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Abstract

Current resource reservation architectures for multimedia networks do not scale well for
a large number of ows. We propose a new architecture that automatically aggregates ows
on each link in the network. Therefore, the network has no knowledge of individual ows.
There is no explicit signalling protocol, and the protocol overhead mainly consists in the
introduction of a packet type with three values (reserved, request or best-e�ort) which can
be encoded on two bits.
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1 Introduction
Resource reservation architectures that have been proposed for integrated service networks (RSVP [1], ST-2

[2], Tenet [3], ATM [4, 5], etc.) all have in common that intermediate systems (routers or switches) need to
store per-ow state information. This requirement probably stems from the desire to provide a network service
that is as deterministic as possible. Now the IETF has proposed a class of reserved service, called controlled
load, for which the assurance provided by the reservation is not absolute, but comparable to the one obtained
by a best-e�ort stream in an unloaded network [6]. The controlled load service can be implemented through
the accounting of the reservation of each individual stream, but not only: measurement based admission control
methods [7] could be used as well. In the latter approach intermediate system functions could be simpli�ed, since
only aggregate ows need to be measured. On the contrary, in the former approach, and more generally in the
current IETF resource reservation architecture, per individual ow processing leads to scalability problems when
the number of individual ows increases. A solution is to aggregate ows inside the network, thus letting only
the network edge be aware of all individual ows [8].

In this paper we propose a new way of performing reservations, which goes beyond concepts for aggregation on
top of traditional reservation in that it makes aggregation the standard behavior of the network and not a special
case requiring additional protocol activity. In short, our reservation model works as follows. A source that wishes
to make a reservation (for example an adaptive multimedia application [9, 10]) starts by sending data packets
marked with a request ag to the destination. These packets are forwarded normally by routers, who also take
a ow admission decision on each of them. After enough request packets have been sent, the source learns from
the destination its estimate of how much of the reservation has been accepted in the network. The source may
then send data packets marked with a reserved ag at the accepted rate. Routers that have admitted, and thus
forwarded, request packets have committed to have enough resources to accept subsequent reserved packets sent
by the source at the accepted rate. The accepted rate is computed by every source, while routers independently
estimate how much bandwidth they need to satisfy their global commitments. The accepted rate is guaranteed
as long as there is a minimum activity by the source. As with the controlled load service, the guarantee is not
absolute, but is only as good as the router estimator allows. The reservation disappears after the source has
stayed idle for a while. The initial data packets sent by the source can be thought of as \sticky": once a router
has accepted some of them at a given rate, it must continue to accept packets at the same rate until the source
becomes idle.

Essential to our proposal is that routers do not keep state information per ow; routers only remember their
reservation commitments globally per output port. This is made possible by two features:

� routers rely on end-systems not to exceed their accepted reservations or have to implement a mechanism
which penalizes non-compliant sources;

� routers maintain reservations by learning, namely, by monitoring the actual reserved tra�c and running an
algorithm to estimate the bandwidth needed.

We discuss these two design directions in the rest of this section. Section 2 provides a protocol overview.
Section 3 describes and compares di�erent algorithms for the implementation of the tra�c estimator and section
4 elaborates on that and also points out areas where more research is needed. Finally, protocol operation is
illustrated with some simulation results in section 5 and the paper concludes with section 6.

1.1 Congestion control and reliance on end users

For best-e�ort tra�c, the Internet has illustrated that network internals can be simple: besides routing, which
has grown signi�cant complexity, there are no \intelligent" services inside the network. Originally, congestion
control (for example in TCP) has been entirely implemented in the end systems, which are in turn expected to
have some degree of complexity of their own. Also, instead of providing stringent isolation among users, the
Internet relies on guided cooperation. This approach is now being integrated with additional mechanisms to
detect and penalize those non compliant sources which a�ect network performance [11].

Applying this approach to resource reservation means to let end systems perform ow acceptance control and to
trust them not to exceed the agreed upon reservations. In order to protect the network from errors in application
programs, the reservation protocol handling needs to be implemented in the networking kernel of the operating
system.

