
Parallel Processing Letters, Vol. 13, No. 2 (2003) 291-312 I M k World Scientific

© World Scientific Publishing Company f j ^ www.woridscientific.com

SRS: A FRAMEWORK FOR DEVELOPING MALLEABLE

A N D MIGRATABLE PARALLEL APPLICATIONS FOR

DISTRIBUTED SYSTEMS*

SATHISH S. VADHIYARt and JACK J. DONGARRA*

Computer Science Department, University of Tennessee, Knoxville, USA
"Ivss@cs.utk.edu

$dongarra@cs. utk. edu

Received December 2002
Revised May 2003

Accepted by J. Dongarra & B. Tourancheau

Keywords: Checkpointing; reconfiguration; MPI; parallel; distributed; malleable; migration.

Abs t r ac t . The ability to produce malleable parallel applications that
can be stopped and reconfigured during the execution can offer attractive
benefits for both the system and the applications. The reconfiguration
can be in terms of varying the parallelism for the applications, changing
the data distributions during the executions or dynamically changing the
software components involved in the application execution. In distributed
and Grid computing systems, migration and reconfiguration of such mal­
leable applications across distributed heterogeneous sites which do not
share common file systems provides flexibility for scheduling and resource
management in such distributed environments. The present reconfigura­
tion systems do not support migration of parallel applications to dis­
tributed locations. In this paper, we discuss a framework for developing
malleable and migratable MPI message-passing parallel applications for
distributed systems. The framework includes a user-level checkpointing
library called SRS and a runtime support system that manages the check-
pointed data for distribution to distributed locations. Our experiments
and results indicate that the parallel applications, with instrumentation
to SRS library, were able to achieve reconfigurability incurring about
15-35% overhead.

1 Introduction

Distributed systems and computational Grids [18] involve large system dynamics

that it is highly desirable to reconfigure executing applications in response to

the change in environments. Since parallel applications execute on large num­

ber of shared systems, the performance of the applications will be degraded if

there is increase in external load on the resources caused by other applications.

Also, it is difficult for users of parallel applications to determine the amount of

parallelism for their applications and hence may want to determine the amount

of parallelism by means of trial-and-error experiments. Due to the large num­

ber of machines involved in the distributed computing systems, the mean single

* This work is supported in part by the National Science Foundation contract GRANT
#EIA-9975020, SC #R36505-29200099 and GRANT #EIA-9975015

291

http://www.woridscientific.com
mailto:Ivss@cs.utk.edu

292 S. S. Vadhiyar & J. J. Dongarra

processor failure rate and hence the failure rate of the set of machines where
parallel applications are executing are fairly high [7]. Hence, for long running
applications involving large number of machines, the probability of successful
completions of the applications is low. Also, machines may be removed from
executing environment for maintenance.

In the above situations, it will be helpful for the users or the scheduling
system to stop the executing parallel application and continue it possibly with a
new configuration in terms of the number of processors used for the execution. In
cases of the failure of the application due to non-deterministic events, restarting
the application on a possibly new configuration also provides a way of fault
tolerance. We define the following terms that are commonly used in the literature
to describe parallel applications with different capabilities.

1. Moldable applications - Parallel applications that can be stopped at any
point of execution but can be restarted only on the same number of proces­
sors.

2. Malleable applications - Parallel applications that can be stopped at any
point of execution and can be restarted on a different number of processors.
These applications are also called reconfigurable applications.

3. Migratable applications - Parallel applications that can be stopped at
any point of execution and can be restarted on processors in a different site,
cluster or domain.

Reconfigurable or malleable and migratable applications provide added func­
tionality and flexibility to the scheduling and resource management systems for
distributed computing.

In order to achieve starting and stopping of the parallel applications, the
state of the applications have to be checkpointed. Elonazhy [16] and Plank [29]
have surveyed several checkpointing strategies for sequential and parallel appli­
cations. Checkpointing systems for sequential [30,37] and parallel applications
[15,10,4,34,20] have been built. Checkpointing systems are of different types
depending on the transparency to the user and the portability of the check­
points. Transparent and semi-transparent checkpointing systems [30,12,34] hide
the details of checkpointing and restoration of saved states from the users, but
are not portable. Non-transparent checkpointing systems [23,21,27,20] involves
the users to make some modifications to their programs but are highly portable
across systems. Checkpointing can also be implemented at the kernel level or
user-level.

In this paper, we describe a checkpointing infrastructure that helps in the
development and execution of malleable and migratable parallel applications for
distributed systems. The infrastructure consists of a user-level semi-transparent
checkpointing library called SRS (Stop Restart Software) and a Runtime Sup­
port System (RSS). Our SRS library is semi-transparent because the user of the
parallel applications has to insert calls in his program to specify the data for
checkpointing and to restore the application state in the event of a restart. But
the actual storing of checkpoints and the redistribution of data in the event of
a reconfiguration are handled internally by the library. Though there are few

Malleable and Migratable Parallel Applications 293

checkpointing systems that allow changing the parallelism of the parallel appli­
cations [21,27], our system is unique in that it allows for the applications to be
migrated to distributed locations with different file systems without requiring
the users to manually migrate the checkpoint data to distributed locations. This
is achieved by the use of a distributed storage infrastructure called IBP [28] that
allows the applications to remotely access checkpoint data. Our experiments
and results indicate that the use of SRS library incurs low overheads for the the
parallel applications. Our checkpointing infrastructure provides both pro-active
preemption and restarts of the applications and tolerance in the event of fail­
ures. The infrastructure has been implemented and tested and the software is
available for download at http://www.cs.utk.edu/~vss/srs.htm.

