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Abstract

Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects about five million people
worldwide. Diagnosis remains clinical, based on phenotypic patterns. The discovery of laboratory markers that will enhance
diagnostic accuracy, allow pre-clinical detection and tracking of disease progression is critically needed. These biomarkers
may include transcripts with different isoforms.

Methodology/Principal Findings: We performed extensive analysis on 3 PD microarray experiments available through GEO
and found that the RNA splicing gene SRRM2 (or SRm300), sereine/arginine repetitive matrix 2, was the only gene
differentially upregulated among all the three PD experiments. SRRM2 expression was not changed in the blood of other
neurological diseased patients versus the healthy controls. Using real-time PCR, we report that the shorter transcript of
SRRM2 was 1.7 fold (p = 0.008) upregulated in the substantia nigra of PDs vs controls while the longer transcript was 0.4
downregulated in both the substantia nigra (p = 0.03) and amygdala (p = 0.003). To validate our results and test for the
possibility of alternative splicing in PD, we performed independent microarray scans, using Affymetrix Exon_ST1 arrays, from
peripheral blood of 28 individuals (17 PDs and 11 Ctrls) and found a significant upregulation of the upstream (59) exons of
SRRM2 and a downregulation of the downstream exons, causing a total of 0.7 fold down regulation (p = 0.04) of the long
isoform. In addition, we report novel information about hundreds of genes with significant alternative splicing (differential
exonic expression) in PD blood versus controls.

Conclusions/Significance: The consistent dysregulation of the RNA splicing factor SRRM2 in two different PD neuronal
sources and in PD blood but not in blood of other neurologically diseased patients makes SRRM2 a strong candidate gene
for PD and draws attention to the role of RNA splicing in the disease.

Citation: Shehadeh LA, Yu K, Wang L, Guevara A, Singer C, et al. (2010) SRRM2, a Potential Blood Biomarker Revealing High Alternative Splicing in Parkinson’s
Disease. PLoS ONE 5(2): e9104. doi:10.1371/journal.pone.0009104

Editor: Mark R. Cookson, National Institutes of Health, United States of America

Received November 7, 2009; Accepted January 18, 2010; Published February 8, 2010

Copyright: � 2010 Shehadeh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was partly supported by an intramural Scientific Awards Committee (SAC) grant from the University of Miami Miller School of Medicine (SP
and LAS) and a National Institutes of Health National Institute of Neurological Disorders and Stroke (NIH/NINDS) Morris K. Udall Parkinson Disease Research Center
of Excellence (JV). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lshehadeh@med.miami.edu

Introduction

The diagnosis of Parkinson’s disease (PD) remains purely

clinical and is based on the phenotypic expression of three

cardinal clinical signs (bradykinesia, tremor and rigidity) in the

absence of symptoms and signs indicative of other neurological

diseases. Genome-wide transcription analysis of biological material

(i.e. human, animal tissues, cell cultures) has shown promise in

identifying disease-relevant biomarkers [1]. Postmortem human

brain expression profiling has shown significant changes in PD

versus healthy states [2,3,4,5,6,7,8,9,10]. A single study looking at

expression patterns in peripheral venous blood samples of patients

with movement disorders and control subjects has provided some

preliminary insight on possible blood biomarker candidates for PD

diagnosis [11].

We hypothesized that computational analysis of multiple PD

microarray data can be used to identify certain sets of PD-

associated marker genes based on gene expression patterns.

Therefore, we thoroughly analyzed three publicly available PD

datasets generated from a rotenone-treated neuroblastoma

line[12], postmortem substantia nigra from PD patients and

controls[2], and lymphocytes from PD patients and controls[11].

While this approach deals with a huge variability factor, the

strength of the approach lies in using evidence in multiple PD

datasets that may be very different in etiology, cause, and tissue

source. In summary, we hypothesized that interrogating publicly

available PD transcriptome-wide expression datasets from differ-

ent tissue sources would identify lead candidate genes.

