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Abs t r ac t . The ability to produce malleable parallel applications that 
can be stopped and reconfigured during the execution can offer attractive 
benefits for both the system and the applications. The reconfiguration 
can be in terms of varying the parallelism for the applications, changing 
the data distributions during the executions or dynamically changing the 
software components involved in the application execution. In distributed 
and Grid computing systems, migration and reconfiguration of such mal­
leable applications across distributed heterogeneous sites which do not 
share common file systems provides flexibility for scheduling and resource 
management in such distributed environments. The present reconfigura­
tion systems do not support migration of parallel applications to dis­
tributed locations. In this paper, we discuss a framework for developing 
malleable and migratable MPI message-passing parallel applications for 
distributed systems. The framework includes a user-level checkpointing 
library called SRS and a runtime support system that manages the check-
pointed data for distribution to distributed locations. Our experiments 
and results indicate that the parallel applications, with instrumentation 
to SRS library, were able to achieve reconfigurability incurring about 
15-35% overhead. 

1 Introduction 

Distributed systems and computational Grids [18] involve large system dynamics 

that it is highly desirable to reconfigure executing applications in response to 

the change in environments. Since parallel applications execute on large num­

ber of shared systems, the performance of the applications will be degraded if 

there is increase in external load on the resources caused by other applications. 

Also, it is difficult for users of parallel applications to determine the amount of 

parallelism for their applications and hence may want to determine the amount 

of parallelism by means of trial-and-error experiments. Due to the large num­

ber of machines involved in the distributed computing systems, the mean single 

* This work is supported in part by the National Science Foundation contract GRANT 
#EIA-9975020, SC #R36505-29200099 and GRANT #EIA-9975015 

291 

http://www.woridscientific.com
mailto:Ivss@cs.utk.edu


292 S. S. Vadhiyar & J. J. Dongarra 

processor failure rate and hence the failure rate of the set of machines where 
parallel applications are executing are fairly high [7]. Hence, for long running 
applications involving large number of machines, the probability of successful 
completions of the applications is low. Also, machines may be removed from 
executing environment for maintenance. 

In the above situations, it will be helpful for the users or the scheduling 
system to stop the executing parallel application and continue it possibly with a 
new configuration in terms of the number of processors used for the execution. In 
cases of the failure of the application due to non-deterministic events, restarting 
the application on a possibly new configuration also provides a way of fault 
tolerance. We define the following terms that are commonly used in the literature 
to describe parallel applications with different capabilities. 

1. Moldable applications - Parallel applications that can be stopped at any 
point of execution but can be restarted only on the same number of proces­
sors. 

2. Malleable applications - Parallel applications that can be stopped at any 
point of execution and can be restarted on a different number of processors. 
These applications are also called reconfigurable applications. 

3. Migratable applications - Parallel applications that can be stopped at 
any point of execution and can be restarted on processors in a different site, 
cluster or domain. 

Reconfigurable or malleable and migratable applications provide added func­
tionality and flexibility to the scheduling and resource management systems for 
distributed computing. 

In order to achieve starting and stopping of the parallel applications, the 
state of the applications have to be checkpointed. Elonazhy [16] and Plank [29] 
have surveyed several checkpointing strategies for sequential and parallel appli­
cations. Checkpointing systems for sequential [30,37] and parallel applications 
[15,10,4,34,20] have been built. Checkpointing systems are of different types 
depending on the transparency to the user and the portability of the check­
points. Transparent and semi-transparent checkpointing systems [30,12,34] hide 
the details of checkpointing and restoration of saved states from the users, but 
are not portable. Non-transparent checkpointing systems [23,21,27,20] involves 
the users to make some modifications to their programs but are highly portable 
across systems. Checkpointing can also be implemented at the kernel level or 
user-level. 