The contributions of our checkpointing infrastructure are:

1. providing an easy-to-use checkpointing library that allows reconfiguration of
parallel applications.

2. allowing checkpoint data to be ported across heterogeneous machines and
3. providing migration of the application across locations that do not share

common file systems without requiring the user to migrate data.

In Section 2, we describe the SRS checkpointing library for reconfiguring ap­
plications. Section 3 explains the other parts of the checkpointing infrastructure,
mainly the RSS service and the interactions between the applications and the
checkpointing infrastructure. Section 4 lists the various steps needed for using
the checkpointing infrastructure. Section 5 describes our experiments and results
to demonstrate the overhead of our checkpointing system. Section 6 presents the
current limitations of our checkpointing infrastructure. Section 7 looks at the rel­
evant work in the field of checkpointing and migration of applications. In Section
8, we give concluding remarks and in Section 9, we present our future plans.

2 SRS Checkpointing Library

SRS (Stop Restart Software) is a user-level checkpointing library that helps to
make iterative parallel MPI message passing applications reconfigurable. Itera­
tive parallel applications cover a broad range of important applications including
linear solvers, heat-wave equation solvers, partial differential equation (PDE) ap­
plications etc. The SRS library has been implemented in both C and Fortran
and hence SRS functions can be called from both C and Fortran MPI programs.
The SRS library consists of 6 main functions:

1. SRSJnit,

2. SRS-Restart_Value,
3. SRS-Read,
4. SRS-Register,

5. SRS.Check.Stop and
6. SRS-Finish.

http://www.cs.utk.edu/~vss/srs.htm
http://SRS.Check.Stop

294 S. S. Vadhiyar & J. J. Dongarra

The user calls SRSJnit after calling MPUnit. SRS-Init is a collective oper­
ation and initializes the various data structures used internally by the library.
SRSJnit also reads various parameters from a user-supplied configuration file.
These parameters include the location of the Runtime Support System (RSS)
and a flag indicating if the application needs periodic checkpointing. SRSJnit,
after reading these parameters, contacts the RSS and sends the current number
of processes that the application is using. It also receives the previous configura­
tion of the application from the RSS if the application has been restarted from
a previous checkpoint.

In order to stop and continue an executing application, apart from check­
pointing the data used by the application, the execution context of the appli­
cation also needs to be stored. For example, when the application is initially
started on the system, various data needs to be initialized, whereas when the
application is restarted and continued, data needs to be read from a checkpoint
and the initialization phase can be skipped. Most checkpointing systems [30]
restore execution context by storing and retrieving execution stack. This solu­
tion compromises on the portability of the checkpointing system. Since the main
goal of the SRS library is to provide heterogeneous support, the task of restoring
the execution context is implemented by the user by calling SRS-Restart-Value.
SRS-Restart-Value returns 0 if the application is starting its execution and 1 if
the application is continuing from its previous checkpoint. By using these values
returned by SRS-Restart_Value, the user can implement conditional statements
in his application to execute certain parts of the code when the application be­
gins its execution and certain other parts of the code when the application is
continued from its previous checkpoint.

SRS library uses Internet Backplane Protocol(IBP)[28] for storage of the
checkpoint data. IBP depots are started on all the machines the user wants to use
for the execution of his application. SRS-Register is used to mark the data that
will be checkpointed by the SRS library during periodic checkpointing or when
SRS_Check_Stop is called. Only the data that are passed in the SRS_Register
call are checkpointed. The user specifies the parameters of the data including
the size, data type and data distribution when calling SRS-Register. The data
distributions supported by the SRS library include common data distributions
like block, cyclic and block-cyclic distributions. For checkpointing data local to
a process of the application or for data without distribution, a distribution value
of 0 can be specified. SRS-Register stores the various parameters of the data in
a local data structure. SRS-Register does not perform actual checkpointing of
the data.

SRS-Read is the main function that achieves reconfiguration of the applica­
tion. When the application is stopped and continued, the checkpointed data can
be retrieved by invoking SRS-Read. The user specifies the name of the check-
pointed data, the memory into which the checkpointed data is read and the new
data distribution when calling SRS-Read. The data distribution specified can
be conventional distributions or 0 for no distribution or SAME if the same data
has to be propagated over all processes. The value SAME is useful for retrieving

Malleable and Migratable Parallel Applications 295

iterator values when all the processes need to start execution from the same
iteration. The SRS-Read contacts the RSS and retrieves the previous data dis­
tribution and the location of the actual data. If no distribution is specified for
SRS-Read, each process retrieves the entire portion of the data from the corre­
sponding IBP depot used in the previous execution. If SAME is used for the data
distribution, the first process reads the data from the IBP depot corresponding
to the first process in the previous execution and broadcasts the data to the other
processes. If data distribution is specified in SRS_Read, SRS_Read determines
the data maps for the old and new distributions of the data corresponding to
the previous and the current distributions. Based on the information contained
in the data maps, each process retrieves its portion of data from the IBP depots
containing the data portions. Thus reconfiguration of the application is achieved
by using different level of parallelism for the current execution and specifying a
data distribution in SRS-Read that may be different from the distribution used
in the previous execution.

