
 Open access Proceedings Article DOI:10.1109/ICDCS.2017.180

SRLB: The Power of Choices in Load Balancing with Segment Routing
— Source link

Yoann Desmouceaux, Pierre Pfister, Jerome Tollet, Mark Townsley ...+1 more authors

Institutions: École Polytechnique, Cisco Systems, Inc.

Published on: 05 Jun 2017 - International Conference on Distributed Computing Systems

Topics: IP forwarding, Virtual routing and forwarding, Routing table, Load balancing (computing) and Static routing

Related papers:

 6LB: Scalable and Application-Aware Load Balancing with Segment Routing

 Scalable request routing with next-neighbor load sharing in multi-server environments

 The Research of Load Balancing Technology in Server Colony

 Analysis of Load Balancing Algorithm in Software Defined Networking

 Effective management for aggregated flows in server-based QoS routing

Share this paper:

View more about this paper here: https://typeset.io/papers/srlb-the-power-of-choices-in-load-balancing-with-segment-
url8vo2tmh

https://typeset.io/
https://www.doi.org/10.1109/ICDCS.2017.180
https://typeset.io/papers/srlb-the-power-of-choices-in-load-balancing-with-segment-url8vo2tmh
https://typeset.io/authors/yoann-desmouceaux-3oyqxeyisr
https://typeset.io/authors/pierre-pfister-3t7257l2eo
https://typeset.io/authors/jerome-tollet-4pjqpebjjm
https://typeset.io/authors/mark-townsley-3ji7bpkd19
https://typeset.io/institutions/ecole-polytechnique-29q4ufob
https://typeset.io/institutions/cisco-systems-inc-2w5ez2jb
https://typeset.io/conferences/international-conference-on-distributed-computing-systems-14z9qzt1
https://typeset.io/topics/ip-forwarding-1iucsbsn
https://typeset.io/topics/virtual-routing-and-forwarding-1npipvx6
https://typeset.io/topics/routing-table-2fdg2440
https://typeset.io/topics/load-balancing-computing-36l2q21o
https://typeset.io/topics/static-routing-3qv8ns43
https://typeset.io/papers/6lb-scalable-and-application-aware-load-balancing-with-yptbidjpu8
https://typeset.io/papers/scalable-request-routing-with-next-neighbor-load-sharing-in-52hd659un0
https://typeset.io/papers/the-research-of-load-balancing-technology-in-server-colony-qklv8eyjci
https://typeset.io/papers/analysis-of-load-balancing-algorithm-in-software-defined-4qevymlbkk
https://typeset.io/papers/effective-management-for-aggregated-flows-in-server-based-3gh53o4ja6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/srlb-the-power-of-choices-in-load-balancing-with-segment-url8vo2tmh
https://twitter.com/intent/tweet?text=SRLB:%20The%20Power%20of%20Choices%20in%20Load%20Balancing%20with%20Segment%20Routing&url=https://typeset.io/papers/srlb-the-power-of-choices-in-load-balancing-with-segment-url8vo2tmh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/srlb-the-power-of-choices-in-load-balancing-with-segment-url8vo2tmh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/srlb-the-power-of-choices-in-load-balancing-with-segment-url8vo2tmh
https://typeset.io/papers/srlb-the-power-of-choices-in-load-balancing-with-segment-url8vo2tmh

SRLB: The Power of Choices in

Load Balancing with Segment Routing

Yoann Desmouceaux∗†, Pierre Pfister†, Jérôme Tollet†, Mark Townsley∗†, Thomas Clausen∗

∗Ecole Polytechnique, 91128 Palaiseau, France

{yoann.desmouceaux,mark.townsley,thomas.clausen}@polytechnique.edu
†Cisco Systems Paris Research and Innovation Laboratory (PIRL), 92782 Issy-les-Moulineaux, France

{ydesmouc,ppfister,jtollet,townsley}@cisco.com

Abstract—Network load-balancers generally either do not take
application state into account, or do so at the cost of a central-
ized monitoring system. This paper introduces a load-balancer
running exclusively within the IP forwarding plane, i.e. in an
application protocol agnostic fashion – yet which still provides
application-awareness and makes real-time, decentralized deci-
sions. To that end, IPv6 Segment Routing is used to direct data
packets from a new flow through a chain of candidate servers,
until one decides to accept the connection, based on its local
state. This way, applications themselves naturally decide on how
to share incoming connections, while incurring minimal network
overhead, and no out-of-band signaling.