In this paper, we describe a checkpointing infrastructure that helps in the 
development and execution of malleable and migratable parallel applications for 
distributed systems. The infrastructure consists of a user-level semi-transparent 
checkpointing library called SRS (Stop Restart Software) and a Runtime Sup­
port System (RSS). Our SRS library is semi-transparent because the user of the 
parallel applications has to insert calls in his program to specify the data for 
checkpointing and to restore the application state in the event of a restart. But 
the actual storing of checkpoints and the redistribution of data in the event of 
a reconfiguration are handled internally by the library. Though there are few 
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checkpointing systems that allow changing the parallelism of the parallel appli­
cations [21,27], our system is unique in that it allows for the applications to be 
migrated to distributed locations with different file systems without requiring 
the users to manually migrate the checkpoint data to distributed locations. This 
is achieved by the use of a distributed storage infrastructure called IBP [28] that 
allows the applications to remotely access checkpoint data. Our experiments 
and results indicate that the use of SRS library incurs low overheads for the the 
parallel applications. Our checkpointing infrastructure provides both pro-active 
preemption and restarts of the applications and tolerance in the event of fail­
ures. The infrastructure has been implemented and tested and the software is 
available for download at http://www.cs.utk.edu/~vss/srs.htm. 

The contributions of our checkpointing infrastructure are: 

1. providing an easy-to-use checkpointing library that allows reconfiguration of 
parallel applications. 

2. allowing checkpoint data to be ported across heterogeneous machines and 
3. providing migration of the application across locations that do not share 

common file systems without requiring the user to migrate data. 

In Section 2, we describe the SRS checkpointing library for reconfiguring ap­
plications. Section 3 explains the other parts of the checkpointing infrastructure, 
mainly the RSS service and the interactions between the applications and the 
checkpointing infrastructure. Section 4 lists the various steps needed for using 
the checkpointing infrastructure. Section 5 describes our experiments and results 
to demonstrate the overhead of our checkpointing system. Section 6 presents the 
current limitations of our checkpointing infrastructure. Section 7 looks at the rel­
evant work in the field of checkpointing and migration of applications. In Section 
8, we give concluding remarks and in Section 9, we present our future plans. 

2 SRS Checkpointing Library 

SRS (Stop Restart Software) is a user-level checkpointing library that helps to 
make iterative parallel MPI message passing applications reconfigurable. Itera­
tive parallel applications cover a broad range of important applications including 
linear solvers, heat-wave equation solvers, partial differential equation (PDE) ap­
plications etc. The SRS library has been implemented in both C and Fortran 
and hence SRS functions can be called from both C and Fortran MPI programs. 
The SRS library consists of 6 main functions: 

1. SRSJnit, 

2. SRS-Restart_Value, 
3. SRS-Read, 
4. SRS-Register, 

5. SRS.Check.Stop and 
6. SRS-Finish. 

http://www.cs.utk.edu/~vss/srs.htm
http://SRS.Check.Stop
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The user calls SRSJnit after calling MPUnit. SRS-Init is a collective oper­
ation and initializes the various data structures used internally by the library. 
SRSJnit also reads various parameters from a user-supplied configuration file. 
These parameters include the location of the Runtime Support System (RSS) 
and a flag indicating if the application needs periodic checkpointing. SRSJnit, 
after reading these parameters, contacts the RSS and sends the current number 
of processes that the application is using. It also receives the previous configura­
tion of the application from the RSS if the application has been restarted from 
a previous checkpoint. 

In order to stop and continue an executing application, apart from check­
pointing the data used by the application, the execution context of the appli­
cation also needs to be stored. For example, when the application is initially 
started on the system, various data needs to be initialized, whereas when the 
application is restarted and continued, data needs to be read from a checkpoint 
and the initialization phase can be skipped. Most checkpointing systems [30] 
restore execution context by storing and retrieving execution stack. This solu­
tion compromises on the portability of the checkpointing system. Since the main 
goal of the SRS library is to provide heterogeneous support, the task of restoring 
the execution context is implemented by the user by calling SRS-Restart-Value. 
SRS-Restart-Value returns 0 if the application is starting its execution and 1 if 
the application is continuing from its previous checkpoint. By using these values 
returned by SRS-Restart_Value, the user can implement conditional statements 
in his application to execute certain parts of the code when the application be­
gins its execution and certain other parts of the code when the application is 
continued from its previous checkpoint. 