SRS-Check_Stop is a collective operation and called at various phases of
the program to check if the application has to be stopped. If SRS_Check_Stop
returns 1, then an external component has requested for the application to stop,
and the application can execute application-specific code to stop the executing
application. SRS_Check_Stop contacts the RSS to retrieve a value that specifies if
the application has to be stopped. If an external component has requested for the
application to be stopped, SRS_Check_Stop stores the various data distributions
and the actual data registered by SRS-Register to the IBP [28] depots. Each
process of the parallel application stores its piece of data to the local IBP depot.
By storing only the data specified by SRS-Register and requiring each process
of the parallel application to the IBP depot on the corresponding machine, the
overhead incurred for checkpointing is significantly low. SRS_Check_Stop sends
the pointers for the checkpointed data to RSS and deletes all the local data
structures maintained by the library.

SRS-Finish is called collectively by all the processes of the parallel applica­
tion before MPI_Finish in the application. SRS-Finish deletes all the local data
structures maintained by the library and contacts the RSS requesting the RSS
to terminate execution.

Apart from the 6 main functions, SRS also provides SRS_DistributeFunc_Create
and SRS-DistributeMap.Create to allow the user specify his own data distribu­
tions instead of using the conventional data distributions provided by the SRS
library.

Figure 1 shows a simple MPI based parallel program. The global data indi­
cated by globaLA is initialized in the first process and distributed across all the
processes in a block distribution. The program then enters a loop where each
element of the global data is incremented by a value of 10 by the process holding
the element. Figure 2 shows the same code instrumented with calls to the SRS
library. The application shown in Figure 2 is reconfigurable in that it can be
stopped and continued on a different number of processors.

296 S. S. Vadhiyar & J. J. Dongarra

int main(int argc, char** argv){

int *global_A, int* local_A;

int global_size, local_size;

MPI_Comm comm = MPI_C0MM_WORLD;

MPI_Init(&argc, feargv);

MPI_Comm_rank(comm, ferank);

MPI_Comm_size(comm, fesize);

local_size = global_size/size;

if(rank == 0){

for(i=0; i<global_size; i++){

global_A[i] = i;

}

}

MPI.Scatter (global.A, local.size, MPI_INT, local.A,

MPI_INT, 0, comm);

for(i=0; i<global_size; i++){

proc_number = i/local_size;

local_index = i*/,local_size;

if(rank == proc_number){

local_A[local_index] += 10;

}

}

MPIJFinalizeO;

exit(0);

>

local_size,

Figure 1. Original code

Malleable and Migratable Parallel Applications 297

i n t mainQnt argc , char** argv) {

i n t *global_A, i n t * l o c a l . A ;

i n t g l o b a l . s i z e , l o c a l . s i z e ;

MPI.Comm comm = MPI.COMM.WORLD;

MPI_Init(&argc, feargv);

S R S . I n i t O ;

MPI_Comm_rank(comm, ferank);

MPI_Coiran_size(comm, &s ize) ;

l o c a l . s i z e = g l o b a l . s i z e / s i z e ;

r e s t a r t _ v a l u e = SRS.Restart .Value() ;

i f (r e s t a r t . v a l u e == 0) {

i f (r a n k == 0) {

f o r (i = 0 ; i < g l o b a l _ s i z e ; i + +) {

g l o b a l _ A [i] = i ;

}

}

MPI.Scatter (g l o b a l . A , l o c a l . s i z e , MPI.

MPI.INT, 0 , comm) ;

i t e r s t a r t = 0;

}

e l s e {

SRS_Read("A", l o c a l . A , BLOCK, NULL);

SRS.Read("iterator", feiter.start, SAME

}
J

SRS_Register("A", l o c a l . A , GRADS.INT, l o

S R S . R e g i s t e r (" i t e r a t o r " , &i, GRADS.INT,

f o r (i = i t e r . s t a r t ; K g l o b a l . s i z e ; i++) {

s t o p . value = SRS.Check.StopO ;

i f (s t o p . v a l u e == 1) {

MPI .F ina l i zeO ;

e x i t (0) ;

}

proc.number = i / l o c a l _ s i z e ;

l o c a l . i n d e x = i \ ' / , l o c a l _ s i z e ;

i f (r a n k == proc.number){

l o c a l . A [l o c a l . i n d e x] += 10;

}

}

SRS.FinishO ;

M P I . F i n a l i z e O ;

e x i t (0) ;

}

.INT, l o c a l . A , l o c a l . s i z e ,

, NULL);

c a l . s i z e , BLOCK, NULL);

1, 0 , NULL);

F i g u r e 2 . Modified code with SRS calls

298 S. S. Vadhiyar & J. J. Dongarra

3 Runtime Support System (RSS)

RSS is a sequential application that can be executed on any machine with which
the machines used for the execution of actual parallel application will be able
to communicate. RSS exists for the entire duration of the application and spans
across multiple migrations of the application. Before the actual parallel appli­
cation is started, the RSS is launched by the user. The RSS prints out a port
number on which it listens for requests. The user fills a configuration file called
srs.config with the name of the machine where RSS is executing and the port
number printed by RSS and makes the configuration file available to the first
process of the parallel application. When the parallel application is started, the
first process retrieves the location of RSS from the configuration file and registers
with the RSS during SRSJnit. The RSS maintains the application configuration
of the present as well as the previous executions of the application.

The RSS also maintains an internal flag, called stop-flag that indicates if
the application has to be stopped. Initially, the flag is cleared by the RSS. A
utility called stop-application is provided and allows the user to stop the appli­
cation. When the utility is executed with the location of RSS specified as input
parameter, the utility contacts the RSS and makes the RSS set the stop-flag.

When the application calls SRS_Check_Stop, the SRS library contacts the RSS
and retrieves the stop-flag. The application either continues executing or stops
its execution depending on the value of the flag.

