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Abstract: Improper disposal of pharmaceutical drugs, including antibiotics, can affect the ecological
system and generate serious health problems for living organisms. In this work, we have developed
an electrochemical sensor based on a strontium manganese oxide/functionalized hexagonal boron
nitride (SrMnO3/f -BN) electrocatalyst for the detection of the antibiotic drug furaltadone (FLD).
Various analytical techniques were used to characterize the physicochemical properties of the as-
prepared SrMnO3/f-BN composite. The as-fabricated SrMnO3/f -BN composite electrode showed
excellent sensing activity towards FLD, with a wide linear range (0.01–152.11 µM) and low detection
limit (2.0 nM). The sensor exhibited good selectivity towards FLD for detection in the presence of
various interfering species (nitro compounds, metal ions, and biological compounds). Interestingly,
real-time analysis using the proposed SrMnO3/f -BN composite was able to determine the FLD
content in human urine and wastewater samples with good recovery. Hence, the as-developed
SrMnO3/f -BN modified sensor could be viable in practical applications to target the antibiotic drug
FLD in both human fluids and environmental samples.

Keywords: SrMnO3 perovskites; electrochemical sensor; voltammetric detection; pharmaceuti-
cal drugs

1. Introduction

Furaltadone (FLD) is a synthetic antibiotic drug used in the veterinary field to treat
bacterial diseases such as fowl cholera, coccidiosis, and blackhead disease [1,2]. High-level
doses of FLD in animals lead to severe side effects, including mutagenesis, hemolytic anemia,
thrombopenia, insanity, and chronic toxicity, and causes cancer in rats and mice [3,4]. Due
to the adverse effects of this drug, most countries have banned it; however, FLD is used
in several food products at the quantitative level [5,6]. Thus, the determination of FLD
in food samples is an essential need; detection follows Rapid Alert System for Food and
Feed (RASFF) standards for its residues in poultry, aquatic, and all animal products due
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to its low cost and pharmaceutical properties [7,8]. Several methods have been utilized to
detect FLD in food samples, including high-performance liquid chromatography (HPLC),
mass spectroscopy, spectrophotometry, immunoassay, electrochemical methods, and others.
Among them, electrochemical techniques are inexpensive, easy to perform, selective, and
sensitive, providing fast detection and reliability compared with other techniques. However,
in this electrochemical method, modified electrodes play a vital role in improving detection
sensitivity compared to conventional unmodified electrodes [5,9,10].

In recent decades, perovskite (ABO3)-type materials have drawn considerable atten-
tion to various applications, including solar cells, batteries, gas sensors, water splitting,
photocatalysis, and biosensors [11–16]. This is due to their attractive properties, such
as high surface area, excellent catalytic property, and high stability [17,18]. The ABO3
type of perovskite material is entirely different from ordinary metal oxides. In the ABO3
structure, A is built with a larger cation size, whereas B is a smaller cation; both the cations
are interlinked with the oxygen anions. Generally, the smaller cation in ABO3 improves
the redox properties of the material, and the larger size cation is usually attached to the
edge [19–23]. According to the literature review, the larger cations of alkaline earth metals
(A = Sr, Ba, Ca., etc.) containing AMnO3 perovskite structures have attracted attention
due to their excellent electrocatalytic activity, thermal stability, lower bandgap (Eg), and
large surface area [24–28]. Numerous synthesis methods, including reverse microemulsion,
greener synthesis, electrospinning, and the Pechini, wet chemical, and hydrothermal tech-
niques have been developed to prepare AMnO3 nanomaterials for various applications
such as photocatalysis, lithium-ion batteries, water splitting, and sensors [28–34]. This
study demonstrates a simple co-precipitation method to prepare strontium manganese
oxide (SrMnO3) perovskite materials. Among the synthesis processes mentioned above,
co-precipitation is a cost-effective and straightforward method that can provide a good
and high yield of SrMnO3 particles. SrMnO3 has different polymorphs, such as cubic,
4H, and 6H hexagonal structures. Among them, the 4H hexagonal structure is thermody-
namically stable. It has been widely used in various applications, including absorbents,
catalysis, sensors, photocatalysis, supercapacitors, dye-sensitized solar cells, and energy
storage devices [12,35–42]. However, all these types of perovskite materials with a high
melting point should be calcined at high temperatures for a long time, leading to a low
surface area [17,43]. Supporting matrixes, such as graphene, reduced graphene oxide,
carbon nanofiber, boron nitride, etc., can be incorporated with these perovskite materials
to improve their properties [44–48]. These matrix-based hybrid catalysts show enhanced
electrochemical properties thanks to their synergistic effects.