SRS library uses Internet Backplane Protocol(IBP)[28] for storage of the 
checkpoint data. IBP depots are started on all the machines the user wants to use 
for the execution of his application. SRS-Register is used to mark the data that 
will be checkpointed by the SRS library during periodic checkpointing or when 
SRS_Check_Stop is called. Only the data that are passed in the SRS_Register 
call are checkpointed. The user specifies the parameters of the data including 
the size, data type and data distribution when calling SRS-Register. The data 
distributions supported by the SRS library include common data distributions 
like block, cyclic and block-cyclic distributions. For checkpointing data local to 
a process of the application or for data without distribution, a distribution value 
of 0 can be specified. SRS-Register stores the various parameters of the data in 
a local data structure. SRS-Register does not perform actual checkpointing of 
the data. 

SRS-Read is the main function that achieves reconfiguration of the applica­
tion. When the application is stopped and continued, the checkpointed data can 
be retrieved by invoking SRS-Read. The user specifies the name of the check-
pointed data, the memory into which the checkpointed data is read and the new 
data distribution when calling SRS-Read. The data distribution specified can 
be conventional distributions or 0 for no distribution or SAME if the same data 
has to be propagated over all processes. The value SAME is useful for retrieving 
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iterator values when all the processes need to start execution from the same 
iteration. The SRS-Read contacts the RSS and retrieves the previous data dis­
tribution and the location of the actual data. If no distribution is specified for 
SRS-Read, each process retrieves the entire portion of the data from the corre­
sponding IBP depot used in the previous execution. If SAME is used for the data 
distribution, the first process reads the data from the IBP depot corresponding 
to the first process in the previous execution and broadcasts the data to the other 
processes. If data distribution is specified in SRS_Read, SRS_Read determines 
the data maps for the old and new distributions of the data corresponding to 
the previous and the current distributions. Based on the information contained 
in the data maps, each process retrieves its portion of data from the IBP depots 
containing the data portions. Thus reconfiguration of the application is achieved 
by using different level of parallelism for the current execution and specifying a 
data distribution in SRS-Read that may be different from the distribution used 
in the previous execution. 

SRS-Check_Stop is a collective operation and called at various phases of 
the program to check if the application has to be stopped. If SRS_Check_Stop 
returns 1, then an external component has requested for the application to stop, 
and the application can execute application-specific code to stop the executing 
application. SRS_Check_Stop contacts the RSS to retrieve a value that specifies if 
the application has to be stopped. If an external component has requested for the 
application to be stopped, SRS_Check_Stop stores the various data distributions 
and the actual data registered by SRS-Register to the IBP [28] depots. Each 
process of the parallel application stores its piece of data to the local IBP depot. 
By storing only the data specified by SRS-Register and requiring each process 
of the parallel application to the IBP depot on the corresponding machine, the 
overhead incurred for checkpointing is significantly low. SRS_Check_Stop sends 
the pointers for the checkpointed data to RSS and deletes all the local data 
structures maintained by the library. 

SRS-Finish is called collectively by all the processes of the parallel applica­
tion before MPI_Finish in the application. SRS-Finish deletes all the local data 
structures maintained by the library and contacts the RSS requesting the RSS 
to terminate execution. 

Apart from the 6 main functions, SRS also provides SRS_DistributeFunc_Create 
and SRS-DistributeMap.Create to allow the user specify his own data distribu­
tions instead of using the conventional data distributions provided by the SRS 
library. 

Figure 1 shows a simple MPI based parallel program. The global data indi­
cated by globaLA is initialized in the first process and distributed across all the 
processes in a block distribution. The program then enters a loop where each 
element of the global data is incremented by a value of 10 by the process holding 
the element. Figure 2 shows the same code instrumented with calls to the SRS 
library. The application shown in Figure 2 is reconfigurable in that it can be 
stopped and continued on a different number of processors. 
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int main(int argc, char** argv){ 

int *global_A, int* local_A; 

int global_size, local_size; 

MPI_Comm comm = MPI_C0MM_WORLD; 

MPI_Init(&argc, feargv); 

MPI_Comm_rank(comm, ferank); 

MPI_Comm_size(comm, fesize); 

local_size = global_size/size; 

if(rank == 0){ 

for(i=0; i<global_size; i++){ 

global_A[i] = i; 