1



If it is needed to counteract the abuses that might degrade network performance, then metering and policing
functions can be implemented at network boundaries [12]. In a a typical example, policing would be performed
at the boundary between a local area network and a public Internet service provider, as well as between Internet
service providers. At each of these points, policing would be applied to aggregate ows, where an aggregate ow
corresponds to a customer, or a group of customers, as for example in [13] or [14]. This is easily possible with the
architecture proposed in this paper as we do not require any per ow information in the reservation mechanism
in the routers. Policing and metering is outside the scope of this paper.

1.2 Learning by example

New reservations are set up by sending data packets with a request ag. When a router accepts such requests,
it predicts the arrival of future packets and changes its global reservation state accordingly.

Because the reservation information is sent directly with the data, the reservation and the actual tra�c are
automatically synchronized.

Central to our proposal is the concept of estimation modules used by sources, routers, and destinations. In a
simple implementation, we just count the number of request packets during a time interval and use it to predict
the reserved bandwidth. This is the algorithm we propose to use at sources. Destinations also use this algorithm
to compute the allowed rate sent back to the source. The situation for routers is more complex. In a simplistic
solution, routers could use the same algorithm, with the di�erence that it is applied to aggregate ows. However
this simplistic algorithm may in some case grossly over- or under-estimate the required resources for aggregate
ows.

Flow multiplexing has a two-fold e�ect. On one hand it makes the aggregate tra�c pro�le more stable, on
the other one, in spite of the aggregation e�ect, the estimator in the router has to detect decreases in the use
of reserved bandwidth (when sources reduce their rate or stop sending) and to adjust the reserved resources
automatically. Therefore, we propose an alternative estimation algorithm for routers based on the computation
of the \deterministic e�ective bandwidth" [15] and a feedback loop. We describe both implementations in section
3 and 5.1.

A more general discussion of measurement-based admission control for similar purposes can be found in [16].
Section 2 describes the components of our architecture, while 3 provides two algorithms for the implementation
of the estimator. The evaluation of their performance is ongoing work.

2 Architecture overview
The proposed architecture uses two protocols to manage reservations: a reservation protocol to establish and

maintain them, and a feedback protocol to inform the sender about the reservation status.

Feedback

Sender Data & reservations Receiver

Router

Figure 1: Overview of the components in SRP.

Figure 1 illustrates the operation of the two protocols:

� Data packets with reservation information are sent from the sender to the receiver. The reservation infor-
mation consists in a packet type which can take three values and can thus be encoded on two bits. It is
processed by routers, and may be modi�ed by routers. Routers may also discard packets (section 2.1).

� The receiver sends feedback information back to the sender. Routers only forward this information; they
don't need to process it (section 2.2).

Routers monitor the reserved tra�c which is e�ectively present and adjust their global state information
accordingly. Sections 2.1 and 2.2 illustrate the reservation and feedback protocol, respectively.
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2.1 Reservation protocol

The reservation protocol is used in the direction from the sender to the receiver. It is implemented by the
sender, the receiver, and the routers between them. As mentioned earlier, the reservation information is a packet
type which may take three values:1

Request This packet is part of a ow which is trying to gain reserved status. Routers may accept, degrade or
reject such packets. When routers accept some request packets, then they commit to accept in the future a
ow of reserved packets at the same rate. The exact de�nition of the rate is part of the estimator module.

Reserved This label identi�es packets which are inside the source's pro�le and are allowed to make use of the
reservation previously established by request packets. Given a correct estimation, routers should never
discard reserved packets because of resource shortage.

Best e�ort No reservation is attempted by this packet.

Packet types are initially assigned by the sender, as shown in �gure 2. A tra�c source (i.e. the application)
speci�es for each packet if that packet needs a reservation. If no reservation is necessary, the packet is simply
sent as best-e�ort. If a reservation is needed, the protocol entity checks if an already established reservation at
the source covers the current packet. If so, the packet is sent as reserved, otherwise an additional reservation is
requested by sending the packet as request.

Reservation
established ?reservation

Needs

Doesn’t need
reservation

Protocol stack

No

Yes
Reserved

Request

Best effort

Application

Figure 2: Initial packet type assignment by sender.

Each router performs two processing steps (see also �gure 3). First, for each request and reserved packet the
estimator updates its current estimate of the resources used by the aggregate ows and decides whether to accept
the packet (packet admission control). Then, packets are processed by various schedulers and queue managers
inside the router.