When the SRS_Check_Stop checkpoints the data used in the application to
IBP depots, it sends the location of the checkpoints and the data distributions
to the RSS. When the application is later restarted, it contacts the RSS and
retrieves the location of the checkpoints from the RSS. When the application
finally calls SRS-Finish, the RSS is requested by the application to terminate
itself. The RSS cleans the data stored in the IBP depots, deletes its internal data
structures and terminates.

The interactions between the different components in the SRS checkpointing
architecture is illustrated in Figure 3.

4 Experiments and Results

Our experimental testbed consists of two clusters, one in University of Tennessee
and another in University of Illinois, Urbana-Champaign. The Tennessee cluster
consists of 8 933 MHz dual- processor Pentium III machines running Linux
and connected to each other by 100 Mb switched Ethernet. The Illinois cluster
consists of 16 450 MHz single-processor Pentium II machines running Linux
and connected to each other by 1.28 Gbit/second full duplex myrinet. The two
clusters are connected by means of the Internet.

ScaLAPACK QR factorization application was instrumented with calls to
SRS library such that the modified code was malleable and migratable across
heterogeneous clusters. The data that were checkpointed by the SRS library for
the application included the matrix, A and the right-hand side vector, B. The
experiments were conducted on non-dedicated machines.

Malleable and Migratable Parallel Applications 299

User

Application
Registration, Handles to checkpointefl data,

Figure 3. Interactions in SRS

4.1 SRS Overhead

In the first experiment, the overhead of SRS library was analyzed when check­
pointing of data is not performed. Thus the application instrumented with SRS
library simply connects to a RSS daemon and runs to completion. Figure 4
compares the execution of the factorization application on 8 UT machines when
operated in three modes. The "Normal" mode is when the plain application with­
out SRS calls is executed. In the second mode, the application instrumented with
SRS library was executed connecting to a RSS daemon started at UT. In the
third mode, the application instrumented with SRS library was executed con­
necting to a RSS daemon started at UIUC. The x-axis represents the matrix
sizes used for the problem and the y-axis represents the total elapsed execution
time of the application.

The maximum overhead of using SRS when RSS was started at UT was 15%
of the overall execution time of the application. This is close to the 10% overhead
that is desired for checkpointing systems [26]. The worst-case overhead of using
SRS when RSS was started at UIUC was 29% of the overall execution time of the
application. The increased overhead is due to the communication between SRS
and RSS during initialization and at different phases of the application. Since
RSS was located at UIUC, the communications involved slow Internet bandwidth
between UT and UIUC. The large overhead can be justified by the benefits the
SRS library provide in reconfiguring applications across heterogeneous sites.

Figure 5 shows the results of an experiment similar to the first experiment,
but with the periodic checkpointing option turned on. In the periodic check­
pointing mode, the SRS library checkpoints the application data to IBP depots
every 10 minutes.

300 S. S. Vadhiyar & J. J. Dongarra

Overhead in using SRS (No Checkpointing)
(application=Scal_APACK QR, cluster=homogeneous(UT), procs=8)

0 I 1 1 1 1 1 1 1

2000 4000 6000 8000 10000 12000 14000 16000

Matrix Size

Figure 4. Overhead in SRS on a homogeneous cluster (No Checkpointing)

Overhead in using SRS
(Periodic Checkpointing every 10 minutes)

(application=ScaLAPACK QR, cluster=homogeneous(UT), procs=8)

0 I i i i i i i i I

8000 9000 10000 11000 12000 13000 14000 15000 16000

Matrix Size

Figure 5. Overhead in SRS on a homogeneous cluster (Periodic Checkpointing)

Malleable and Migratable Parallel Applications 301

The worst-case SRS overheads in this experiment was high - 23% of the
application time when RSS was located at UT and 36% of the application time
when RSS was located at UIUC. The details of the periodic checkpointing used
for Figure 5 is given in Table 1.

Table 1. Details of Periodic Checkpointing used for Figure 5

1 Matrix

\Size

18000

10000

12000

14000

]l6000

Number of Check­

points

1
2

3

4

5

Size per Checkpoint

(MBytes)

64

100
144

196

256

Time for storing^

a checkpoint (Sec-v,

onds) 1

6.51 "]

10.06

13.68

32.34

93.25 1

From Table 1, it is clear that the high worst-case SRS overheads seen in
Figure 5 are not due to the time taken for storing checkpoints. We suspect that
the overheads are due to the transient loads on the non-dedicated machines.

In the third experiment in this subsection, the application was executed in a
heterogeneous environment comprising 8 UIUC and 4 UT machines. The appli­
cation was operated in 3 modes. "Normal" was when the plain application was
executed. In the second mode, the application instrumented with SRS calls was
executed without checkpointing. In the third mode, the application instrumented
wit SRS calls was executed with periodic checkpointing of every 10 minutes. In
the SRS mode, the RSS was started at UT. Figure 6 shows the results of the
third experiment. The worst-case SRS overhead for the application was 15% and
hardly noticeable in the figure. The details of the periodic checkpointing used in
the third mode for the figure is given in Table 2.