Hexagonal boron nitride (h-BN) is a similar structural analog of graphite in which B
atoms are present above/below the N-atoms in the adjacent layers of h-BN. In addition,
h-BN is a highly stable structure compared to cubic-boron nitride and wurtzite-boron nitride
in standard conditions. It has a wide optical Eg range from 2.45 to 5.4 eV. Due to this wide
band-gap energy, h-BN exhibits essential characteristics such as high mechanical strength,
thermal conductivity, and good electrical, optical, and chemical properties. Therefore, it
is widely used in nanotechnology. Furthermore, h-BN presents an easily moveable free
electron, enhancing charge transfer mobility and improving the intrinsic electrocatalytic
activity performance. Furthermore, exfoliated h-BN offers a high surface area that can
facilitate better electrochemical performance [49–55].

In this work, we synthesized an SrMnO3 perovskite and functionalized h-BN (f-BN)
composite material by following the co-precipitation and ultrasonication methods. The as-
prepared SrMnO3/f -BN composite was successfully fabricated and used as a modified elec-
trode for sensing the drug FLD. The available literature on the state-of-the-art in this domain
shows very few reports on FLD detection; these use various nanomaterials coupled to elec-
trochemical methods. For example, nanomaterials based on ZnO-ZnCo2O4, Fe0.11V2O5.16
wrapped porous graphene oxide nanosheets, Ni/TiO2/MWCNTs, and Co2SnO4/SnO2
have been used for FLD detection; however, all of these exhibit poor sensitivity and low
detection parameters [56–59]. Therefore, finding a superior novel hybrid electrocatalyst to
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enhance the sensitivity of FLD sensing is challenging work. Surprisingly, our fabricated
SrMnO3/f -BN composite-based FLD sensor is able to deliver excellent sensing parame-
ters such as a very low detection limit with a wide linear range, high sensitivity, better
selectivity, and excellent recoveries in practical analysis.

2. Results and Discussion
2.1. Materials Characterization

The functional group analysis of the as-prepared SrMnO3, f -BN, and SrMnO3/f -BN
composite was confirmed by FT-IR spectroscopy, as shown in Figure 1A. The FTIR spectrum
of SrMnO3 (Figure 1A(a)) exhibited a stretching frequency band at 660 cm−1, ascribed to
the Mn-O bond formation. The bending vibration mode of the O-B-O bond appeared at
545 cm−1, which resembles the BO6 octahedron in the SrMnO3 perovskite structure. The
bands at 580 and 450 cm−1 originate from the vibration of metal–oxygen bonds with a
spinel cubic structure of tetrahedral and octahedral sites. The broad bands at 3100 and
3400 cm−1 are attributed to the hydroxyl groups. In the FT-IR spectrum of f -BN
(Figure 1A(b)), the observed bands at 520, 620, 820, 1580, and 3180 cm−1 correspond
to B-N, B-O, B-N-B, B-NH2, and B-OH bond formation, respectively. The FT-IR spectrum of
the SrMnO3/f -BN composite showed similar characteristic vibrational peaks, with high
intensity and slight shift as compared to the FT-IR spectrum of SrMnO3 and f -BN, as shown
in Figure 1A(c). The FT-IR spectrum of the SrMnO3/f -BN composite revealed the shift in
peak values due to the strong interaction between SrMnO3 and f -BN.

The XRD pattern of SrMnO3, f -BN, and SrMnO3/f -BN composite is depicted in
Figure 1B. The XRD pattern of SrMnO3 (Figure 1B(a)) exhibits prominent diffraction peaks
at the 2θ angles of 19.05◦, 27.44◦, 32.92◦, 35.32◦, 39.71◦, 43.34◦,44.46◦, 48.96◦, 49.09◦, 54.47◦,
55.35◦, 56.11◦, 58.86◦, 60.37◦, 61.26◦, 62.50◦, 64.87◦, 66.74◦, and 69.11◦, corresponding
to the (002), (102), (110), (103), (004), (202), (104), (203), (210), (105), (212), (204), (300),
(213), (006), (302), (205), (214), and (220) planes, respectively. All these diffraction planes
are well matched with the standard pattern of JCPDS card No. 84-1612, ascribed to the
hexagonal perovskite structure with a space group of P63/mmc. The (110) plane shows the
maximum intensity, with the d-spacing of 2.46 Å, and the corresponding lattice parameters
are obtained at about a = b = 5.44 Å and c = 9.07 Å. Furthermore, the crystallite size of the
as-prepared SrMnO3 perovskite particle was calculated to be 13 nm based on the (110) plane
using the Scherrer method. In addition, Figure 1B(b) shows the XRD pattern of f -BN, which
exhibits the diffraction of 2θ angles at 26.96◦, 41.96◦, 50.23◦, and 55.33◦, corresponding to
the hexagonal structure of boron nitride with the crystal planes of (002), (100), (102), and
(004), respectively. The corresponding pattern is well-matched with the standard file of
JCPDS card No. 73-2095 and the space group of P-6m2. In addition, the XRD pattern of the
SrMnO3/f -BN composite shows a slight decrease in crystallinity planes, with a lower angle
shift in Figure 1B(c). However, the peaks at (002) and (100) planes continue to exist in the
pattern, indicating the incorporation of the f -BN nanosheet with the SrMnO3 microsphere.