� When a reserved packet is received, the estimator updates the resource estimation. The packet is automat-
ically forwarded unchanged to the scheduler where it will have priority over best-e�ort tra�c and normally
is not discarded.

� When a request packet is received, then the estimator checks whether accepting the packet will not exceed
the available resources. If the packet can be accepted, its request label is not modi�ed. If the packet cannot
be accepted, then it is degraded to best-e�ort

� If a scheduler or queue manager cannot accept a reserved or request packet, then the packet is either discarded
or downgraded to best-e�ort.

Note that the reservation protocol may \tunnel" through routers that don't implement reservations. This
allows the use of unmodi�ed equipment in parts of the network which are dimensioned such that congestion is
not a problem.

The receiver does no packet-type speci�c processing. Instead, it counts incoming packets and sends feedback
to the sources.

1The encoding is yet unspeci�ed; many possibilities exist, such as: encodings being de�ned by the di�erentiated services working
group at IETF, the class of service bits in the MPLS label, or a new IP option.
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Figure 3: Packet processing by routers.

2.2 Feedback protocol

The feedback protocol is used to convey information on the success of reservations and on the network status
from the receiver to the sender. Unlike the reservation protocol, the feedback protocol does not need to be
interpreted by routers, because they can determine the reservation status from the sender's choice of packet
types.

Feedback information is collected by the receiver and it is periodically sent to the sender. The feedback consists
of the receiver's estimate of the current reservation. The receiver computes this estimate with its local estimator.
Additional information can be included in feedback messages to improve stability and to provide additional
information on network performance, e.g. the loss rate along the path or the round-trip time.

The reservation estimated by the receiver is an upper bound for the rate at which the sender may send reserved
tra�c and is used by the sender to decide whether packets are sent as reserved or request. The other upper bound
is provided at the source by the local estimate of the requested rate, so the maximum rate at which the source is
allowed to send reserved packets is min(feedback; src estimate).

Receivers collect feedback information independently for each sender and senders maintain the reservation
state independently for each receiver. Note that, if more than one ow to the same destination exists, attribution
of reservations is a local decision at the source.

The feedback mechanism can be implemented on top of a protocol like RTCP [17].
Figure 4 provides the overall picture of the reservation and feedback protocols for two end-systems connected

through routers R1 and R2. The initial resource acquisition phase is followed by the generation of request
packets after the �rst feedback message arrives. Dotted arrows correspond to degraded request packets, which
passed the admission control test at router R1 but could not be accepted at router R2 because of resource shortage.
Degradation of requests is taken into account by the feedback protocol. After receiving the feedback information
the source sends reserved packets at an appropriate rate, which is smaller than the one at which request packets
were generated. At point 1 router R1 starts accounting request packets, while at point 2 reserved packets take
the place of requests as a consequence of the feedback received by the source.

3 Estimation modules
We call estimator the algorithm which attempts to calculate the amount of resources that need to be reserved.

The estimation measures the number of requests sent by sources and the number of reserved packets which actually
make use of the reservation.

Estimators are used for several functions:

� Senders use the estimator for an optimistic prediction of the reservation the network will perform for the
tra�c they emit. This, in conjunction with feedback received from the receiver, is used to decide whether
to send request or reserved packets.
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Figure 4: Reservation and feedback protocol diagram.
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Figure 5: Use of estimators at senders, routers, and receivers

� Routers use the estimator for packet-wise admission control and perhaps also to detect anomalies (see section
4.4).

� In receivers, the estimator is fed with the received tra�c and it generates a (conservative) estimate of the
reservation at the last router. This is sent as feedback to the source.

Figure 5 shows how the estimator algorithm is used in all network elements.
First, a source estimates the reservation established by its tra�c. This is an optimistic estimation since it

assumes that all requests are accepted. Then, it collects the feedback information, which is conservative. In fact
this parameter is the estimation from the point of view of the last hop router, which doesn't take into account
request and/or reserved packets which may have been dropped on the path (the estimation could be higher on
other intermediate systems). A source always uses the minimum of these two parameters to determine the right
output tra�c pro�le.