In this study, we identified the RNA splicing factor SRRM2 (or

SRm300), serine/arginine (SR) repetitive matrix 2 as differentially

expressed in multiple gene expression datasets. Such an SR

protein binds both to sequence elements on the pre-mRNA and to

other components of the spliceosome. As a result, multimolecular

complexes that interact with pre-mRNA at multiple sites are
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formed, allowing the recognition and bringing together of distant

sequences in the excision-splicing event[13]. Driven by the

biological function of SRRM2, we investigated the possibility of

alternative splicing of 1) this candidate gene in two different brain

regions from PD patients and controls, and 2) global transcripts in

PD blood samples and controls. We found that SRRM2 has

differential splicing in PD substantia nigra, amygdala, and

leukocytes of sporadic PD patients. In addition to identifying

SRRM2 as alternatively spliced and as a potential biomarker for

PD, we report here 3 general interesting findings. First, there is an

interesting overlap in differential gene expression between the

brain (substantia nigra) and blood in PD, which highlights the

credibility for using blood to find biomarkers in PD. Second, there

are 35 genes (including SRRM2) differentially expressed in PD

blood in both our new blood study and the Scherzer blood

study[11]. These may all be worth further scrutiny as potential

blood biomarkers for PD. Third, there are hundreds of genes

(including SRRM2) with differential alternative splicing in PD

blood samples relative to controls. Therefore, there is a prevalent

phenomenon of alternative splicing in PD that calls for more study

and investigation.

Results

SRRM2 Is the Only Differentially Expressed Gene in All 3
PD Expression Datasets

We performed extensive analysis on three different publicly

available microarray experiments on PD: (A) Twenty-two chips

from the substantia nigra in postmortem brain of PD patients and

controls [2], (B) 21 chips on one to four week rotenone-treated

neuroblastoma cells [12] (an in vitro model of PD), (C) 105 chips on

peripheral blood of PD versus healthy and neurological disease

control subjects [11]. There were 174 transcripts corresponding to

160 genes that overlapped in at least 2/3 PD experiments.

Representative genes are shown in the heatmap (Figure 1A). The

complete list of differentially expressed overlapping genes between

any 2 of the 3 PD experiments is presented in Table S1. The RNA

splicing gene SRRM2, (serine/arginine repetitive matrix 2) was the

only gene differentially upregulated in all three PD experiments

(Figure 1B). SRRM2 transcript was 1.77 fold (p,0.01) upregulated

in the substantia nigra of PD patients versus controls. SRRM2

transcript was 1.44 fold (p,0.05) upregulated in the 4 wk rotenone

treated cells versus the controls. SRRM2 transcript was 1.27 fold

(p,0.05) upregulated in peripheral blood of PD patients versus

healthy controls and was unchanged in the blood of neurological

disease patients versus the healthy controls.

SRRM2 Isoforms Are Both Differentially Expressed in PD
but in Opposite Directions

SRRM2 has one long isoform (16 exons) and 3 short isoforms

(,11 exons). See Figure 2A. Using real-time PCR on postmortem

substantia nigra (SN) and amygdala from 10 PD patients versus 10

controls, we found that the shorter transcript of SRRM2 was

significantly upregulated (FC = 1.7, p = 0.008) in the SN (as in the

microarrays) but unchanged in the amygdala (AMG) of PD

patients. Interestingly, the longer transcript of SRRM2 was

significantly 0.4 downregulated in both the SN (p = 0.03) and

Amygdala (p = 0.003) of PD patients (Figure 2B).