} 

} 

MPI.Scatter (global.A, local.size, MPI_INT, local.A, 

MPI_INT, 0, comm ); 

for(i=0; i<global_size; i++){ 

proc_number = i/local_size; 

local_index = i\*/,local_size; 

if(rank == proc_number){ 

local_A[local_index] += 10; 

} 

} 

MPIJFinalizeO; 

exit(0); 

> 

local_size, 

Figure 1. Original code 
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i n t mainQnt argc , char** argv) { 

i n t *global_A, i n t * l o c a l . A ; 

i n t g l o b a l . s i z e , l o c a l . s i z e ; 

MPI.Comm comm = MPI.COMM.WORLD; 

MPI_Init(&argc, feargv); 

S R S . I n i t O ; 

MPI_Comm_rank(comm, ferank); 

MPI_Coiran_size(comm, &s ize ) ; 

l o c a l . s i z e = g l o b a l . s i z e / s i z e ; 

r e s t a r t _ v a l u e = SRS.Restart .Value( ) ; 

i f ( r e s t a r t . v a l u e == 0 ) { 

i f ( r a n k == 0 ) { 

f o r ( i = 0 ; i < g l o b a l _ s i z e ; i + + ) { 

g l o b a l _ A [ i ] = i ; 

} 

} 

MPI.Scatter ( g l o b a l . A , l o c a l . s i z e , MPI. 

MPI.INT, 0 , comm ) ; 

i t e r s t a r t = 0; 

} 

e l s e { 

SRS_Read("A", l o c a l . A , BLOCK, NULL); 

SRS.Read("iterator", feiter.start, SAME 

} 
J 

SRS_Register("A", l o c a l . A , GRADS.INT, l o 

S R S . R e g i s t e r ( " i t e r a t o r " , &i, GRADS.INT, 

f o r ( i = i t e r . s t a r t ; K g l o b a l . s i z e ; i++) { 

s t o p . value = SRS.Check.StopO ; 

i f ( s t o p . v a l u e == 1 ) { 

MPI .F ina l i zeO ; 

e x i t ( 0 ) ; 

} 

proc.number = i / l o c a l _ s i z e ; 

l o c a l . i n d e x = i \ ' / , l o c a l _ s i z e ; 

i f ( r a n k == proc.number){ 

l o c a l . A [ l o c a l . i n d e x ] += 10; 

} 

} 

SRS.FinishO ; 

M P I . F i n a l i z e O ; 

e x i t ( 0 ) ; 

} 

.INT, l o c a l . A , l o c a l . s i z e , 

, NULL); 

c a l . s i z e , BLOCK, NULL); 

1, 0 , NULL); 

F i g u r e 2 . Modified code with SRS calls 
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3 Runtime Support System (RSS) 

RSS is a sequential application that can be executed on any machine with which 
the machines used for the execution of actual parallel application will be able 
to communicate. RSS exists for the entire duration of the application and spans 
across multiple migrations of the application. Before the actual parallel appli­
cation is started, the RSS is launched by the user. The RSS prints out a port 
number on which it listens for requests. The user fills a configuration file called 
srs.config with the name of the machine where RSS is executing and the port 
number printed by RSS and makes the configuration file available to the first 
process of the parallel application. When the parallel application is started, the 
first process retrieves the location of RSS from the configuration file and registers 
with the RSS during SRSJnit. The RSS maintains the application configuration 
of the present as well as the previous executions of the application. 

The RSS also maintains an internal flag, called stop-flag that indicates if 
the application has to be stopped. Initially, the flag is cleared by the RSS. A 
utility called stop-application is provided and allows the user to stop the appli­
cation. When the utility is executed with the location of RSS specified as input 
parameter, the utility contacts the RSS and makes the RSS set the stop-flag. 

When the application calls SRS_Check_Stop, the SRS library contacts the RSS 
and retrieves the stop-flag. The application either continues executing or stops 
its execution depending on the value of the flag. 

When the SRS_Check_Stop checkpoints the data used in the application to 
IBP depots, it sends the location of the checkpoints and the data distributions 
to the RSS. When the application is later restarted, it contacts the RSS and 
retrieves the location of the checkpoints from the RSS. When the application 
finally calls SRS-Finish, the RSS is requested by the application to terminate 
itself. The RSS cleans the data stored in the IBP depots, deletes its internal data 
structures and terminates. 