Table 2. Details of Periodic Checkpointing used for Figure 6

1 Matrix

\Size

I200CT

4000

6000

8000

10000

Number of Check­

points

1

1

2

3

5

Size per Checkpoint

(MBytes)

2.5

10.6
24

42.7

66.7

Time for storing]

a checkpoint (Sec-\

onds) 1

4.59 1

9.34

11.22

13.50

18.51 1

file:///Size
file:///Size

302 S. S. Vadhiyar & J. J. Dongarra

Overhead in using SRS
(RSS at UT)

(application=ScaLAPACK QR, cluster=heterogeneous(UT & UIUC), procs=12)

4000 i 1 1 1 1 1 1 1 1

Normal 1
I With SRS (No checkpointing) —h~>^j

cJ5UU r With SRS (Periodic checkpointing every 10 mins.) jp 1

3000 I ^T 1

2500 I ^T •]

2000 I ^T \

1500 I ^ T \

1000 I ^ ^ ^ ^ 1

500 I -^^^ J

Q I I I i I I I I I

2000 3000 4000 5000 6000 7000 8000 9000 10000

Matrix Size

F i g u r e 6. Overhead in SRS on a heterogeneous cluster

4.2 SRS for Moldable Applications

In this subsection, results for experiments where the application is stopped
and restarted on the same number of processors are shown. The application
instrumented with SRS calls was initially executed at 8 UT machines. 3 min­
utes after the start of the application, the application was stopped using the
stop-application utility. The application was restarted on the same number of
machines. In this scenario, the processes of the parallel application read the
corresponding checkpoints from the IBP storage without performing any redis­
tribution of data. The RSS daemon was started at UT.

Figure 7 shows the times for writing and reading checkpoints when the ap­
plication was restarted on the same 8 UT machines on which it was originally
executing. From the figure, we find that the times for writing and reading check­
points are very low and in the range of 7-10 seconds. Thus the application can
be removed from a system and restarted later on the same system for various
reasons without much overhead. The time between when the stop signal was
issued to the application and when the application actually stops depends on
the moment when the application calls SRS_Check_Stop after the stop signal.
Table 3 gives the checkpoint sizes used in Figure 7.

Figure 8 shows the results when the application was started at 8 UT ma­
chines, stopped and restarted at 8 UIUC machines. The increased times in read­

er
o

CD

0

E
c
o

ID
o
0
X

ill

20

Malleable and Migratable Parallel Applications 303

Writing and Reading Checkpoints
(Writing and Reading at UT, procs=8)

Checkpoint Writing
Checkpoint Reading

6000 7000 8000 9000 10000 11000 12000

Matrix Size

Figure 7. Times for Checkpoint Writing and Reading when the application was
restarted on UT machines

Table 3. Details of Checkpointing used in Figure 7

\ Matrix Size

I 6000

7000

8000

9000

10000

11000

1 12000

Size per Checkpoint (MBytes)^

36 II

49
64

81
100

121

144 |

304 S. S. Vadhiyar & J. J. Dongarra

ing checkpoints is due to the communication of checkpoints across the Internet
from UT to UIUC machines.

90

80

70

60

0
CO

CD
| 40
P

30

20

10

Writing and Reading Checkpoints
(Writing at UT and Reading at UIUC, procs=8)

n 1 r
Checkpoint Writing

Checkpoint Reading

6000 6500 7000 7500 8000 8500

Matrix Size

9000 9500 10000

Figure 8. Times for Checkpoint Writing and Reading when the application was
restarted on UIUC machines

4.3 SRS for Malleable Applications

In the experiments in this section, the application was started on 8 UT machines
and restarted on a different number of machines spanning UT and UIUC. In this
case, the restarted application, through the SRS library, determines the new
data distributions for the processors and redistributes the stored checkpoint
data among the processors. The RSS daemon was started on UT.

In Figure 9, results are shown when the ScaLAPACK QR application corre­
sponding to matrix size 8000 was restarted on different number of processors (3
UIUC machines - (8 UIUC, 2 UT machines)). The size of a single stored check­
point was 64 MBytes. The time for data redistribution depends on the number
and size of the data blocks that are communicated during redistribution and the
network characteristics of the machines between which the data are transferred.
When the application is restarted on a smaller number of processors, the size of
the data blocks are large and hence the redistribution time is large. For larger

Malleable and Migratable Parallel Applications 305

10

Writing and Redistribution of Checkpoints
(application=ScaLAPACK QR, Matrix size=8000)

Checkpoint Writing
Checkpoint Redistribution

6 7

Number of processors

10

Figure 9. Times for Checkpoint Writing and Redistribution when the application was
restarted on different number of processors

number of processors, the redistribution time decreases due to the reduced size
of data blocks communicated between the processors.

Figure 10 shows the dependence of the redistribution times on the problem
size. For this experiment, the application was initially started on 8 UT machines
and restarted on 8 UIUC and 2 UT machines.

306 S. S. Vadhiyar & J. J. Dongarra

80

70 h

60

-r 50
CO

o
CD

•a 40

E
^ 30

20

10

Writing and Redistribution of Checkpoints
(application=ScaLAPACK QR, Redistribution on 10 procs)

Checkpoint Writing
Checkpoint Redistribution

6000 6500 7000 7500 8000 8500 9000 9500 10000
Matrix Size

Figure 10. Times for Checkpoint Writing and Redistribution for different problem
sizes

5 Steps for Developing and Executing Malleable
Applications

Following is the summary of the actions needed for developing and executing
malleable and migratable MPI message passing applications with the SRS li­
brary.

1. The user starts IBP depots on all machines where he many execute his
application.

2. The user converts his parallel MPI application into a malleable application
by inserting calls to SRS library. He then compiles and links with the SRS
library.

Malleable and Migratable Parallel Applications 307

3. The user then executes RSS on a machine with which the machines for
application execution will be able to execute. The RSS will output a port
number on which it listens for requests.

4. The user creates a configuration file specifying the machine and the port
number of RSS.

5. The user stores the configuration file at the working directory of the first
process of the parallel application.

6. The user starts his parallel application on a set of machines. The application,
through the SRS library communicates with the RSS.