As described in section 2.1, a sender keeps on sending requests until successful reservation setup is indicated
with a feedback packet. This means that the sender sends more requests than needed if the round-trip-time is
greater than the interval necessary to allocate resources, since in this way the source keeps sending requests even
after the desired amount of resources has been reserved. It's the feedback that is returned to the sender, which
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indicates the right allocation obtained on the path. Since the source is feedback-compliant after an interval the
routers on the path start releasing a part of the over-estimated reservation already allocated. The feedback that
is returned to the sender may also show an increased number of requests. The sender must not interpret those
requests as a direct increase of the reservation, because the routers didn't either. Instead, the sender estimator
must correct the feedback information accordingly, which is achieved through the computation of the minimum
of the feedback and of the resource amount requested by the source.

Our architecture is independent of the speci�c algorithm used to implement the estimator. Sections 3.1 and
3.2 describe two di�erent solutions. The de�nition and evaluation of algorithms for reservation calculation in
hosts and routers is still ongoing work.

3.1 Basic estimation algorithm

The basic algorithm we present here is suitable for sources and destinations, and could be used as a rough
estimator by routers. This estimator counts the number of requests it receives (and accepts) during a certain
observation interval and use this as an estimate for the bandwidth that will be used in future intervals of the
same duration.

In addition to requests for new reservations, the use of existing reservations needs to be measured too. This
way, reservations of sources that stop sending or that decrease their sending rate can automatically be removed.
For this purpose the use of reservations can be simply measured by counting the number of reserved packets that
are received in a certain interval.

To compensate for deviations caused by delay variations, spurious packet loss (e.g. in a best-e�ort part of
the network), etc., reservations can be \held" for more than one observation interval. This can be accomplished
by remembering the observed tra�c over several intervals and using the maximum of these values (step 3 of the
following algorithm). Given a hold time of h observation intervals, the maximum amount of resources which can
be allocated Max, res and req (the total number of reserved and request bytes received in a given observation
interval), the reservation R (in bytes) is computed by a router as follows. Given a packet of n bytes:

if (packet_type == REQ)

if (R + req + n < Max) {

accept;

req = req + n; // step 1

}

else degrade;

if (packet_type == RES)

if (res + n < R) {

accept;

res = res + n; // step 2

}

else degrade;

where initially R; res; req = 0. At the end of each observation cycle the following steps are computed:

i = h;

while (i > 1) {

R[i] = R[i-1];

i--;

}

R[1] = res + req;

R = max (R[h], R[h-1], ..., R[1]); // step 3

res = req = 0;

The same algorithm is run by the destination with the only di�erence that no admission checks are needed.
Examples of the operation of the basic algorithm are shown in section 5.1.

This easy algorithm presents several problems. First of all, the choice of the right value of the observation
interval is critical and di�cult. Small values make the estimation dependent on bursts of reserved or request packets
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and cause an overestimation of the resources needed. On the other hand, large intervals make the estimator react
slowly to changes in the tra�c pro�le. Then, the strictness of tra�c acceptance control is �xed, while adaptivity
would be highly desirable in order to make the allocation of new resources stricter as the amount of resources
reserved gets closer to the maximum. These problems can be solved by devising an adaptive enhanced algorithm
like the one described in the following section.

3.2 Enhanced estimation algorithm

Instead of using the same estimator in every network component, we can enhance the previous approach so
that senders and receivers still run the simple algorithm described above, while routers implement the following
modi�ed estimator.

There are two components in this method: the admission control based on a low pass �lter and the admission
control adaption, which uses a feedback based on the observed performance of prior estimates, e.g. on the rate
of rejected reserved and request packets estimated by the router.

Packet admission control and low pass �lter In order to �lter out small scale tra�c pro�le variations in
a way close to the real node behavior, we borrow the concept of deterministic e�ective bandwidth from network
calculus [15]. Given an arrival curve � and a delay bound D, the corresponding deterministic e�ective bandwidth
eD is de�ned as:

eD = sup
s�0

�(s)

s+D

By applying this de�nition to our model and by assuming that observation starts at time 0, we obtain that:

e = sup
1�i�j

ni + : : :+ nj

tj � ti +D

where t1; : : : ; tk are the time instants at which packets arrive, ni is the number of bytes in packet number i (only
reserved or request packets are taken into account) and D is a �xed parameter: the delay objective.