Figure 1C shows the Raman spectra of SrMnO3, f -BN, and SrMnO3/f -BN composite.
The hexagonal phase of the SrMnO3 (Figure 1C(a)) exhibits eight Raman active modes,
namely, modes 2A1g + 2E1g + 4E2g [12,41,42] The peak at 339 cm−1 is assigned to the E1g
mode, suggesting Mn ion displacements. At the same time, the peaks at higher frequencies
indicate that the oxygen ion is involved in the MnO6 octahedral. This suggests that the
oxygen ions can be distinguished as O (1) and O (2) ions, with both involved in face sharing
and corner-sharing of the adjacent octahedral. The O (1) oxygen ions alone provide Raman
active modes. Significantly, the peak around 435 cm−1 is assigned to the octahedral tilting
E1g and bending E2g modes. The high-intensity peaks at 593 and 642 cm−1 are ascribed
to the asymmetric E2g and symmetric A1g octahedral stretching modes associated with
the Sr and Mn ions, respectively. The Raman spectrum of f-BN (Figure 1C(b)) exhibits
a sharp peak at 1369 cm−1, assigned to the E2g mode and comparable to the G-band of
graphene. The Raman spectrum of the SrMnO3/f -BN composite (Figure 1C(c)) shows the
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typical characteristic bands of SrMnO3 and f -BN mentioned above, which display a decrease
in intensity due to the strong interaction of the f -BN nanosheet with the SrMnO3 microspheres.
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The thermal stability of SrMnO3, f -BN, and SrMnO3/f -BN was characterized by
the thermogravimetric analysis (TGA) method. Figure 1D(a) displays the three different
weight-loss stages: (i) the first weight loss of 11.4% in the temperature range up to 150 ◦C
corresponds to the loss of surface adsorbed water molecules’ evaporation; (ii) the second
weight loss between 250 to 400 ◦C involves the carbonyl of SrMn(CO3)2 followed by
decomposition of organic contents; and (iii) the final weight loss at 400–700 ◦C is attributed
to the strontium precursor and manganese decomposition. In addition, Figure 1D(b) shows
f -BN nanosheet thermal degradation at 200 ◦C, which can be attributed to disclosing of
the peroxide moiety and decomposition of the oxygen group. Interestingly, the thermal
decomposition behavior of the SrMnO3/f -BN composite (Figure 1D(c) exhibits similar
weight loss as the pristine SrMnO3 and f -BN, confirming the incorporation of f -BN into the
SrMnO3 microsphere particles.

Furthermore, BET measurements were performed for SrMnO3, f -BN, and SrMnO3/f -BN
composite materials based on the N2 adsorption/desorption isotherm method. The results
can be seen in Figure S1. From the BET analysis, the specific surface area of the SrMnO3 and
SrMnO3/f -BN is 8.76 and 10.25 m2/g, respectively, while the pore size and pore volume of
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the SrMnO3/f -BN composite is calculated as 13.23 nm and 1.37 cm3/g, respectively. The
larger surface area and porous are attributed to the formation of different active sites for
enhancing the electrocatalytic activity of the material due to the mobility of ions/electrons.

FE-SEM was used to analyze the surface morphology of SrMnO3, f-BN, and SrMnO3/f-BN
composite samples. Figure 2A–C shows a homogeneous microsphere morphology formed
through the integration of SrMnO3 primary nanoparticles (particle size range of 100–250 nm.
However, the average size of microsphere particles is calculated at approximately 6 µm.
Figure 2D–F shows the FE-SEM images of the f -BN, which exhibit the stacked flakes of
exfoliated BN due to the combination of oxygen functionalities. The elemental mapping
proves the oxygen functionalities, and their atomic percentages are provided in Figure S3.
Figure 2G,H displays FE-SEM images of the SrMnO3/f -BN composite, confirming the
decoration of SrMnO3 microsphere particles on f -BN flakes. This could be valuable in the
creation of a substantial surface area in the composite for improving its electrochemical
performance. Furthermore, the elemental mapping and EDX spectrum confirmed the
distribution of elements such as Sr (Strontium), Mn (Manganese), O (Oxygen), B (boron),
and N (Nitrogen) in the SrMnO3/f -BN composite. The corresponding results are shown in
Figure S2.
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2.2. Electrochemical Properties