7. In the middle of the application execution, the user can stop the application
by using the stop-application utility. The user specifies the location and the
port number of the RSS to the stop-application utility.

8. The user can restart his application on possibly a different number of proces­
sors in the same way he initially started his application. After the application
completes, the RSS terminates.

6 Limitations

Although the SRS framework is robust in supporting migration of malleable par­
allel applications across heterogeneous environments, it has certain limitations
in terms of the checkpointing library and the kind of applications it can support.

1. Although the SRS library can be used in a large number of parallel applica­
tions, it is most suitable to iterative applications where SRS_Check_Stop can
be inserted at the beginning or at the end of the loop. The SRS library is not
suitable for applications like multi-component applications where different
data can be initialized and used at different points in the program.

2. Currently, the execution context is restored by the user by the use of appro­
priate conditional statements in the program. This approach is cumbersome
and difficult for the users when programs with multiple nested procedures
are involved.

3. The SRS library supports only native data type like single and double pre­
cision floating point numbers, integers, characters etc. It does not support
checkpointing of complex pointers, files and structures.

4. Although the main motivation of the SRS library is to help the user pro-
actively stop an executing application and restart and continue it with a
different configuration, SRS also allows fault tolerance by means of periodic
checkpointing. However, the fault tolerance supported by SRS is limited in
that it can tolerate only application failures due to non-deterministic events
and not due to total processor failures. This is because the IBP depots on
which the checkpoints are stored also fail when the machines on which the
IBP depots are located fail.

5. The machine on which the RSS daemon is executing must be failure-free for
the duration of the application.

308 S. S. Vadhiyar & J. J. Dongarra

7 Related Work

Checkpointing parallel applications have been widely studied [16,29,25] and
checkpointing systems for parallel applications have been developed [12,10,33,
38,31,15,20,34,3,23,20,4,22,21,27]. Some of the systems were developed for
homogeneous systems [12,11,33,34] while some checkpointing systems allows
applications to be checkpointed and restarted on heterogeneous systems [15,20,
3-5,23,21,27]. Calypso [5] and Plinda [23] require application writers to write
their programs in terms of special constructs and cannot be used with third-
party software. Systems including Dynamic PVM [15] and CUMULVS [20] use
PVM mechanisms for fault detection and process spawning and can only be used
with PVM environments. Cocheck [34] and Starfish [3] provide fault tolerance
with their own MPI implementations and hence are not suitable for distributed
computing and Grid systems where the more secure MPICH-G [19] is used.
CUMULVS [20], Dome [4,7], the work by Hofmeister [22] and Deconick [13,14,9],
DRMS [27] and DyRecT [2,21] are closely related to our research in terms of the
checkpointing API, the migrating infrastructure and reconfiguration capabilities.

The CUMULVS [20] API is very similar to our API in that it requires the
application writers to specify the data distributions of the data used in the
applications and it provides support for some of the commonly used data distri­
butions like block, cyclic etc. CUMULVS also supports stopping and restarting
of applications. But the applications can be stopped and continued only on the
same number of processors. Though CUMULVS supports MPI applications, it
uses PVM as the base infrastructure and hence poses the restriction of executing
applications on PVM.

Dome [4,7] supports reconfiguration of executing application in terms of
changing the parallelism for the application. But the data that can be redis­
tributed for reconfiguration have to be declared as Dome objects. Hence it is
difficult to use Dome with third-party software like ScaLAPACK where native
data is used for computations. Also Dome uses PVM as the underlying architec­
ture and cannot be used for message passing applications.

The work by Hofmeister [22] supports reconfiguration in terms of dynamically
replacing a software module in the application, moving a module to a different
processor and adding or removing a module to and from the applications. But
the package by Hofmeister only works on homogeneous systems. The work by
Deconinck [13,14,9] is similar to SRS in terms of the checkpointing API and
the checkpointing infrastructure. Their checkpoint control layer is similar to our
RSS in terms of managing the distributed data and the protocols for commu­
nication between the applications and the checkpoint control layer is similar to
ours. By using architecture-independent checkpoints, the checkpoints used in
their work are heterogeneous and portable. But the work by Deconick does not
support reconfiguration of application in terms of varying the parallelism for the
applications.

The DyRecT [2,21] framework for reconfiguration allows dynamic reconfig­
uration of applications in terms of varying the parallelism by adding or remov­
ing the processors during the execution of parallel application. The user-level

Malleable and Migratable Parallel Applications 309

checkpointing library in DyRecT also supports the specification of data dis­
tribution. The checkpoints are system-independent and MPI applications can
use the checkpointing library for dynamic reconfiguration across heterogeneous
systems. But DyRecT uses LAM MPI [1] for implementing the checkpointing
infrastructure to use the dynamic process spawning and fault detection mech­
anisms provided by LAM. Hence DyRecT is mainly suitable for workstation
clusters and not distributed and Grid systems where the more secure MPICH-G
is used [19]. Also, DyRecT requires the machines to share a common file sys­
tem and hence applications cannot be migrated and reconfigured to distributed
locations that do not share common file systems.

The DRMS [27] checkpointing infrastructure uses DRMS programming model
to support checkpointing and restarting parallel applications on different number
of processors. It uses powerful checkpointing mechanisms for storing and retriev­
ing checkpoint data to and from permanent storage. It is the closest related work
to SRS in that it supports a flexible checkpointing API for reconfiguring MPI
message passing applications implemented on any MPI implementations to be
reconfigured on heterogeneous systems. But DRMS also does not support mi­
grating and restarting applications on environments that do not share common
file systems with the environments where the applications initially executed.