e represents the bandwidth required for the ow with smoothed peaks, as packets are queued in a bu�er system
requesting a maximum queueing time of D. Since the tra�c pro�le of a ow may change, the capacity estimated
for a given ow should vary accordingly. To achieve this we estimate the e�ective bandwidth e at any arrival
time tk of a reserved or request packet over a sliding window w:

ek = sup
1�i�j and ti;tj2[tk�w;tk]

ni + : : :+ nj

tj � ti +D
(1)

Then, in order to smooth out changes in ek as a function of the packet rate of a ow we eventually calculate
 by taking the exponentially weighted average of ek and we assume that the amount of bandwidth allocated by
a router at time tk per input and output port is equal to :

k = �dk�1 +
�
1� �d

�
ek (2)

where � is a parameter such that 0 < � < 1, and d = tk � tk�1. �d is the weight, which depends on the time
between packets. If no packets arrive for a long time, then k � ek as expected and if e is constant, then k
converges towards e, with a speed depending on �. Parameters � and w de�ne the behavior of the low pass �lter,
in particular the resource release process of the estimator when a given ow stops, and the reservation keeping
during temporary silences.

The packet admission procedure is devised in such a way that reserved packets are always considered in the
estimator, while request packets have to pass an admission control test. If the k-th packet is reserved, then
equations 1 and 2 are computed and the packet is accepted, even if it could be discarded later by the scheduler.
On the other hand, if the packet type is request, the following test is applied:

if k� � Cmax then accept else refuse

where Cmax
2 is a �xed parameter representing the maximum amount of bandwidth which can be reserved on

a given output interface, and � is a correction factor computed according to the algorithm presented in the

2Rate Cmax is enforced through a scheduler associated to a shaper.
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following paragraph. If the packet is accepted then the estimated bandwidth is updated, otherwise the packet is
downgraded to best-e�ort and we let k = k�1 (i.e. if a packet is rejected by the admission test, its arrival is
ignored by the estimator).

Adaptivity in packet admission control Adaptivity in packet admission control is obtained by making
parameter � vary as a function of the number of reserved bytes lost. There are two independent variables: Lr,
the number of reserved bytes really lost by the router, and Lv, the number of reserved bytes virtually lost as
de�ned in formula 3.
Lr is the measure of real losses of reserved and (accepted) request packet, which occur when the amount of

reserved tra�c reaches the capacity Cmax. We assume that Lr is counted over intervals (t� �; t] (see below).3

In order to tune � before reserved tra�c reaches the capacity Cmax the following parameter Lv is calculated
at each packet arrival:

Lv := max
�
0; Lv + nk � k�1�(tk � tk�1)

�
(3)

where nk is the size of the current packet, tk � tk�1 is the time since the previous packet was received, and
k�1 is the value of  computed after the last packet reception. Lv represents the maximum bu�er occupancy,
counted in bytes, of a queue. We suppose that at time t = 0 this queue is empty and it is continuously served at
rate �, which is the current estimate of the bandwidth required by the ow.

We obtain the maximum virtual queue size Lmaxv by calculating

Lmaxv := max(Lmaxv ; Lv) (4)

after updating Lv. The initial value of Lmaxv is 0.
If our estimation procedure is correct, we should have Lmaxv � �D, otherwise we need to increase the value

of �. Conversely, if Lmaxv is very small, then we have to decrease �.
To determine how to change �, we use Lmaxv to calculate the rate �0 at which we have to serve the virtual

queue to reach the length corresponding to the delay goal D at the present rate �:

�0 = � +
Lmaxv � �D

B�1

or

�0 = � +B

�
Lmaxv


� �D

�

where B�1 is the time after which the length goal should be reached. � is updated with period � as follows:

� := �+A
Lr

Nr| {z }
if Lr>0

+B

�
Lmaxv


� �D

�
(5)

where Nr is the amount of data received in reserved and (accepted) request packets since the last update of �,
Lr is the amount of such data lost in the same interval,  is the current bandwidth estimate, and A and B are
�xed parameters to be tuned by simulation. The initial value of � is 1. Lmaxv is reset to Lv after computing (5).

The possibility to make � a function of the rejection rate of request packets and the tuning of the parameters
used in the algorithms described above, are arguments for future work.

Examples of the operation of this algorithm are shown in section 5.2.

4 Additional aspects
This section describes further details of the proposed reservation architecture and discusses areas requiring

further research.