Tests on different workloads – including realistic workloads
such as replaying actual Wikipedia access traffic towards a set
of replica Wikipedia instances – show significant performance
benefits, in terms of shorter response times, when compared to
a traditional random load-balancer.

I. INTRODUCTION

Virtualization and containerization has enabled scaling of

application performance by way of (i) running multiple in-

stances of the same application within a (distributed) data

center, and (ii) employing a load-balancer for dispatching

queries between these instances.

For the purpose of this paper, it is useful to distinguish

between two categories of such load-balancers:

1) Network-level load-balancers, which operate at Layer-4 –

a simple approach being to rely on Equal Cost Multi-

Path (ECMP) [1] to homogeneously distribute network

flows between the application instances. These approaches

generally do not take application state into account, which

can lead to suboptimal server utilization.

2) Application-aware load-balancers, which are bound to a

specific type of application or application-layer protocol,

and make informed decisions on how to assign servers to

incoming requests. These approaches generally incur a cost

from monitoring the state of each application instance, and

sometimes also terminate network connections (such as an

HTTP proxy).

A desirable load-balancer would combine the best of these

two categories: be application or application-layer protocol

agnostic (i.e. operate at Layer-4) and incur no monitoring

overhead – yet be able to make informed dispatching decisions

depending on the state of the applications.

A. Statement of Purpose

The purpose of this paper is to propose SRLB, a load-

balancing approach that provides application-state awareness,

yet is both application and application-layer protocol in-

dependent and does not rely on centralized monitoring or

transmission of application state.

A key philosophical argument behind this design goal is

that an application instance itself is best positioned to know

if it should be accepting an incoming query, or if doing so

would degrade performance – and, thus, SRLB discards the

traditional design by which queries are unconditionally as-

signed to an application instance by the load-balancer. Rather,

SRLB offers a received query to several application instance

candidates, only one of which accepts and processes the query.

What enables this is IPv6 Segment Routing (SR) [2] –

which allows specifying to the network that it should do more

than just forward a data packet towards its destination: SR

permits directing data packets through an (ordered) set of

intermediaries, and instructing these intermediaries what to do

with a received data packet. For example, one instruction could

be “process the contained query, if you can”. All this within

the IP forwarding plane, i.e. in an application-layer protocol

agnostic fashion.

The role of the load balancer, then, simply becomes to

monitor TCP flows, to ensure that data packets belonging to

the same flow are delivered to the same application instance

as the one which accepted the first packet of the flow.

In this way, SRLB enables that query acceptance decisions

are made strictly locally, based on real-time information on

the state of the application instance.

B. Related Work

Among existing Layer-4 load-balancing approaches, [3]

(Maglev) and [4] (Ananta) aim at being able to scale the

number of load-balancer instances at will, and make use of

ECMP to distribute flows between those instances. They also

make use of consistent hashing, for ensuring that data packets

within a given flow are directed to the same application

instance – regardless of the selected load-balancer instance

forwarding a data packet, and with minimal disruption when

the set of application servers changes. However, flows are

distributed to application instances regardless of their current

load.

Conversely, [5], [6] use Software Defined Networking

(SDN) on a controller, to monitor the application instance load

and network load – and then install network rules to direct

flows to these application instances.

[7] lists three standard load-balancing techniques used for

dispatching queries among Web servers: DNS round-robin,

dispatchers that perform NAT or destination IP rewrite, and

redirect-based approaches. Application-aware load-balancing

includes [8], [9], [10], which assign queries as a function of

their estimated size so that each application instance becomes

equally loaded. In [11], a feedback approach is used to

estimate the parameters of a queuing model representing the

system, before making a load-balancing decision.

Layer-7 (application-layer protocol aware) load-balancers,

e.g. [12] (HAProxy), also propose application-awareness by

estimating the load on each application instance and assigning

new queries accordingly. Load estimates are obtained by

tracking open connections through the load-balancer to the

backend servers, thus do not take other generated loads into

account – e.g. internal traffic or traffic coming from other load-

balancers.

