC Pfa Pmiss
# Events Meeting Goals

According to the evaluation, all runs achieve satisfactory results. In particular, both EK10Ex runs (i.e., 

Run-4 and Run-5) obtain very good results. We conjecture that this is due to a large number of concepts 

used in our system making our learned event model having better generalization capability when less 

training examples are used.    

4.4 MER12 Results 

In MER12, we submitted results for MER-to-Event and MER-to-clip on both Evaluation Set and Progress 

Set. Our MER system obtains 98.52% accuracy for MER-to-Event task. More details for MER shown in 

Figure 4. We did very well at “MER-to-Event” task. This is due to our MER system is built on the Con-

cept Based Event Representation [7]. Since we do not have specific concepts for “MER-to-Clip” task, it 

did not perform very well. Please note that our approach works almost equally well on both Eval_data 

(evaluation dataset) and Prog_Test (progress test data). Therefore, our MER system can be generalized to 

various data sets. 
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