The interactions between the different components in the SRS checkpointing 
architecture is illustrated in Figure 3. 

4 Experiments and Results 

Our experimental testbed consists of two clusters, one in University of Tennessee 
and another in University of Illinois, Urbana-Champaign. The Tennessee cluster 
consists of 8 933 MHz dual- processor Pentium III machines running Linux 
and connected to each other by 100 Mb switched Ethernet. The Illinois cluster 
consists of 16 450 MHz single-processor Pentium II machines running Linux 
and connected to each other by 1.28 Gbit/second full duplex myrinet. The two 
clusters are connected by means of the Internet. 

ScaLAPACK QR factorization application was instrumented with calls to 
SRS library such that the modified code was malleable and migratable across 
heterogeneous clusters. The data that were checkpointed by the SRS library for 
the application included the matrix, A and the right-hand side vector, B. The 
experiments were conducted on non-dedicated machines. 
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User 

Application 
Registration, Handles to checkpointefl data, 

Figure 3. Interactions in SRS 

4.1 SRS Overhead 

In the first experiment, the overhead of SRS library was analyzed when check­
pointing of data is not performed. Thus the application instrumented with SRS 
library simply connects to a RSS daemon and runs to completion. Figure 4 
compares the execution of the factorization application on 8 UT machines when 
operated in three modes. The "Normal" mode is when the plain application with­
out SRS calls is executed. In the second mode, the application instrumented with 
SRS library was executed connecting to a RSS daemon started at UT. In the 
third mode, the application instrumented with SRS library was executed con­
necting to a RSS daemon started at UIUC. The x-axis represents the matrix 
sizes used for the problem and the y-axis represents the total elapsed execution 
time of the application. 

The maximum overhead of using SRS when RSS was started at UT was 15% 
of the overall execution time of the application. This is close to the 10% overhead 
that is desired for checkpointing systems [26]. The worst-case overhead of using 
SRS when RSS was started at UIUC was 29% of the overall execution time of the 
application. The increased overhead is due to the communication between SRS 
and RSS during initialization and at different phases of the application. Since 
RSS was located at UIUC, the communications involved slow Internet bandwidth 
between UT and UIUC. The large overhead can be justified by the benefits the 
SRS library provide in reconfiguring applications across heterogeneous sites. 

Figure 5 shows the results of an experiment similar to the first experiment, 
but with the periodic checkpointing option turned on. In the periodic check­
pointing mode, the SRS library checkpoints the application data to IBP depots 
every 10 minutes. 
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Overhead in using SRS (No Checkpointing) 
(application=Scal_APACK QR, cluster=homogeneous(UT), procs=8) 

0 I 1 1 1 1 1 1 1 

2000 4000 6000 8000 10000 12000 14000 16000 

Matrix Size 

Figure 4. Overhead in SRS on a homogeneous cluster (No Checkpointing) 

Overhead in using SRS 
(Periodic Checkpointing every 10 minutes) 

(application=ScaLAPACK QR, cluster=homogeneous(UT), procs=8) 

0 I i i i i i i i I 

8000 9000 10000 11000 12000 13000 14000 15000 16000 

Matrix Size 

Figure 5. Overhead in SRS on a homogeneous cluster (Periodic Checkpointing) 
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The worst-case SRS overheads in this experiment was high - 23% of the 
application time when RSS was located at UT and 36% of the application time 
when RSS was located at UIUC. The details of the periodic checkpointing used 
for Figure 5 is given in Table 1. 

Table 1. Details of Periodic Checkpointing used for Figure 5 

1 Matrix 

\Size 

18000 

10000 

12000 

14000 

]l6000 

Number of Check­

points 

1 
2 

3 

4 

5 

Size per Checkpoint 

(MBytes) 

64 

100 
144 

196 

256 

Time for storing^ 

a checkpoint (Sec-v, 

onds) 1 

6.51 " ] 

10.06 

13.68 

32.34 

93.25 1 

From Table 1, it is clear that the high worst-case SRS overheads seen in 
Figure 5 are not due to the time taken for storing checkpoints. We suspect that 
the overheads are due to the transient loads on the non-dedicated machines. 