A more recent work by Kale et. al [24] achieves reconfiguration of MPI-
based message passing programs. But reconfiguration is achieved by using a
MPI implementation called AMPI [8] that is less suitable to Grid systems than
MPICH-G.

8 Conclusions and Future Work

In this paper, a checkpointing infrastructure for developing and executing mal­
leable and migratable parallel applications across heterogeneous sites was ex­
plained. The SRS API has limited number of functions for seamlessly enabling
parallel applications malleable. The uniqueness of the SRS system is achieved by
the use of IBP distributed storage infrastructure. Results were shown to evaluate
the overhead incurred by the applications and the times for storing, reading and
redistributing checkpoints. The results show that SRS can enable reconfigura-
bility of the parallel applications with limited overhead.

One of the main goals will be to use precompiler technologies to restore the
execution context and to relieve the user from having to make major modifica­
tions in his program to provide malleability of his applications. The precompila-
tion strategies will be similar to the approaches taken by Ferrari [17], Dome [7],
Zandy [39] and Sun et. al. [36]. Other future investigations include support for
checkpointing files, complex pointers and structures and to provide support for
different kinds of applications.

Although the design of the checkpointing framework supports migration of
heterogeneous environments, the current implementation stores the checkpoint
data as raw bytes. This approach will lead to misinterpretation of the data by
the application if, for example, the data is stored on a Solaris system and read

310 S. S. Vadhiyar & J. J. Dongarra

by a Linux machine. This is due to the different byte orderings and floating point

representations followed on different systems. We plan to use the External Data

Representation (XDR) or Porch Universal Checkpointing Format (UCF) [35,32]

for representing the checkpoints.

We also plan to separate the storage nodes for checkpoints from the computa­

tional nodes for application execution by employing the eXNode [6] architecture.

This will provide robust fault tolerant mechanism for withstanding the processor

failures in SRS.

We also intend to collaborate with the CUMULVS project [20] to provide a

generic visualization architecture tha t will be used to monitor the execution of

malleable applications.

There are also plans to extend the RSS daemon to make it fault-tolerant

by periodically checkpointing its state so that the RSS service can be migrated

across sites. Presently, all the processes of the parallel application communicate

with a single RSS deamon. This may pose a problem for the scalability of the

checkpointing system, especially when large number of machines are involved.

Our future plan is to implement a distributed RSS system to provide scalability.

References

1. LAM-MPI. http://www.lam-mpi.org.

2. A.Chowdhury. Dynamic Reconfiguration: Checkpointing Code Generation. In In

Proceedings of IEEE 5th International Symposium on Assessment of Software Tools

and Technologies (SAST97), 1997.

3. A. Agbaria and R. Friedman. Starfish: Fault-Tolerant Dynamic MPI Programs on
Clusters of Workstations. In In the 8th IEEE International Symposium on High

Performance Distributed Computing, pages 167-176, August 1999.
4. J.N.C. Arabe, A.B.B. Lowekamp, E. Seligman, M. Starkey, and P. Stephan. Dome:

Parallel Programming in a Heterogeneous Multi-User Environment. Supercomput-

ing, 1995.
5. A. Baratloo, P. Dasgupta, and Z. M. Kedem. CALYPSO: A Novel Software System

for Fault-Tolerant Parallel Processing on Distributed Platforms. In Proc. of the

Fourth IEEE Int'l Symp. on High Performance Distributed Computing (HPDC-4),

pages 122-129, August 1995.
6. M. Beck, T. Moore, and J. Plank. An End-to-End Approach to Globally Scalable

Network Storage. In ACM SIGCOMM 2002 Conference, Pittsburgh, PA, USA,
August 2002.

7. A. Beguelin, E. Seligman, and P. Stephan. Application Level Fault Tolerance
in Heterogeneous Networks of Workstations. Technical Report CMU-CS-96-157,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,
August 1996.

8. M. Bhandarkar, L. V. Kale, E. de Sturler, and J. Hoeflinger. Object-Based Adap­
tive Load Balancing for MPI Programs. In Proceedings of the International Confer­

ence on Computational Science, San Francisco, CA, LNCS 2074, pages 108-117,
May 2001.

9. B. Bieker, G. Deconinck, E. Maehle, and J. Vounckx. Reconfiguration and Check­
pointing in Massively Parallel Systems. In Proceedings of 1st European Dependable

http://www.lam-mpi.org

Malleable and Migratable Parallel Applications 311

Computing Conference (EDCC-1), volume Lecture Notes in Computer Science Vol.
852, pages 353-370. Springer-Verlag, October 1994.

10. J. Casas, D. Clark, P. Galbiati, R. Konuru, S. Otto, R. Prouty, and J. Walpole.
MIST: PVM with Transparent Migration and Checkpointing, 1995.

11. J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole. MPVM: A
Migration Transparent Version of PVM. Technical Report CSE-95-002, 1, 1995.

12. Y. Chen, K. Li, and J. S. Plank. CLIP: A Checkpointing Tool for Message-passing
Parallel Programs. In SC97: High Performance Networking and Computing, San
Jose, November 1997.

13. G. Deconinck and R. Lauwereins. User-Triggered Checkpointing: System-
Independent and Scalable Application Recovery. In Proceedings of 2nd IEEE Sym­

posium on Computers and Communications (ISCC97), pages 418-423, Alexandria,
Egypt, July 1997.