3The actual measurement and �ltering method for Lr is argument of further study.
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4.1 Resource reservation in a router

This section gives an example of how resource reservation can be handled in a simple router where only output
bu�er space is controlled. Depending on its architecture, a real router may have to take the status and utilization
of many other components into account.

Figure 6 illustrates the packet processing in the example router: After passing the router fabric, the reservation
information in each packet is processed (see section 2.1). Packets of type request or reserved are put into the
queue for reserved tra�c. All other packets are put into the best-e�ort queue or they are discarded. The queues
are emptied by a scheduler which gives priority to the reserved tra�c queue. The scheduler may be more complex
if sophisticated forms of link sharing are employed.

Reserved traffic queue
Admission control

and packet classifier

Best-effort queue

Scheduler

In
p

u
t 

p
o

rt
s

O
u

tp
u

t 
p

o
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s

R
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u
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Figure 6: Example router.
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Figure 7: Reservation control in router.

Placing the estimator directly before the output queues naturally leads to aggregation: since the critical
resource at this point is queue space, one can for instance express reservations as allocations of such space within
a given interval. The sum of the allocations then corresponds to the aggregate bandwidth, which is reserved on
that port.

Detection of malfunction can be improved without impacting scalability by calculating reservations not only
for each output port, but for each input and output port pair (which is called an \intersection" in �gure 7).

4.2 Starvation

Reservation establishment is incremental. It is therefore possible for a sender to obtain only a fraction of the
required resources if a shortage occurs before all the requests have been accepted. This can lead to starvation if
several senders (unsuccessfully) compete for the same resource for an extended period of time.

A sender can react to this situation in the following ways:

� give up and report reservation failure to the application

� try to proceed with the partial reservation (e.g. if the shortage occurred during an attempt to increase an
older reservation)

� back o� and try again later

In the latter case, the sender has to wait for the hold time plus a random delay before sending new requests.
The random delay should be exponentially increased on repeated reservation failures to the same destination.

4.3 Generation of inelastic best-e�ort tra�c

Degrading request packets to best-e�ort during resource shortage is desirable, because it allows the communi-
cating hosts to easily distinguish a mere reservation failure from a total communication breakdown.

Unfortunately, blindly converting all request packets to best-e�ort may have disastrous e�ects on other best-
e�ort tra�c: since a sender emits requests at the full rate of the desired reservation, the resulting inelastic best-
e�ort tra�c would be grossly unfair with respect to protocols like TCP, which perform end-to-end congestion
control (see also [18]).
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If the network implements a packet type for inelastic best-e�ort tra�c4 or generally a lower priority type
than normal best-e�ort tra�c, that type should be used when degrading request packets. Otherwise, a more
aggressive discard policy has to be used for those packets. This could for instance be modulated by measuring
congestion-controlled tra�c (e.g. TCP) owing to the same destination.

4.4 Route changes

Like most other reservation architectures, the proposed one may fail to provide the promised service if there is
a route change. Architectural means to reduce the number of route changes to the absolutely necessary minimum
(e.g. \route pinning" [19]) are outside the scope of this paper.

Once a route change occurs, e.g. due to a link failure, it typically has the following e�ects: The tra�c is
redirected to a path on which no prior reservation exists (b,c). Note that A cannot distinguish older reserved
tra�c sharing the path via a and b from redirected tra�c and that it may therefore degrade reserved packets of
the former.

Failed link

Extra traffic without
prior reservation

Extra requests

b

c

d

A

B

C

D

a

Figure 8: Route change example.

A further anomaly can occur if the original path and the redirected path merge again further downstream (d):
The original reservation and the new requests that were generated to repair the reservation can collide and yield
an arti�cially high reservation. This is similar to the time-to-feedback problem discussed in section 3 and the
same mechanisms can be used to overcome it.

4.5 Multicast

The reservation mechanism described can be slightly extended to a multicast scenario. The extensions concern
the feedback and the reservation protocol at the source. They are needed to cope with several problems which
are typical in a multicast environment:

� the joining mechanism: how to establish reservations to a new group member without a�ecting the reser-
vation already in place;

� transparency: events like route instability, topology changes, joining and leaving of some group members and
situations like heterogeneous connectivity should only a�ect their limited scope. They should be completely
transparent to the remaining session members and also to the connections established by other applications.