C. Segment Routing

In IPv6 Segment Routing (SR) [2], each data packet in-

dicates not only the destination to which the network is

expected to carry the packet, but also an ordered sequence of

instructions or operations (called segments), that the network is

expected to execute on that packet. When a segment is “com-

pletely processed”, that segment is (conceptually) discarded

and the next segment (if any) is processed by the network,

before the data packet is delivered to the final destination.

As SR is a network layer service, segments are expressed

by way of IPv6 addresses, and the simplest possible sequence

of segments interprets into “forward the packet to A, then B,

then C” – i.e. source routing – but SR enables also traffic

engineering, service chaining, etc. The SR information is

expressed as an IPv6 Extension Header, comprising a list

of segments and a counter SegmentsLeft – indicating the

number of remaining segments to be processed.

D. Paper Outline

The remainder of this paper is organized as follows. Sec-

tion II describes how Segment Routing can be used to perform

Service Hunting, that is, in-network service selection. Sec-

tion III describes two simple example connection acceptance

policies. SRLB is then evaluated: section IV describes the ex-

perimental platform that has been used, section V provides an

evaluation with a synthetic workload, and a realistic workload

consisting of a Wikipedia replica is analyzed in section VI.

Finally, section VII concludes this paper.

II. SERVICE HUNTING

This section introduces a new general concept, Service

Hunting, which uses SR to direct network packets from a new

flow through a set of candidate servers until one accepts the

connection.

LB
client c

SYN {c, a}

S2

accepts

S1

refuses

S
Y

N
-A

C
K

{a

, S
2

,
L

B
,

c
}

S3

ACK {c, a}

SYN-ACK {a, c}

A
C

K

{c
, S

2
,

a
}

1

2

3

45

6
7

Figure 1. Service Hunting from client c to application a with 3 servers
s1, s2, s3. The path (source, segments, destination) is indicated between curly
braces. The active segment is underlined.

A. Overview

Service Hunting assumes an IPv6 data center, in which

applications are identified by virtual IP addresses (VIPs), and

can be replicated among several servers, identified by their

physical addresses. Servers run a virtual router (for instance,

VPP [13]), which dispatches packets between physical NICs

and application-bound virtual interfaces. Located at the edge

of the data center, the load-balancer advertises routes for the

VIPs.

When a query (typically, a TCP SYN packet as part of a

connection request) for a VIP arrives at the load-balancer, the

load-balancer will select a set of candidate servers which host

an instance of the sought-after application, and insert an SR

header into the IPv6 data packet accordingly. The SR header

will contain a list of segments, each indicating that the query

can be processed by either of these instances, and with the

VIP as the last segment.

When the query reaches a candidate server, the correspond-

ing segment in the SR header indicates that the virtual router

may either forward the packet (i.e. start processing the next

segment), or may directly deliver it to the virtual interface

corresponding to the application instance. This is a purely local

decision to accept or not the query, and is based on a policy

shared only between the virtual router and the application

instance, running on the same compute node. To guarantee

satisfiability, however, the penultimate segment indicates that

the application must not refuse a query.

In order to ensure that packets part of the same flow are

treated by the same application instance, upon having accepted

a query, the server hosting the application instance must signal

this to the load balancer. This is done by inserting an SR

header containing its own IP address, and the IP address of the

load-balancer, in the connection acceptance packet (typically,

a TCP SYN-ACK). An example of the whole procedure with

3 servers is given in figure 1.

B. Server Selection Policy

When the load-balancer receives a query, different policies

can be used to select the list of candidate servers to include

in the SR header. Parameters of importance for this selection

include the number of candidate servers to include, and the

Algorithm 1 Static Connection Acceptance Policy SRc

for each packet with SegmentsLeft = 2 do

b← number of busy threads
if b < c then

SegmentsLeft← 0
forward packet to application

else

SegmentsLeft← 1
forward packet to second server in SR list

end if

end for

for each packet with SegmentsLeft = 1 do

SegmentsLeft← 0
forward packet to application

end for

scheme according to which they are selected. Possibilities for

such schemes include random selection and consistent hashing.

A simple and lightweight approach consists of selecting

server addresses at random. While any number of random

server addresses can be inserted in the SR segment list, [14]

demonstrates a decreased marginal benefit from more than two

servers, when the goal is load balancing. Thus, for the purpose

of the experimental verification in this paper, two servers will

be chosen at random from among all servers hosting a given

application instance.