14. G. Deconinck, J. Vounckx, R. Lauwereins, and J.A. Peperstraete. User-triggered
Checkpointing Library for Computation-intensive Applications. In Proceedings of

7th IASTED-ISMM International Conference On Parallel and Distributed Comput­

ing and Systems (IASTED, Anaheim-Calgary-Zurich) (ISCC97), pages 321-324,
Washington, DC, October 1995.

15. L. Dikken, F. van der Linden, J. J. J. Vesseur, and P. M. A. Sloot. DynamicPVM:
Dynamic Load Balancing on Parallel Systems. In Wolfgang Gentzsch and Uwe
Harms, editors, Lecture notes in computer science 797, High Performance Com­

puting and Networking, volume Proceedings Volume II, Networking and Tools,
pages 273-277, Munich, Germany, April 1994. Springer Verlag.

16. M. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson. A Survey of Rollback-
Recovery Protocols in Message Passing Systems. Technical Report CMU-CS-96-
181, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
USA, October 1996.

17. A.J. Ferrari, S.J. Chapin, and A.S. Grimshaw. Process Introspection: A Hetero­
geneous Checkpoint/Restart Mechanism Based on Automatic Code Modification.
Technical Report Technical Report CS-97-05, Department of Computer Science,
University of Virginia, March 1997.

18. I. Foster and C. Kesselman eds. The Grid: Blueprint for a New Computing Infras­

tructure. Morgan Kaufmann, ISBN 1-55860-475-8, 1999.

19. I. Foster and N. Karonis. A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems. In Proceedings of Super Computing 98 (SC98),

1998.

20. G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Providing Fault-
Tolerance, Visualization and Steering of Parallel Applications. International Jour­

nal of High Performance Computing Applications, ll(3):224-236, August 1997.

21. E. Godard, S. Setia, and E. White. DyRecT: Software Support for Adaptive Par­
allelism on NOWs. In in IPDPS Workshop on Runtime Systems for Parallel Pro­

gramming, Cancun, Mexico, May 2000.

22. C. Hofmeister and J. M. Purtilo. Dynamic Reconfiguration in Distributed Systems
: Adapting Software Modules for Replacement. In Proceedings of the 13 th In­

ternational Conference on Distributed Computing Systems, Pittsburgh, USA, May
1993.

23. A. Jeong and D. Shasha. PLinda 2.0: A Transactional/Checkpointing Approach to
Fault Tolerant Linda. In Proceedings of the 13th Symposium on Reliable Distributed

Systems, pages 96-105. IEEE, 1994.

312 S. S. Vadhiyar & J. J. Dongarra

24. L.V. Kale, S. Kumar, and J. DeSouza. A Malleable-Job System for Timeshared
Parallel Machines. In 2nd IEEE/ACM International Symposium on Cluster Com­

puting and the Grid (CCGrid 2002), May 2002.
25. R. Koo and S. Toueg. Checkpointing and Rollback Recovery for Distributed Sys­

tems. IEEE Transactions on Software Engineering, 13(1):23-31, 1987.
26. K. Li, J.F. Naughton, and J.S. Plank. Real-time Concurrent Checkpoint for Parallel

Programs. In In Second ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, pages 79-88, March 1990.

27. V. K. Naik, S. P. Midkiff, and J. E. Moreira. A checkpointing strategy for scalable
recovery on distributed parallel systems. In Super Computing (SC) }97, San Jose,
November 1997.

28. J. S. Plank, M. Beck, W. R. Elwasif, T. Moore, M. Swany, and R. Wolski. The
Internet Backplane Protocol: Storage in the Network. NetStore99: The Network

Storage Symposium, 1999.

29. James S. Plank. An Overview of Checkpointing in Uniprocessor and Distributed
Systems, Focusing on Implementation and Performance. Technical Report UT-
CS-97-372, 1997.

30. James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent
Checkpointing under Unix. Technical Report UT-CS-94-242, 1994.

31. P. Pruitt. An Asynchronous Checkpoint and Rollback Facility for Distributed
Computations, 1998.

32. B. Ramkumar and V. Strumpen. Portable checkpointing for heterogenous archi­
tectures. In 27th International Symposium on Fault-Tolerant Computing, pages
58-67, 1997.

33. S. H. Russ, B. K. Flachs, J. Robinson, and B. Heckel. Hector: Automated Task
Allocation for MPI. In Proceedings of IPPS '96, The 10th International Parallel

Processing Symposium, pages 344-348, Honolulu, Hawaii, April 1996.
34. G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proceed­

ings of the 10th International Parallel Processing Symposium (IPPS '96), pages
526-531, Honolulu, Hawaii, 1996.

35. V. Strumpen and B. Ramkumar. Portable Checkpointing and Recovery in Hetero­
geneous Environments. Technical Report Technical Report 96-6-1, Department of
Electrical and Computer Engineering, University of Iowa, June 1996.

36. X. H. Sun, V. K. Naik, and K. Chanchio. Portable hijacking. In SIAM Parallel

Processing Conference, March 1999.
37. T. Tannenbaum and M. Litzkow. The condor distributed processing system. Dr.

Dobb's Journal, pages 40-48, February 1995.
38. Z. You-Hui and P. Dan. A Task Migration Mechanism for Mpi Applications.

In In Proceedings of 3rd Workshop on Advanced Parallel Processing Technologies

(APPT'99), pages 74-78, Changsha, China, October 1999.
39. V.C. Zandy, B.P. Miller, and M. Livny. Portable hijacking. In The Eighth IEEE In­

ternational Symposium on High Performance Distributed Computing (HPDC'99),

pages 177-184, August 1999.