� feedback implosion: the feedback protocol which works well in a unicast scenario does not scale well in a
multicast environment.

Establishing reservations in a multicast tree The mechanism described here to build up reservations in a
multicast context �ts for multicast routing algorithms based on the Core Based Tree approach [20, 21], in which
sources do not ood tra�c periodically to the network. In this way reservations (request and reserved packets)
can be restricted to the links belonging to the multicast tree.

4Such a type would for instance have service characteristics like a low delay but a higher loss probability.
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The source starts sending request messages to the multicast routers which explicitly joined the group as a reply
to the source register message. Members of a session are divided into two sets:

1. joining members, forming the request multicast group;

2. \old" members, forming the reserved multicast group.

This distinction is necessary in order to make the joining operation transparent to the hosts and to the branches
already belonging to the session.5 The purpose of this division is to forward request packets only on the path
from the nearest multicast router belonging to the reserved group to the new member, as shown in �gure 9.

req

res

res res

req

req

req

res

res

reserved tree

request tree

res
req

req

req res

res

Figure 9: Request and reserved multicast group.

The join request is issued hop-by-hop toward a multicast router already on the reserved tree. Routers already
receiving reserved tra�c start sending the multicast tra�c to the member after receiving the join request. In
addition to that, they also switch the reserved ag to request. Members of the request group can compare their
reservation estimate to the target amount indicated by the source. If the reservation o�ered is acceptable, then
the member can leave the request group and join the reserved group.6

This mechanism can be implemented by associating two multicast addresses to the two distinct groups. The
addresses can be di�erent only in the least signi�cant bit { for example it can be 0 for the request group and 1 for
the reserved group. Then, the algorithm executed by the multicast router when a multicast packet is received, is
the following:

if ((packet_addr is multicast) and (packet_type == RES)) {

forward packet to reserved group;

if (router is in the request group) {

newpacket = copy(packet);

newpacket_type = REQ;

forward newpacket to request group;

}

}

5New members cannot join directly the reserved group because this would have the e�ect of injecting reserved packets into links
on which the corresponding amount of resources was not allocated before. Since routers have no means to distinguish \legal" from
\illegal" packets, non-conforming data would a�ect other reservations already in place. Vice versa, the sending of request packets
would have the e�ect of increasing the reservation level on the trunks already belonging to the reserved tree.

6This mechanism requires that the interval between the leaving and the joining is small compared to the life time of the reservation
just established.
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Transparency In a network with bottlenecks the algorithm should avoid that the link with worst connectivity
(e.g. with the lowest bandwidth availability) limits the reservation o�ered to each member of the group. To cope
with this heterogeneity multicast members could be grouped into separate sets and layered coding [22] could be
used.

Di�erent coding layers representing di�erent levels of quality are sent to di�erent multicast groups. All the
receivers are included in a common multicast tree for the distribution of the fundamental coding layer, then other
coding layers can be added to it. The tra�c distribution of each layer can be implemented through the reserved
and request group described above and each member can join several groups at the same time depending on the
quality of its connectivity.

Feedback The problem of feedback implosion is solved by simply not sending any explicit feedback but by
using group membership as an implicit indicator instead. The multicast source can �x an a priori value for the
minimum amount of reservations required to forward the tra�c of a given coding layer. After joining the request
group the receiver does ow acceptance control. If the estimated reservation is acceptable compared to the target
set by the source, then it can leave the request group and join the reserved, otherwise it leaves the request group
and gives up. So, the absence of a reserved group of a session can mean two things: no members have joined the
request group yet or no members can accept the reservation o�ered.

Since the source does not receive any feedback, it can statically �x the reservation threshold of each multicast
group. If that amount of resources can not be allocated, hosts will leave both groups, the multicast trees disappear
and the (partial) reservations time out.

5 Simulation
Section 5.1 provides a theoretic description of the behavior of the reservation mechanism in a very simple

example, while section 5.2 shows the simulated behavior of the proposed architecture.

5.1 Reservation example

The network we use to illustrate the operation of the reservation mechanism, is shown in �gure 10: the sender
sends over a delay-less link to the router, which performs the reservation and forwards the tra�c over a link with
a delay of two time units to the receiver. The receiver periodically returns feedback to the sender.