The charge transfer resistance property of the SrMnO3/f-BN nanocomposite electrode
was investigated by electrochemical impedance spectroscopy, for which it was examined
in 5 mM [Fe(CN)6]3−/4− with 0.1 M KCl solution. For comparison, the Nyquist plots
of the different modified SPCEs (screen-printed carbon electrodes), such as bare SPCE,
SrMnO3/SPCE, f-BN/SPCE, and SrMnO3/f-BN/SPCE, were evaluated (Figure 3). The
plots show a semicircle in the high-frequency regions and inclined lines in the low-frequency
regions. These spectra illustrate that the charge transfer resistance (Rct) value of SrMnO3/f-
BN/SPCE is 803.41 Ω, which is lower than bare SPCE (3876.53 Ω), SrMnO3/SPCE
(2794.61 Ω), and f-BN/SPCE (1794.52 Ω), representing the superior electron conductivity
of the SrMnO3/f-BN nanocomposite modified SPCE.
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2.2.1. Electrochemical Behavior of FLD

Cyclic voltammetry (CV) is an essential technique in electrochemical methods, as it
is easier to understand the initial electrochemical behavior, and the resulting information
is rather useful for performing electrochemical studies about complicated electrode re-
actions. Therefore, preliminary electrochemical experiments were carried out using the
CV technique to examine the electrochemical behavior of FLD. Beforehand, different op-
erational electrodes were fabricated, such as bare SPCE, pristine boron nitride modified
SPCE (BN/SPCE), f -BN/SPCE, and SrMnO3/f -BN/SPCE. The CV curves were recorded
at a fixed scan rate of 50 mV/s in pH 7 containing 200.0 µM FLD sensing sample. The
obtained CV signals are shown in Figure 4A. The CV results show that the bare SPCE
has a weak reduction peak at −0.475 V with a current intensity of −8.01 µA, which is
due to poor electron transfer mobility between the unmodified SPCE surface and FLD.
On the other hand, the BN/SPCE shows a slightly better cathodic current response than
the bare SPCE, at −0.473 V, with a current density of about −8.66 µA. This might be due
to the electrical insulating property of BN, which bears a wide bandgap; this may resist
the transfer of electrons towards the reduction of FLD. Despite this, the BN consists of
covalently bounded B (boron) and N (nitrogen) atoms, which disturb the electronic states
of symmetry as well as their electronic arrangement, suggesting the narrowing of the
sp2-derived π bands. The SrMnO3/SPCE shows a well-resolved cathodic current ampli-
tude of −14.85 µA at −0.5311 V, corresponding to the superior electrical conductivity of
the SrMnO3 nanospheres, and it retains the covalent bonding of Mn-O bonds and Sr2+

ions in the crystal lattice, providing faster electron transferability for FLD sensing. Along
with this, the SrMnO3 nanospheres access to the transition of manganese ionic oxidation
states between Mn3+⇔Mn4+ is able to accelerate the electrocatalysis property, promoting
the reduction of FLD. f -BN/SPCE exhibits better electrocatalytic activity than BN/SPCE
thanks to the effective functionalization of the BN surface with OH functional groups,
tremendously increasing the boron radicals at the edges to create defective sites. This
electrochemically enables advantageous FLD sensing, with a current response of about
−15.71 µA at −0.46 V. Finally, the SrMnO3/f -BN/SPCE shows higher cathodic current
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waves of about −23.01 µA at a cathodic potential of—0.465 V. This cathodic CV signal is
attributed to the direct electrocatalytic reduction of the nitro group (NO2) of FLD into the
hydroxylamine group, with the elimination of the water molecule accompanied by the
participation of an equal number of electron (4H+) and proton (4e−) transfer processes
(Scheme 1).

Catalysts 2022, 12, 1494 8 of 19 
 

 

FLD sensing, with a current response of about −15.71 µA at −0.46 V. Finally, the SrMnO3/f-
BN/SPCE shows higher cathodic current waves of about −23.01 µA at a cathodic potential 
of—0.465 V. This cathodic CV signal is attributed to the direct electrocatalytic reduction 
of the nitro group (NO2) of FLD into the hydroxylamine group, with the elimination of 
the water molecule accompanied by the participation of an equal number of electron (4H+) 
and proton (4e-) transfer processes (Scheme 1). 

 
Scheme 1. Electrochemical reduction mechanism of FLD. 

At the same time, no oxidation peak current response was observed while perform-
ing the anodic scan, suggesting an irreversible electron transfer chemical reaction process. 
From the above-obtained results and findings, it is clear that the SrMnO3/f-BN/SPCE de-
livered a beneficial reduction in peak current response, and the lowest cathodic potential 
for FLD detection over that of other electrodes (bare SPCE, BN/SPCE, f-BN/SPCE) can be 
retained. Additionally, the electrochemical reduction of FLD occurs at the surface of 
SrMnO3/f-BN/SPCE due to the excellent electrostatic interaction between the FLD and the 
electrode surface, confirming the improved electrocatalytic property of the SrMnO3/f-BN 
composite. This synergistic activity is due to the interaction of the dz2 of the transition 
metal orbitals and the B-pz, N-pz orbitals of f-BN. These bonds are responsible for the 

Scheme 1. Electrochemical reduction mechanism of FLD.