C. Connection Acceptance Policy

To perform Service Hunting, SRLB assumes an application

agent, locally available to the virtual router in each server,

which in real time informs the virtual router as to if the appli-

cation instance wishes to accept queries. The application agent

may make this decision based on coarse-grained information

(e.g. CPU load, memory footprint) available from the operating

system; or on more fine-grained information, if the application

exposes real-time metrics about its load state (idle threads,

etc.). Done through shared memory, this incurs no system calls

or synchronization, thus imposes a negligible run-time cost.

III. EXAMPLE CONNECTION ACCEPTANCE POLICIES

This section describes two simple policies that can be used

to decide whether or not to accept new connections. These

policies assume a standard master-slave threading model for

the application. Section IV will then show how these policies

can be applied in the case of an HTTP server such as Apache.

A. Static policy

Let n be the number of worker threads of the application,

and c a threshold parameter between 0 and n + 1. In Al-

gorithm 1, we introduce a simple policy, SRc, whereby the

first server accepts the connection if and only if less than c
worker threads are busy (recall that the second server always

accepts the connection). When c = 0, all requests are satisfied

by the second servers in the SR lists; when c = n + 1, all

requests are satisfied by the first ones. These two cases reduce

to a standard random load-balancing scheme. All choices of

c between these two extremes yield an improvement over

random load-balancing. Indeed, a server with c or more busy

threads will be assigned a connection only if both itself and

Algorithm 2 Dynamic Connection Acceptance Policy SRdyn

c← 1 {or other initial value}
accepted← 0
attempt← 0
windowSize← 50 {or other window size}
for each packet with SegmentsLeft = 2 do

attempt← attempt+ 1
if attempt = windowSize then

{end of window reached, adapt c if needed and reset window}
if accepted/windowSize < 0.4 and c < n then

c← c+ 1
else if accepted/windowSize > 0.6 and c > 0 then

c← c− 1
end if

attempt← 0
accepted← 0

end if

{use SRc policy with current value of c}
b← number of busy threads
if b < c then

accepted← accepted+ 1
SegmentsLeft← 0
forward packet to application

else

SegmentsLeft← 1
forward packet to second server in SR list

end if

end for

for each packet with SegmentsLeft = 1 do

SegmentsLeft← 0
forward packet to application

end for

the first server in the SR list have more than c busy threads.

The chance for this to happen is the square of the probability

that one server has more than c busy threads, thus allowing

for a better repartition of the load between all servers.

The choice of the parameter c has a direct influence on the

behavior of the global system. Small values of c will yield

better results under light loads, and high ones will yield better

results under heavy loads. Indeed, if the chosen value is too

small as compared to the load, the second server will receive

almost all connections, and vice-versa. If the load pattern

is known by the operator, the parameter c can be manually

selected so as to maximize the load-balancing efficiency. If

this is not the case, a dynamic policy can be used in order to

automatically tune the value of the parameter.

B. Dynamic policy

This section introduces a dynamic policy, SRdyn, that

can be used when the typical request load is unknown. The

underlying intuition is the following: if the rejection ratio of

the connection acceptance function is 0 (or 1), only the first (or

second) candidates in SR lists serve requests, falling back to

standard randomized load-balancing. To maximize utility, this

policy aims to maintain a rejection ratio of 1
2 , by dynamically

adapting the value of c so that this ratio stays close to 1
2 .

The detailed procedure is described in Algorithm 2. Previous

acceptance decisions are recorded over a fixed window of

queries. When the end of the window is reached, if the number

of accepted queries is significantly below (or above) 1
2 , the

value of c is incremented (or decremented).

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Load factor

RR
SR 4
SR 8

SR 16
SR dyn

Figure 2. Average page load time for the Poisson workload as a function of
the normalized request rate ρ: RR vs different SRc policies (4, 8, 16, and
dynamic).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2

C
D

F

Response time (s)

RR
SR 4
SR 8

SR 16
SR dyn

Figure 3. CDF of page load time over 20000 queries for the Poisson workload:
RR vs different SRc policies, ρ = 0.88

IV. EXPERIMENTAL PLATFORM

The experimental platform used for evaluating SRLB is

composed of a load-balancer, a server agent for the Apache

HTTP server, and an overall system.