Splicing Analysis Confirms Isoform Switching of SRRM2
and Reveals High Alternative Splicing Phenomenon in PD

Using new Exon array profiling on peripheral blood that we

collected from 17 PD patients and 11 controls (GSE 18838), we

looked for genes with differential splicing. We identified exons that

have statistically significant changes in inclusion rates (relative to

the gene level) between PDs and controls. Consistent with rt-PCR

results, we found that SRRM2 in PD switches from basal

transcript levels of SRRM2 to high expression of the short isoform

and low expression of the long isoform. Interestingly, there was a

strikingly significant elevation of overall gene splicing in PD blood

compared to controls as shown by 218 genes (listed in Table S2),

each consisting of exons that have differential expression within

the same gene between PDs and controls. Figure 3 shows the

differential exonic expression of SRRM2 and 3 other genes. These

4 genes are the ones that overlapped between the 218 differentially

spliced genes in our new dataset and the 35 genes that we

validated from the Scherzer blood microarray [11] (as explained in

the next section and shown in Figure 4B). Gene Ontology

classification of the 218 genes with significant splicing events

grouped 112 of the 218 genes into one molecular significant

function, protein binding, with corrected p-value = 0.004, (listed in

Table S3).

Comparison with Earlier Blood Expression Study
Our new microarray experiment examining global gene

expression in peripheral blood samples from 17 PD patients and

11 controls revealed 58 genes differentially expressed by at least

2.0 fold change (p,0.05) (listed in Table S4). The top 10 genes (FC

of at least 2.5) are shown in Figure 4A. We compared the genes

differentially expressed (FC = 1.2 p,0.05) in our data to the ones

in the Scherzer data [11]. Interestingly, we found an overlap of 35

transcripts shown in Figure 4B, including the downregulated

Bcl11B which had previously been validated by real-time PCR

[11]. That is out of ,150 transcripts that were differentially

expressed in either one of the two PD blood expression studies

(,40,000 transcripts queried per chip), 35 genes, including

SRRM2, were common to both studies. Note that in our

microarray data, not all genes including SRRM2 passed the

threshold when we stratified by gender as shown in Supplementary

Figure S1. This is most likely due to loss of power as the number of

replicates became small after stratification.

Discussion

We interrogated multiple datasets from different tissue sources

and identified a potential molecular marker SRRM2 (Figure 1B).

While SRRM2 was the only gene that stood out as differentially

expressed in all 3 PD public datasets, there were other genes that

overlapped in 2 out of the 3 PD experiments (Figure 1A and Table

S1). Among the intriguing overlaps that emerged from our analysis

are the following: SNCA (alpha-synuclein), a PD-associated gene

involved in microglial cell activation and synaptic transmission,

was significantly downregulated in both the substantia nigra and

blood in PD patients versus controls. BCL11B, which was

previously shown by microarrays and rt-PCR to be downregulated

in PD blood[11] was also downregulated in rotenone-treated

neuroblastomas, and so was the creatine neurotransmitter

transporter SLC6A8. The transcription factor SOX11 and the

endoplasmic reticular protein OLFM1, both involved in nervous

system development, as well as CNTN4 (contactin4) involved in

axonal guidance and brain development, were all downregulated

in both the substantia nigra and rotenone-treated neuroblastomas.

SRRM2 plays an important role in pre-mRNA splicing and has

recently been shown to play a role in cell migration [14]. Recent

analyses suggest that at least 75% of multi-exon genes in the

human genome are subject to alternative splicing [15]. This form

of pre-mRNA post-transcriptional modification has the potential

SRRM2 & Alt. Splicing in PD
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to expand the proteome exponentially, generating a spectrum of

activities [16]. Some genes generate tens of thousands of

functionally distinct proteins [17]. Splice variants from the same

gene can produce proteins with distinct properties and different

(even antagonistic) functions [18] [19]. A number of genetic

mutations involved in human disease have been mapped to

changes in splicing signals or sequences that regulate splicing [20].

In a very relevant context, splice isoform ratios have been

proposed to be robust biomarkers for physiological conditions

[21]. Thus, an understanding of changes in splicing patterns is

critical to a comprehensive understanding of the biological

regulation and underlying mechanism of PD.