Catalysts 2022, 12, 1494 8 of 18

Catalysts 2022, 12, 1494 9 of 19 
 

 

prominent modification of the electronic properties of f-BN aided on the 3d, 4d, and 5d 
transition metal surfaces, which enhances the combinational electrocatalytic activity of the 
composite and in turn facilitates the effective sensing of FLD. The obtained current re-
sponse for different electrodes is represented as a bar diagram in Figure 4B. 

 
Figure 4. (A) CVs of different modified SPCE of FLD detection in 0.1 M PBS (pH 7) with 200.0 µM 
of FLD; scan rate 50 mV/s. (B) Bar diagram of different electrodes vs. current (µA). (C) CVs for the 
addition of different concentrations of FLD (50.0–300.0 µM); scan rate 50 mV/s. (D) Linear calibra-
tion plot of concentration of FLD (µM) vs. current (µA) for three replicative measurements (n = 3). 

2.2.2. Effect of Concentration 
The influence of concentration on SrMnO3/f-BN/SPCE was examined using CV by 

adding FLD concentration from 50.0 to 300.0 µM. Figure 4C depicts the CV curves of var-
ious concentrations of FLD; it can be seen that the cathodic peak current of FLD increases 
linearly with increasing concentration of FLD. This is due in part to the good electrode–
electrolyte interface, as the optimal diffusion length favors sensing of the FLD in the elec-
trochemical system. In addition, an excellent linear relationship can be observed in Figure 
4D, demonstrating that the reduction of current signal waves is directly proportional to 
the concentration of FLD. There is a linear regression equation of Ipc = −0.081 FLD [µM] 
−6.138 with correlation coefficient of R2 = 0.988. From the concentration CV studies, the as-
prepared composite acts as a potential electrode material as well as an excellent electron 

Figure 4. (A) CVs of different modified SPCE of FLD detection in 0.1 M PBS (pH 7) with 200.0 µM
of FLD; scan rate 50 mV/s. (B) Bar diagram of different electrodes vs. current (µA). (C) CVs for the
addition of different concentrations of FLD (50.0–300.0 µM); scan rate 50 mV/s. (D) Linear calibration
plot of concentration of FLD (µM) vs. current (µA) for three replicative measurements (n = 3).

At the same time, no oxidation peak current response was observed while performing
the anodic scan, suggesting an irreversible electron transfer chemical reaction process.
From the above-obtained results and findings, it is clear that the SrMnO3/f -BN/SPCE
delivered a beneficial reduction in peak current response, and the lowest cathodic potential
for FLD detection over that of other electrodes (bare SPCE, BN/SPCE, f -BN/SPCE) can
be retained. Additionally, the electrochemical reduction of FLD occurs at the surface of
SrMnO3/f -BN/SPCE due to the excellent electrostatic interaction between the FLD and the
electrode surface, confirming the improved electrocatalytic property of the SrMnO3/f -BN
composite. This synergistic activity is due to the interaction of the dz

2 of the transition
metal orbitals and the B-pz, N-pz orbitals of f-BN. These bonds are responsible for the
prominent modification of the electronic properties of f -BN aided on the 3d, 4d, and 5d
transition metal surfaces, which enhances the combinational electrocatalytic activity of
the composite and in turn facilitates the effective sensing of FLD. The obtained current
response for different electrodes is represented as a bar diagram in Figure 4B.
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2.2.2. Effect of Concentration

The influence of concentration on SrMnO3/f -BN/SPCE was examined using CV
by adding FLD concentration from 50.0 to 300.0 µM. Figure 4C depicts the CV curves
of various concentrations of FLD; it can be seen that the cathodic peak current of FLD
increases linearly with increasing concentration of FLD. This is due in part to the good
electrode–electrolyte interface, as the optimal diffusion length favors sensing of the FLD in
the electrochemical system. In addition, an excellent linear relationship can be observed in
Figure 4D, demonstrating that the reduction of current signal waves is directly proportional
to the concentration of FLD. There is a linear regression equation of Ipc = −0.081 FLD [µM]
−6.138 with correlation coefficient of R2 = 0.988. From the concentration CV studies, the
as-prepared composite acts as a potential electrode material as well as an excellent electron
mediator, as it possesses chemically electroactive sites via the functionalization of BN with
active functional groups. In addition, the electrical conductivity is further enhanced by the
SrMnO3 nanospheres, which allow faster electron transfer processes for FLD detection.