A. Load-Balancer

The load-balancer performing SR header insertion and flow

steering is implemented as a VPP plugin [13]. While this

choice is not significant to the performance results presented

in this paper, it is convenient as VPP embeds an IPv6 Segment

Routing stack and is kernel-bypass virtual routing capable.

B. Apache HTTP Server Agent

A server agent for the Apache HTTP server [15] has been

implemented as a VPP plugin, accessing Apache’s scoreboard

shared memory1 to allow the virtual router to access the state

of the application instance. Apache uses a worker thread

model: a pool of worker threads is started in advance, and

received queries are dispatched to those threads. Thus, a simple

exposed metric is the state of each worker thread, allowing to

count the number of busy/idle threads, and use this to decide

on connection acceptance, using one of the policies described

in section III.

1This shared memory, internal by default, can be exposed as a named file
by specifying the ScoreBoardFile directive in the server configuration.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100

S
e

rv
e

r
lo

a
d

 (
m

e
a

n
)

RR
SR 4

 0

 0.1

 0.2

 0.3
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

S
e

rv
e

r
lo

a
d

 (
fa

ir
n

e
s
s
)

Time (s)

RR
SR 4

Figure 4. Instantaneous server load for a run of 20000 queries of the Poisson
workload (mean and fairness over the 12 servers): RR vs SR4 policy, ρ =
0.88

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

Response time (s)

RR
SR 4
SR 8

SR 16
SR dyn

Figure 5. CDF of page load time over 20000 queries for the Poisson workload:
RR vs different SRc policies, ρ = 0.61

C. System Set-up

The experiments, described in sections V and VI, are con-

ducted on a common platform. A traffic generator and a load

balancer reside in one physical machine. Twelve application

instances of an Apache HTTP server reside each in a 2-core

VM, all of which are hosted in another physical machine,

running a 24-core Intel Xeon E5-2690 CPU. VPP instances

running in the load-balancer and on the 12 application servers

were bridged on the same link, with routing tables statically

configured.

Finally, the Apache servers were configured to

use the mpm_prefork module, each with 32

worker threads and with a TCP backlog of 128. The

tcp_abort_on_overflow parameter of the Linux kernel

was enabled, triggering a TCP RST when the backlog of

TCP connections exceeds queue capacity, rather than silently

dropping the packet and waiting for a SYN retransmit. This

allows that, under heavy load, the application response delays

are measured, and not possible TCP SYN retransmit delays.

V. POISSON TRAFFIC

A. Traffic and Workload Patterns

To evaluate the efficiency of the connection acceptance poli-

cies from section III under different loads, SRLB was tested

against a simple CPU-intensive web application, consisting

of a PHP script running a for loop, and whose duration

follows an exponential distribution of mean 100 ms. The traffic

generator sends a Poisson stream of queries (HTTP requests),

with rate λ. A bootstrap step consisted of identifying λ0, the

max rate sustainable by the 12-servers swarm, i.e. the smallest

value of λ for which some TCP connections were dropped.

B. Connection Acceptance Policies Tested

With ρ = λ/λ0 as the normalized request rate, for 24 values

of ρ in the range (0, 1), a Poisson stream of 20000 queries with

rate ρ was injected in the load-balancer, using the policies

SR4, SR8, SR16, SRdyn. As baseline, the same tests were

run with a policy RR where queries are randomly assigned

to one server, without Service Hunting.

C. Experimental Results

Figure 2 depicts mean response times for each tested request

rate and for each policy, and show that, among those, SR4

yields the best response time profile, up to 2.3× better than

RR for ρ = 0.88. SR8 and SR16 likewise perform better

than RR for all loads, but with a lesser impact. SRdyn

offers results close to the best static policy, SR4, showing

that a manual policy tuning is not needed to obtain good

performance.

Figure 3 shows the CDF of the page response time for

the 20000 queries batch with ρ = 0.88, for each policy.

RR exhibits a very dispersed distribution of response times,

whereas the different SRc policies yield lower, and less

dispersed, response times.

This can be explained by inspecting the evolution of the

mean instantaneous load (the number of busy worker threads),

as well as the corresponding fairness index:
(
∑

12

i=1
xi(t))

2

12
∑

12

i=1
xi(t)2

(where xi(t) is the load of server i at time t) of each server,

depicted in figure 42. As SR4 better spreads queries between

all servers (the fairness index is closer to 1), and servers are

individually less loaded, better response times result.