The sender and the receiver both use the basic estimator algorithm described in section 3.1. The router may
{ and typically will { use a di�erent algorithm (e.g. the one described in section 3.2).

Delay=0u Delay=2u
Sender Router Receiver

Local estimate and reservation in feedback

Figure 10: Example network con�guration.

The bandwidth estimate at the source and the reservation that has been acknowledged in a feedback message
from the receiver are measured. In �gure 11, they are shown with a thin continuous line and a thick dashed line,
respectively. The packets emitted by the source are indicated by arrows on the reservation line. A full arrow head
corresponds to request packets, an empty arrow head corresponds to reserved packets. For simplicity, the sender
and the receiver use exactly the same observation interval in this example, and the feedback rate is constant.

The source sends one packet per time unit. First, the source can only send requests and the router reserves
some resources for each of them. At point (1), the estimator discovers that it has established a reservation for six
packets in four time units, but that the source has only sent four packets in this interval. Therefore, it corrects
its estimate and proceeds. The �rst feedback message reaches the sender at point (2). It indicates a reservation
level of �ve packets in four time units (i.e. the estimate at the receiver at the time when the feedback was sent),
so the sender can now send reserved packets instead of requests. At point (3), the next observation interval ends
and the estimate is corrected once more. Finally, the second feedback arrives at point (4), indicating the �nal
rate of four packets in four time units. The reservation does not change after that.
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Figure 11: Basic estimator example.

5.2 Simulation results

The network con�guration used for the simulation is shown in �gure 12.7 The grey paths mark ows we
examine below.
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Figure 12: Con�guration of the simulated network.

There are eight routers (labeled R1: : :R8) and 24 hosts (labeled 1: : :24). Each of the hosts 1: : :12 tries
occasionally to send to any of the hosts 13: : :24. Connection parameters are chosen such that the average
number of concurrently active sources sending via the R1{R2 link is approximately �fty. The bandwidth of a
ow remains constant while the ow is active and is chosen randomly from the interval [1; 200].

All links in the network have a bandwidth of 4000 packets per second and a delay of 15 ms.8 We allow up to
90% of the link capacity to be allocated to reserved tra�c. The link between R1 and R2 is a bottleneck, which
can only handle about 72% of the o�ered tra�c. The delay objective D of each queue is 10 ms. The queue size
per link is limited to 75 packets.

Figure 13 shows the R1{R2 link as seen from R1. We show the total o�ered rate, the estimated reservation
(�) and the smoothed actual rates of request and reserved packets.

Figure 14 shows the behaviour of the real queue. The system succeeds in limiting queuing delays to approxi-
mately the delay goal of 10 ms, which corresponds to a queue size of 40 packets. The queue limit of 75 packets
is never reached.

7The programs and con�guration �les used for the simulation will be made available on http://lrcwww.epfl.ch/srp/
8Small random variations were added to link bandwidth and delay to avoid the entire network from being perfectly synchronized.
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Figure 14: Queue length at R1 on the link towards R2.

Finally, we examine some end-to-end ows. Figure 15 shows a successful reservation of 84 packets per second
from host 4 to 15. The requested rate, the estimation at the destination, and the (smoothed) rate of reserved
packets are shown. Similarly, �gure 16 shows the same data for a less successful reservation host 4 attempts later
to 19.

During the entire simulated interval of 50 seconds, 3'368 request packets and 164'723 reserved packets were
sent from R1 to R2. This is 83% of the bandwidth of that link.

6 Conclusion
We have proposed a new scalable resource reservation architecture for the Internet. Our architecture achieves

scalability for a large number of concurrent ows by aggregating ows at each link. This aggregation is made
possible by entrusting tra�c control decisions to end systems { an idea borrowed from TCP. Reservations are
controlled with estimation algorithms, which predict future resource usage based on previously observed tra�c.
Furthermore, protocol processing is simpli�ed by attaching the reservation control information directly to data
packets.

We did not present a conclusive speci�cation but rather described the general concepts, gave examples for
implementations of core elements, proposed estimator algorithms for sources, destinations and routers, and showed
some illustrative simulation results. Further work is needed for a comprehensive speci�cation, and future research
will focus on evaluating and improving the estimator algorithms described in this paper, and on related algorithms.
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