2.2.3. Effect of pH and Scan Rates

In electrochemical detection systems, pH is one of the most important parameters
for developing an electrochemical sensor, as it affects the sensitivity and electrochemi-
cal behavior of FLD at the surface of SrMnO3/f -BN/SPCE. Figure 5A displays the CV
response of 200.0 µM FLD for different pH values (pH 3.0, pH 5.0, pH 7.0, pH 9.0, and
pH 11.0) recorded at a scan rate of 50 mV/s. It can be seen that the cathodic current
response of FLD gradually increases from pH 3.0 to 7.0, and gains a maximum current
intensity at pH 7.0; subsequently, the current amplitude decreases, moving towards a
higher pH value in Figure 5B. Following this pH test, pH 7.0 was chosen as a supporting
electrolyte for electrochemical experiments. The slope of the linear plot between cathodic
peak potential (Ep) and pH (Figure S4) demonstrates that the electrochemical performance
of FLD is strongly pH-dependent [46] and the hydrogen ion (H+) concentration influ-
ences the reaction rate of the constructed electrode. The electrode kinetics property of FLD
at the SrMnO3/f -BN/SPCE was studied by recording the CV signals in pH 7.0 at differ-
ent scan rates from 20 to 200 mV/s in the electrochemical cell containing 200.0 µM FLD.
Figure 5C shows the CV signal wave concerning the applied potential, which is equiva-
lent to the cathodic reduction reaction of FLD. It can be observed that the cathodic current
density ramps up accordingly upon increasing the scan rate from 20 to 200 mV/s. In ad-
dition, the cathodic peak potential shift towards the negative side of the potential window
affirms the irreversible electrode process. Figure 5D represents a good linear relationship
between the FLD peak current intensity and the scan rate (ν), with the correlation coefficient
R2 = 0.997 and the corresponding linear regression equation expressed as Ipc = −0.078 ν −10.77.
These results show that the reduction process of FLD catalyzed by SrMnO3/f -BN/SPCE
is controlled by the adsorption process. The process was further evaluated by plotting
the linear relation between the log scan rate (log υ(mV/s) and log current (log I (µA)),
as shown in Figure S5A. The slope of the linear plot clearly confirms that the electrode
processes are neither adsorption-controlled (slope = 1) nor diffusion-controlled (slope = 0.5).
The slope value (0.35) of Figure S5A shows that FLD detection on SrMnO3/f-BN modified
SPCE favors a diffusion-controlled reaction process. Another linear relation (Figure S5B) is
plotted against Ep vs. lnυ based on the Laviron Equations (1) and (2):

Epc = E0 +

(
RT
αnF

)
ln

(
RTk0

αnF

)
+

(
RT
αnF

)
lnυ (1)

Epc =
2.303RT
αnF

(2)

where R is the gas constant (8.314 J mol−1 K−1), T is the temperature (298 K), n is the
number of transferred electrons, α is the electron transfer coefficient (0.5), and F is the
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Faraday constant is 96,485 C mol−1. The slope of the rate of the linear plot is shown in
Figure S5B.
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2.2.4. Differential Pulse Voltammetry (DPV) Analysis

To evaluate the limits of detection and sensitivity, the electroanalytical behavior of
SrMnO3/f -BN composite fabricated SPCE was investigated using the DPV technique; the
obtained DPV signals are shown in Figure 6A. Initially, the electrolyte solution (pH 7.0) was
deoxygenated with massive purity of N2 gas. Following this process, the voltammogram
experiment was recorded by the consecutive addition of analyte concentration from 0.01 to
332.11 µM. Figure 6A represents the DPV amplification waves concerning the successive
injection of the target FLD analyte. It can be seen that the cathodic current intensity
accelerates linearly with each addition of FLD, governed by the linear regression equation
Ipc = −0.1715 FLD [µM]—4.269 with the correlation coefficient R2 = 0.991 (Figure 6B). The
developed sensor exhibits a wide dynamic linear range of detection, from 0.01 to 152.11 µM.
The limit of detection of the sensor is calculated using the following equation:

LOD = 3σ/slope (3)



Catalysts 2022, 12, 1494 11 of 18

where σ is the standard deviation of the background of the three DPV signals and the slope
value obtained from the linear plot of peak current (µA) vs. the concentration of FLD (µM).
The calculated LOD of the FLD sensor is about 2.0 nM, and its sensitivity (sensitivity =
slope/electrode area) is 2.45 µA µM−1 cm−2. In addition, the modified electrode reduces the
mass transfer resistance property due to the synergistic electrocatalytic effect between the
f -BN and SrMnO3 nanospheres. From the DPV studies, the fabricated SrMnO3/f -BN/SPCE
sensor reveals its dramatic sensing application towards FLD, with a good catalytic effect
affirmed by the rapid electron transfer facilitation of the composite. The electrochemical
performance of SrMnO3/f -BN/SPCE in the detection of FLD was compared with the
previously reported FLD sensors, and the results are outlined in Table 1 [9,10,56–59].
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Figure 6. (A) DPV cathodic current response of sequential addition of FLD (0.01–152.11 µM) in PBS
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Table 1. Comparison of FLD sensors with different previously-reported modified electrodes.