To date, all of the global expression studies in PD have looked

at a single transcript per gene, although most genes have multiple

transcripts generated by alternative splicing. Alternative pre-

mRNA splicing may be used as a mechanism of gene

regulation[22]. The primary long transcript can be processed in

many different ways by alternative usage of exons. Regulatory

Figure 1. Heat map and venn diagrams of differentially expressed genes overlapping in multiple PD studies. A. Shown are the fold
change expression levels of genes differentially expressed in at least 2/3 PD studies: (1) up in both the substantia nigra (SN) and 4-wk rotenone-
treated cells (RT), (2) down in substantia nigra and blood, (3) down in 4-wk rotenone-treated cells and blood. Arrows point to selected upregulated
(red) and downregulated (blue) genes. B. Differentially expressed genes determined by our analysis of 3 different microarray experiments on PD,
each from a different tissue source, were compared to find common downregulated (left) and upregulated (right) transcripts. A 1.2 fold change and
p,.05 significance cut-offs were used. No multiple correction was employed.
doi:10.1371/journal.pone.0009104.g001
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Figure 2. Alternate isoforms of SRRM2 with different number of exons and different expression levels in postmortem PD brain. A.
Two main splice variants of SRRM2 differ at their 39 end. The longer SRRM2 isoform contains 15 exons and the shorter isoform contains 11 exons. B.
SRRM2 isoforms were differentially expressed in postmortem PD brain regions. The shorter transcript of SRRM2 was 1.7 fold (p = 0.008) upregulated in
the SN of PDs versus controls while the longer transcript was 0.4 fold downregulated in both the SN (p = 0.03) and Amygdala (p = 0.003) of PDs versus
controls.
doi:10.1371/journal.pone.0009104.g002

Figure 3. Differential Exonic expression in PD Blood. Splicing Analysis reveals significant differential exonic expression within 218 genes
(p,0.05 with Benjamini Hochberg FDR correction). Shown here are SRRM2, ADIPOR1, TKT, and SLC4A1, all four genes were also differentially
expressed in the Scherzer blood data (p,0.05 with no multiple correction). Each probeset represents an exon. Note that in SRRM2, the 59 exons are
upregulated while the downstream exons are downregulated in PD patients versus controls.
doi:10.1371/journal.pone.0009104.g003
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splicing factors, such as SRRM2, influence the expression of

numerous pre-mRNAs, often occurring to coordinate changes in

protein isoform expression and function. While many modifica-

tions resulting from alternative splicing are subtle, they can affect

major signaling properties of the nervous system, such as ion

channel features, half-life of proteins and gain or loss in receptor

function[23]. Multiple intrinsic and environmental stimuli can

affect splicing. In addition, splicing errors are associated with a

wide variety of diseases including ALS[24,25], Alzheimer’s

disease[26,27,28] and PD[28,29,30,31,32,33]. There is currently

little information on the prevalence, type, and significance of

splicing of genes in PD in the literature.

The RNA splicing factor SRRM2 which we found as

differentially expressed in multiple public PD datasets had

alternative splice forms in two brain regions, substantia nigra and

amygdala, from PD patients (Figure 2). Our global splicing analysis

of blood samples from 17 PD patients and 11 healthy controls

showed that SRRM2 has differential exonic expression, with the 59

exons over-expressed and the 39 exons down-regulated in PD

relative to controls (Figure 3). Interestingly, there were hundreds of

genes with significant changes in exonic expression in PD blood

versus controls (S2). Currently, we know only a few of the

transacting splice factors that control alternative splicing of synaptic

protein pre-mRNAs (reviewed in [34]). Future studies aimed at

identifying these factors should reveal new signaling pathways that

orchestrate changes in alternative splicing of multiple pre-mRNAs

to control neuronal excitability and synaptic efficacy.

The final outcome is that differential expression and alternative

splicing of SRRM2 potentially invokes high levels of alternative

splicing in the genome of PD patients. While experimental

validation is needed to support our conclusion, the phenomena of

an isoform-dependent regulation of pre-mRNA splicing already

exists[35]. While our splicing analysis was done in blood samples,

we anticipate that such high levels of alternative splicing, at the

transcriptome level, is also present in the brain of PD patients

because that the same pattern of SRRM2 splicing and dys-

regulation is evident in the substantia nigra and amygdala of PD

patients (Figure 2B).