For lighter loads, the same kind of behavior can be observed,

except that high SRc policies exhibit no benefits as compared

to RR. Figure 5 shows the CDF of the page load time for

an experiment where ρ = 0.61: SR16 yields no improvement

over RR, and SR8 yields a relatively small improvement,

however the SR4 policy provides a substantial improvement

in response times - and SRdyn remains able to successfully

match SR4, the best static policy.

VI. WIKIPEDIA REPLAY

A. Traffic and Workload Patterns

To evaluate the performance of SRLB when exposed to a

realistic workload, an experiment was constructed to reproduce

a typical Web-service. Thus an instance of MediaWiki3 (ver-

sion 1.28), as well as a MySQL server and the memcached

2These values have been smoothed through an Exponential Window Moving
Average filter, of parameter α = 1 − exp(−δt) where δt is the interval of
time in seconds between two successive data points.

3https://www.mediawiki.org/wiki/Download

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

00:00 04:00 08:00 12:00 16:00 20:00

M
e

d
ia

n
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Time of day (UTC)

RR wiki pages
SR 4 wiki pages

 50

 60

 70

 80

 90

 100

 110

 120

00:00 04:00 08:00 12:00 16:00 20:00

Q
u

e
ri

e
s
 p

e
r

s
e

c
o

n
d

Time of day (UTC)

wiki pages

Figure 6. Wikipedia replay: query rate and median load time for wiki pages
over 24 hours (10 mins bins). RR vs SR4 policy.

 0

 0.2

 0.4

 0.6

 0.8

 1

00:00 04:00 08:00 12:00 16:00 20:00
D

e
c
ile

 1
-9

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Time of day (UTC)

RR wiki pages

 0

 0.2

 0.4

 0.6

 0.8

 1

00:00 04:00 08:00 12:00 16:00 20:00

D
e

c
ile

 1
-9

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Time of day (UTC)

SR 4 wiki pages

Figure 7. Wikipedia replay: decile 1, . . . , 9 of load time for wiki pages over
24 hours (10 mins bins). RR vs SR4 policy.

cache daemon, were installed on each of the 12 servers. The

wikiloader tool from [16], and a dump of the database of the

English version of Wikipedia from [17], were used to populate

the MySQL databases, resulting in each server containing an

individual replica of the English Wikipedia.

A traffic generator, able to replay a MediaWiki access trace

with millisecond granularity and to record response times, was

developed, and experiments were run using 24 hours of traces

from [17]. These traces correspond to 10% of all queries

received by Wikipedia during this timeframe, from among

which only traffic to the English Wikipedia was extracted and

used for the experiment.

A first experiment was to identify the maximum achievable

rate for the testbed. Using RR, the testbed could sustain 50%

of the peak load while exhibiting reasonable response times

(smaller than one second).

B. Connection Acceptance Policies Tested

Given the superior performance of SR4 in the experiments

from section V-C, 50% of the 24-hour trace was replayed

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

Response time (s)

RR wiki pages
SR 4 wiki pages

Figure 8. Wikipedia replay: CDF of wiki page load time over 24 hours. RR

vs SR4 policy.

against both SR4 and RR, and client-side response times

were collected.

C. Experimental Results

The experiment allowed classifying queries into two groups:

(i) requests for static pages, which are not CPU-intensive, and

for which response times were of the order of a millisecond,

and (ii) requests for wiki pages, that trigger memcached or

MySQL and thus are more CPU-intensive.

Static page response times were found to be equivalent, re-

gardless of if SR4 or RR were used. However, the load times

of wiki pages, identifiable by the string /wiki/index.php

in their URL, exhibited interesting differences.

Figure 6 depicts the wiki page request rate and the median

wiki page load time for both RR and SR4 during the 24h

replay4. It can be observed that at the off-peak period around

8:00 UTC, when the system was lightly loaded and subject

to a request rate of around 60 pages per second, RR and

SR4 yielded very similar performance. However as the request

rate increased, when using the application-unaware RR policy

observed page load times increased notably – whereas when

using SR4, a comparably much smaller increase in page load

times incurred.