Working Electrode Techniques Linear Range (µM) LOD (µM) References

NC-Poly(melamine)/SPCE ADSV 0.012 [9]
ZnO-ZnCo2O4/GCE DPV 0.01–4.68; 15.0–100.0 0.034 [56]

Cu/Ni/TiO2/MWCNTs/SPCE A 10.0–150.0 0.095 [57]
Co2SnO4/SnO2/SPCE DPV 0.1–73.0; 91.0–1022.0 0.039 [58]

Fe0.11V2O5.16/p-rGO/GCE A 0.5–84.0; 94.0–1319.0 0.138 [59]
SrMnO3/f-BN/SPCE DPV 0.01–152.11 0.002 This work

Note: ADSV—Anodic differential stripping voltammetry; DPV—Differential pulse voltammetry;
A—Amperometry; LOD—Limit of detection.

2.2.5. Selectivity, Repeatability, and Storage Stability Studies

Selectivity is one of the key factors for the developed sensor, and seems to be the basic
requirement for practical applications. Here, the selectivity test was performed using DPV
in the existence of interfering compounds, namely, metal ions (Fe2+, Mg2+, Na+, NO2−, Zn2+,
Co2+), biomolecules such as ascorbic acid (AA), uric acid (UA), sucrose (SUC), dopamine
(DOP), glucose (GLU), hydrogen peroxide (H2O2), lactose (LAC), and citric acid (CA), and
nitro compounds such as flutamide (FLU), chloramphenicol (CAP), nitrofurantoin (NFD),
4-nitroaniline (4-NA), and furazolidone (FZ). The DPV signals of SrMnO3/f -BN/SPCE
towards 10.0 µM FLD in the presence of interfering compounds are displayed in Figure 7A–C.
It can be seen that the interfering compounds show negligible changes with the main
peak current DPV signal of FLD, with an RSD of about 5.95%. Therefore, the developed
sensor possesses anti-interference capability towards the selective sensing of FLD. The
repeatability experiment was carried out by adding 10.0 µM of FLD in the electrolyte
cell, then the DPV signal was recorded continuously over five repeated runs, with each
consecutive measurement obtained as DPV signal waves. The results are displayed in



Catalysts 2022, 12, 1494 12 of 18

Figure 7D, showing that the fashioned electrode exhibits excellent repeatability with an RSD
of about 0.39%. Furthermore, the storage stability of the electrode was tested by adding
10 µM, then obtaining the DPV signal. Afterwards, the DPV signal was measured again
over the duration of 10 to 30 days. Interestingly, the cathodic current signal shows only
a slight drop in the current response from the initial FLD peak current signal (Figure 7E),
with an RSD of about 2.25%. From the above DPV results, the fabricated electrode retains
good selectivity, repeatability, and admirable storage stability towards the sensing of FLD.
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2.2.6. Real Sample Analysis

The practical usability of the designed sensor was examined using the DPV technique
for the real-time detection of FLD in lake water and human urine samples. The lake water
samples were collected from nearby Taipei Lake, and a human urine sample was collected
from a healthy person. The collected real samples were free from FLD. Following the
initial testing process, a known concentration of FLD was spiked into the samples. The
prepared samples were used as a stock solution for further experimental analysis. The DPV
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amplification waves were recorded for the consecutive addition of FLD concentrations from
20.0 to 100.0 µM from the prepared stock solutions. The obtained DPV results are displayed
in Figure 8A,B; it can be seen that the developed sensor retains excellent electrocatalytic
activity for the detection of FLD in real sample analysis, with good recovery results of about
to 98.1–99.9%. The real sample analysis findings reveal that SrMnO3/f-BN/SPCE possesses
ideal sensing properties for the detection of FLD. The recovery results are calculated using
the standard addition method with three replicative measurements, and the obtained
results are outlined in Table 2.
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Table 2. Practicality of FLD detection in spiked human urine and wastewater samples (n = 3).

Sample Added (µM) Found (µM) Recoveries (%)

FLD spiked urine

20.0 19.8 99.0
40.0 39.8 99.5
60.0 58.9 98.2
80.0 78.5 98.1

100.0 98.7 98.7

FLD spiked wastewater

20.0 19.7 98.5
40.0 39.9 99.8
60.0 59.8 99.7
80.0 79.9 99.9

100.0 99.2 99.2

3. Experimental
3.1. Chemicals and Reagents

Analytical-grade strontium nitrate, manganese nitrate, potassium carbonate, FLD,
NaH2PO4, Na2HPO4, h-BN, hydrogen peroxide (H2O2), and ethanol were purchased from
Sigma-Aldrich Chemicals (Taipei, Taiwan) and used without further purification. Commer-
cial screen-printed carbon electrodes (SPCE, model SE 100, working area: 5 mm/0.196 cm2)
were purchased from Zensor R&D Co., Ltd. (Taichung City, Taiwan). The pH part of the
electrochemical experiment was performed in 0.1 M phosphate buffer solution (PBS, pH 7).