Importantly, the binding of serine arginine proteins such as

SRRM2 to their degenerate recognition exonic sequences is

Figure 4. Differential gene expression in 2 PD blood studies. A. Shown are top 10 genes differentially expressed by at least 2.5 fold in PD
blood versus controls according to analysis of our new expression arrays (p,0.05 with no multiple correction). B. 35 differentially expressed
transcripts by at least 1.2 fold overlap between our new PD blood profiling and the Scherzer blood dataset (p,0.05 with no multiple correction).
doi:10.1371/journal.pone.0009104.g004
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intrinsically weak, resulting in a concentration-dependent regula-

tion, for example, certain sequence elements are recognized only

at higher SR protein concentration[36]. Therefore, an over-

expression of SRRM2 in PD brain and blood may lead to an

increased concentration if SRRM2 protein levels enabling slicing

events to take place. Further studies will be needed to understand

how SRRM2 itself is alternatively spliced and dynamically

expressed in PD and to determine whether splicing is prevalent

in the substantia nigra of PD patients and how it may play a role in

the development of PD.

Methods

Analysis of 3 Previous PD Microarray Datasets
We performed extensive analysis on three different publicly

available microarray experiments on PD: (A) Twenty-two chips

from the substantia nigra in postmortem brain of PD patients and

controls [2] (GEO Accession: GSE7621), (B) 21 chips on one to

four week rotenone-treated neuroblastoma cells [12], an in vitro

model of PD (GEO Accession: GSE4773), (C) 105 chips on

peripheral blood of PD versus healthy and neurological disease

(non-PD) control subjects[11] (GEO Accession: GSE6613). All

151 raw expression files were normalized using GC-RMA

processor. All normalized expression data was analyzed using

GeneSpring software. Following normalization one-way analysis of

variance was performed for each gene to identify statistically

significant gene expression changes. Two criteria were used to

determine whether a gene was differentially expressed: fold change

of 61.2 and p value ,.05 using a two-tailed distribution. No

correction for multiple comparisons was done. While a value of 1.2

is considered a low cut-off for fold change in microarrays, it is an

accepted cut-off which with statistical significance, is likely to be

validated by real-time PCR[37]. Lists of differentially expressed

genes from different experiments were compared within Gene-

Spring and displayed as Venn diagrams to show overlapping and

non-overlapping genes (Figure 1). The complete list of overlapping

genes is shown in Table S1.

Real-Time PCR of SRRM2 Isoforms in Postmortem SN and
AMG

Tissue samples from 10 sporadic PD patients and 10controls (5

male, 5 female, mean age 84.25-SD 6.4) were examined.

Demographics and clinical details for PD patients are provided in

Table S5. All controls had normal brain pathology with no evidence

or history of neurodegenerative processes. Total RNA was extracted

from 100 mg of brain tissue (provided by the University of Miami

Brain Bank) using TRIzol Reagent (Invitrogen, Carlsbad, CA). For

each extraction RNA concentration and integrity was determined

by an Agilent Nanodrop Spectrophotometer and Agilent BioAna-

lyzer respectively, and cDNA was synthesized using high capacity

cDNA kit (Applied Biosystems, Foster City, CA). SRRM2

expression level was measured in each sample by real-time PCR

using the ABI 7900HT thermocycler. SRRM2 expression levels

were normalized to those of the internal reference 18S rRNA

(Hs99999901_s1). All samples were run in duplicates. cDNA was

amplified using TaqMan Universal PCR master mix reagent

(Applied Biosystems, Foster City, CA) at the following conditions:

10 minutes at 25uC, 120 minutes at 37uC, and 5 seconds at 85uC.

The two target SRRM2 cDNAs were amplified using TaqMan

assay (,120 bp sequence) Hs00909897_m1, interrogating exon 2–

3 boundary, and Hs00249492_m1, interrogating exons 12–13

boundary. Data was analyzed using software RQ manager 1.2 from

Applied Biosystems, CA.

Subject Recruitment
Human subjects were recruited at the outpatients department of

the Movement Disorders Division of the Department of

Neurology, University of Miami, Miller School of Medicine.