To understand the variability of the response times along

the 24 hours, figure 6 depicts deciles 1-9 of the wiki page

load time distribution, for each 10 minutes bin. Again, SR4

shows less variability under higher loads than does RR.

Finally, as an indicator of “global good behavior”, figure 8

depicts the CDF of the wiki page load times over the whole

day. Overall, the median response time went from 0.25s

with RR to 0.20s with SR4. Furthermore, the tail of the

distribution is steeper with the application-aware SR4 scheme,

with the third quartile going from 0.48s to 0.28s.

VII. CONCLUSION

This paper has introduced SRLB, a distributed load

balancing system which, while remaining application and

application-layer protocol agnostic, is able to perform

application-instance state aware query assignment by way

of Service Hunting within the IP forwarding plane. This

allows SRLB to offer — not impose — queries to application

4Data has been binned in 10 minutes slots.

instances, leaving the decision to accept (or not) a query to

those. SRLB thus does not employ any out-of-band signaling,

nor requires any central monitoring, nor imposes any load

balancing policy. As a flexible framework, SRLB is able to

accommodate a broad spectrum of policies. As a baseline,

this paper has tested a naive random query dispatch policy

– and has compared with a static and a dynamic query

acceptance policy, enabled by the Service Hunting features of

SRLB developed in this paper. Evaluation of those policies,

conducted using a simulated Poisson workload, as well as on

a Wikipedia replica, shows that SRLB is able to better spread

the load between all servers than a random load-balancer.

REFERENCES

[1] D. Thaler and C. Hopps, “Multipath issues in unicast and multicast next-
hop selection,” in Requests For Comments. Internet Engineering Task
Force, 2000, no. 2991.

[2] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The segment routing architecture,” in 2015 IEEE Global Communica-

tions Conference (GLOBECOM). IEEE, 2015, pp. 1–6.
[3] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-

Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer,” in 13th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 16), 2016, pp. 523–535.
[4] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,

R. Kern, H. Kumar, M. Zikos, H. Wu et al., “Ananta: cloud scale
load balancing,” in ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4. ACM, 2013, pp. 207–218.

[5] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Jo-
hari, “Plug-n-serve: Load-balancing web traffic using openflow,” ACM

Sigcomm Demo, vol. 4, no. 5, p. 6, 2009.
[6] R. Wang, D. Butnariu, J. Rexford et al., “Openflow-based server load

balancing gone wild.” Hot-ICE, vol. 11, pp. 12–12, 2011.
[7] V. Cardellini, M. Colajanni, and S. Y. Philip, “Dynamic load balancing

on web-server systems,” IEEE Internet computing, vol. 3, no. 3, p. 28,
1999.

[8] Q. Zhang, L. Cherkasova, and E. Smirni, “Flexsplit: A workload-
aware, adaptive load balancing strategy for media clusters,” in Electronic

Imaging 2006. International Society for Optics and Photonics, 2006,
pp. 60 710I–60 710I.

[9] G. Ciardo, A. Riska, and E. Smirni, “Equiload: a load balancing policy
for clustered web servers,” Performance Evaluation, vol. 46, no. 2, pp.
101–124, 2001.

[10] Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo, “Workload-
aware load balancing for clustered web servers,” IEEE Transactions on

Parallel and Distributed Systems, vol. 16, no. 3, pp. 219–233, 2005.
[11] S. Sharifian, S. A. Motamedi, and M. K. Akbari, “A content-based load

balancing algorithm with admission control for cluster web servers,”
Future Generation Computer Systems, vol. 24, no. 8, pp. 775–787, 2008.

[12] “HAProxy: the reliable, high-performance TCP/HTTP load balancer.”
[Online]. Available: http://www.haproxy.org

[13] The Fast Data Project (fd.io), “Vector Packet Processing (VPP).”
[Online]. Available: https://wiki.fd.io/view/VPP

[14] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[15] “The Apache HTTP server project.” [Online]. Available: http:
//www.haproxy.org

[16] E.-J. van Baaren, “Wikibench: A distributed, wikipedia based web
application benchmark,” Master’s thesis, VU University Amsterdam,
2009.

[17] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Elsevier Computer Networks, vol. 53, no. 11,
pp. 1830–1845, July 2009, http://www.globule.org/publi/WWADH
comnet2009.html.