3.2. Synthesis of SrMnO3 Perovskite Microspheres

SrMnO3 perovskite microspheres were synthesized by the co-precipitation method.
In brief, about 50 mL each of strontium nitrate (0.05 M; 1.058 g) and manganese nitrate
(0.05 M; 1.255 g) aqueous solution were sequentially added to a beaker with 100 mL of
potassium bicarbonate (0.1 M; 2.7642 g) solution and then subjected to magnetic stirring



Catalysts 2022, 12, 1494 14 of 18

at ambient conditions for 3 h. During this time, the color of the mixed solution turned to
a brown residue. The precipitate was collected by filtration and washed with deionized
water (DI) and ethanol several times. The collected precipitate was dried in a hot oven at
80 ◦C for 12 h. Later, it was calcined at 700 ◦C (5 ◦C/min) for 2 h in an air atmosphere. The
final obtained powder was denoted as SrMnO3.

3.3. Functionalization of BN

Briefly, the as-received h-BN powder (1 mg/mL) was added to 200 mL H2O2 solution
and then sonicated for 30 min to obtain a homogeneous dispersion. Then, the suspension
was stirred at room temperature using a magnetic stirrer for 12 h. Then, the mixture was
transferred to an autoclave container for thermal reaction at 120 ◦C, for 24 h. The final
product was centrifuged and washed several times with DI water and then dried at 80 ◦C
in an air oven for 6 h. The resultant powder was referred to as f -BN.

3.4. Synthesis of SrMnO3/f-BN Composite

About 50 mg of as-prepared SrMnO3 microsphere particles were dispersed in 50 mL
DI water along with 10 mg of f -BN and ultra-sonicated for 1 h. The composite suspension
was centrifuged and washed with DI water and ethanol several times. Afterwards, the
resultant residue was dried at 60 ◦C for 24 h. The final product was called SrMnO3/f-BN
composite. The synthesis details are clearly described in Scheme 2.
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3.5. Instrumentation

The X-ray diffraction (XRD) pattern study was analyzed using a Bruker D2 PHASER
diffractometer (Karlsruhe, Germany) with Cu-Kα radiation (K = 1.54 Å). Fourier transform-
infra red (FT-IR) spectral data were recorded using FTIR-6600 spectroscopy (Easton, MD,
USA). Raman spectra were examined using a confocal micro-Renishaw, 632 nm He–Ne laser
source spectrometer (Gloucestershire, UK). The surface morphologies of the as-synthesized
materials were analyzed using a field emission scanning electron microscope (FE-SEM:
JEOL JSM-7610F Plus, Tokyo, Japan) equipped with energy-dispersive X-ray spectroscopy
(EDAX). Brunauer-Emmett-Teller (BET) analysis for specific surface area measurement was
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conducted using Micromeritics, Gemini VII (Monchegladbach, Germany) A conventional
three-electrode system was employed using a CHI1205C and CHI900 potentiostat (CH
Instruments, Inc., Austin, TX, USA), where Ag/AgCl (sat. KCl) was used as a reference
electrode, modified screen-printed carbon electrode (SPCE) as a working electrode, and
Pt-wire as a counter electrode.

3.6. Fabrication of the Sensor Electrode

The as-prepared SrMnO3/f-BN composite powder (5 mg/mL) was added to a DI
water-containing vial. A homogenous suspension was obtained after ultrasonication
treatment for 30 min. Meanwhile, the surface of SPCE was gently washed with DI water
and ethanol to remove the surface adsorbed dust particles, then dried naturally. About 6 µL
of the catalyst suspension was drop-coated on the cleaned SPCE surface, followed by drying
in an air oven at 80 ◦C for 10 min. The fabricated electrode was named SrMnO3/f-BN/SPCE.
Electrodes such as SrMnO3/SPCE, BN/SPCE, and f-BN/SPCE were fabricated similarly
for the control experiment. The fabricated electrodes were immersed in a deoxygenated
electrolyte (0.1 M PBS, pH 7) system for sensing measurements.

4. Conclusions

In summary, we synthesized a facile and inexpensive composite based on SrMnO3/f -BN
for FLD detection. The above results obtained from electrochemical detection indicate that the
developed sensor has superior catalytic activity and excellent analytical performance, with a
wide linear range of 0.01–152.11 µM and a very low detection limit of 2.0 nM. Interestingly,
the SrMnO3/f -BN composite could be a promising candidate for the detection of FLD in
both biological and pharmaceutical applications.
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