The Institutional Review Board of The University of Miami

approved this study. Written informed consent was obtained from

all study participants. Whole blood samples were collected under

approved ethical committee protocols from the Movement

Disorders Division of the Department of Neurology, University

of Miami, Miller School of Medicine. All patients were diagnosed

by at least 2 board-certified and fellowship-trained movement

disorders neurologists according to the UK Society Brain Bank

Criteria for the diagnosis of PD [38]. Control subjects were

spouses or caregivers of patients who had no personal or family

history of neurodegenerative diseases. Exclusion criteria for all

study subjects were age under 21 years, hematologic malignancies

or coagulopathies, known severe anemia (hematocrit .30), and

known pregnancy. Clinical data of subjects is summarized in

Table S6.

RNA Isolation for Exon Arrays
RNA isolation was performed using the Preanalytix Paxgene

blood RNA kit, and small RNAs were extracted using a modified

RNEasy protocol. Paxgene blood RNA tubes were centrifuged to

form a pellet. Then an enzymatic digestion step followed by a

filtration step was used to remove gDNA and cell debris. Ethanol

was added to the lysate and passed through a silica membrane.

The flow through from this step was collected for use in the small

RNA extraction. After a series of washes and a DNase step, RNA

was eluted in 60 mL of RNase/DNase free water. Then 1.4x

volumes of ethanol was added to the collected flow through and

passed through an RNeasy silica gel membrane. Small RNAs were

eluted in 40 mL of RNAse/DNase free water. RNA was analyzed

and quantified by digital electrophoresis (Agilnet Bioanalyzer,

Agilent Technologies) and UV spectrophotometry (Nanodrop

1000, Thermo Scientific). 28 (17 PDs and 11 controls) samples

passed the quality control (RIN.5) and concentration require-

ment for the Exon microarrays, while 21 samples (13 PDs and 8

controls) passed those requirements for the miRNA TLDA cards.

All the RNA samples used in our expression study had RIN values

between 7 and 9.

Exon Arrays: Global Transcription Analysis and Splicing
Analysis

1 microgram of RNA (excluding small RNAs) from each of the

28 subjects (17 PDs and 11 controls) was labeled for hybridization

to Affymetrix Human Exon Arrays covering known cDNAs, ESTs,

and predicted gene structure sequences, using standard Affymetrix

protocols. Briefly, labeled samples were added to arrays, and

arrays were hybridized for 17 hours at 45uC. The arrays were

stained and washed according to Affymetrix Fluidics Station 450

protocol (FS450_0001). Hybridization was documented using a

GeneChip Scanner 3000 7G and validated with Affymetrix

Microarray Suite version 5.0 (MAS 5.0) software. Pearson

correlation coefficients demonstrated high reproducibility. Two

samples (CT#3, PD#19) were acting as outliers and were

therefore excluded from the analysis. Subsequent statistical

analysis was performed using GeneSpring GX 10 software (Silicon

Genetics, Redwood City, CA). Normalized expression values were

calculated by the GC-Robust Multi-array Average (GC-RMA)

method. The resultant signal information was analyzed using one-

way analysis of variance (ANOVA) (p,0.05), assuming normality

and equal variances. No correction for multiple comparisons was

SRRM2 & Alt. Splicing in PD
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done. GeneSpring’s cross gene error model, which determines the

likelihood of observing a specific fold change to the likelihood of

observing a fold change of 1, was active during this test.

Hierarchical clustering analysis was performed using the Gene-

Spring 10 software (Silicon Genetics, Inc., Redwood city, CA,

USA) to generate dendrograms representing each functional

category of genes based on their expression profiles. Heat maps

were generated by dividing each measurement by the 50.0th

percentile of all measurements in that sample, then setting the

average value of expression level for each gene across the samples

to 1.0, and plotting the resulting normalized signal value for each

sample (values below 0.01 were set to 0.01). The list and the order

of various genes in which they appear in the heatmaps can be

viewed in tabular form.

For splicing analysis, core transcripts were normalized via

RMA16 and filtered for detection above background level

(p,0.00025). Splicing ANOVA was then performed with a

p,0.05 and a Benjamini Hochberg FDR correction. The resulting

transcripts were further filtered by a splicing index of 0.87 to yield

a total of 218 transcripts with exons with statistically significant

changes in inclusion rates (relative to the gene level) between PDs

and controls. The output of 218 alternatively spliced transcripts

were subjected to Gene Ontology (GO) analysis within Gene-

Spring X to find any significant over-representation of molecular

category. A statistical test assigns a p-value to each category. All

data is MIAME compliant and all raw.CEL files from the 28 exon

arrays are deposited in NCBI’s GEO database (GSE 18838), a

MIAMI compliant database.

For confirmation of gender in our cohort, we looked at the

expression levels of 18 Y-linked genes and confirmed that they

were highly expressed in the male subjects. (See Supplementary

Figure S2).

Supporting Information

Figure S1 Stratifying microarray data by gender. Venn

diagrams show genes differentially expressed (p,.05) by 1.2 fold

(A) or 2.0 fold (B) in females only, males only, or both females and

males. No multiple correction was done.

Found at: doi:10.1371/journal.pone.0009104.s001 (6.06 MB TIF)

Figure S2 Confirmation of gender of microarray cohort by

expression of 18 Y-linked genes. Box plot shows average

expression levels of 18 Y-linked genes in each chip. Males show

high expression of Y chromosome genes. The 18 genes used are

RPS4Y1,ZFY, PCDH11Y, TBL1Y, PRKY, TTTY12, USP9Y,

TMSB4Y, NLGN4Y, RPS4Y2, RBMY1F, PRY, AMELY,

TTTY11, TTTY14, TTTY10, TTTY13, TTTY5.

Found at: doi:10.1371/journal.pone.0009104.s002 (5.50 MB TIF)

Table S1 Differentially expressed genes overlapping among 3

PD microarray datasets. Listed are genes differentially expressed

by 1.2 fold (p,.05 with no multiple correction) in any 2 of the 3

PD public datasets analyzed.

Found at: doi:10.1371/journal.pone.0009104.s003 (0.04 MB

XLS)

Table S2 Transcripts with differential exonic expression in PD

blood. Affymetrix Exon_ST1 arrays showed 218 transcripts with

significant change (p,0.05 with Benjamini Hochberg FDR

correction) in exonic expression in 17 PD blood samples versus

11 healthy controls.

Found at: doi:10.1371/journal.pone.0009104.s004 (0.24 MB

DOC)

Table S3 Transcripts with significant exonic expression in PD

blood show over- representation of Protein Binding Gene

Ontology (GO) function. 112/218 transcripts with significant

change in exonic expression in 17 PD blood samples versus

healthy 11 controls belong to the GO Biological Function Protein

Binding.

Found at: doi:10.1371/journal.pone.0009104.s005 (0.12 MB

DOC)

Table S4 Genes differentially regulated by at least 2.0 fold in PD

blood. 58 genes were differerntially expressed (FC . = 2.0; p,.05

with no multiple correction) in the blood of 17 PDs versus 11

controls.

Found at: doi:10.1371/journal.pone.0009104.s006 (0.03 MB

XLS)

Table S5 Characteristics of our PD cohort included in our Real-

Time PCR analysis. M = Male, F = Female, A–R = Akinetic-

Rigid dominant PD, Tremor = Tremor dominant PD, HY =

Hoehn and Yahr Parkinson’s disease stage, PMI = post-mortem

interval.

Found at: doi:10.1371/journal.pone.0009104.s007 (0.05 MB

DOC)

Table S6 Characteristics of our PD and control cohort included

in our Affymetrix Exon Arrays and TaqMan Low Density Arrays.

Control and PD subjects were recruited for our study. The best

quality blood RNA used on the arrays came from 17 PDs and 11

controls.

Found at: doi:10.1371/journal.pone.0009104.s008 (0.03 MB

XLS)
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