In the third experiment in this subsection, the application was executed in a 
heterogeneous environment comprising 8 UIUC and 4 UT machines. The appli­
cation was operated in 3 modes. "Normal" was when the plain application was 
executed. In the second mode, the application instrumented with SRS calls was 
executed without checkpointing. In the third mode, the application instrumented 
wit SRS calls was executed with periodic checkpointing of every 10 minutes. In 
the SRS mode, the RSS was started at UT. Figure 6 shows the results of the 
third experiment. The worst-case SRS overhead for the application was 15% and 
hardly noticeable in the figure. The details of the periodic checkpointing used in 
the third mode for the figure is given in Table 2. 

Table 2. Details of Periodic Checkpointing used for Figure 6 

1 Matrix 

\Size 

I200CT 

4000 

6000 

8000 

10000 

Number of Check­

points 

1 

1 

2 

3 

5 

Size per Checkpoint 

(MBytes) 

2.5 

10.6 
24 

42.7 

66.7 

Time for storing] 

a checkpoint (Sec-\ 

onds) 1 

4.59 1 

9.34 

11.22 

13.50 

18.51 1 

file:///Size
file:///Size
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Overhead in using SRS 
(RSS at UT) 

(application=ScaLAPACK QR, cluster=heterogeneous(UT & UIUC), procs=12) 

4000 i 1 1 1 1 1 1 1 1 

Normal 1 
I With SRS (No checkpointing) —h~>^j 

cJ5UU r With SRS (Periodic checkpointing every 10 mins.) jp 1 

3000 I ^T 1 

2500 I ^T •] 

2000 I ^T \ 

1500 I ^ T \ 

1000 I ^ ^ ^ ^ 1 

500 I -^^^ J 

Q I I I i I I I I I 

2000 3000 4000 5000 6000 7000 8000 9000 10000 

Matrix Size 

F i g u r e 6. Overhead in SRS on a heterogeneous cluster 

4.2 SRS for Moldable Applications 

In this subsection, results for experiments where the application is stopped 
and restarted on the same number of processors are shown. The application 
instrumented with SRS calls was initially executed at 8 UT machines. 3 min­
utes after the start of the application, the application was stopped using the 
stop-application utility. The application was restarted on the same number of 
machines. In this scenario, the processes of the parallel application read the 
corresponding checkpoints from the IBP storage without performing any redis­
tribution of data. The RSS daemon was started at UT. 

Figure 7 shows the times for writing and reading checkpoints when the ap­
plication was restarted on the same 8 UT machines on which it was originally 
executing. From the figure, we find that the times for writing and reading check­
points are very low and in the range of 7-10 seconds. Thus the application can 
be removed from a system and restarted later on the same system for various 
reasons without much overhead. The time between when the stop signal was 
issued to the application and when the application actually stops depends on 
the moment when the application calls SRS_Check_Stop after the stop signal. 
Table 3 gives the checkpoint sizes used in Figure 7. 

Figure 8 shows the results when the application was started at 8 UT ma­
chines, stopped and restarted at 8 UIUC machines. The increased times in read­

er 
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Writing and Reading Checkpoints 
(Writing and Reading at UT, procs=8) 

Checkpoint Writing 
Checkpoint Reading 

6000 7000 8000 9000 10000 11000 12000 

Matrix Size 

Figure 7. Times for Checkpoint Writing and Reading when the application was 
restarted on UT machines 

Table 3. Details of Checkpointing used in Figure 7 

\ Matrix Size 

I 6000 

7000 

8000 

9000 

10000 

11000 

1 12000 

Size per Checkpoint (MBytes)^ 

36 II 

49 
64 

81 
100 

121 

144 | 
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ing checkpoints is due to the communication of checkpoints across the Internet 
from UT to UIUC machines. 

90 

80 

70 

60 

0 
CO 

CD 
| 40 
P 

30 

20 

10 

Writing and Reading Checkpoints 
(Writing at UT and Reading at UIUC, procs=8) 

n 1 r 
Checkpoint Writing 

Checkpoint Reading 

6000 6500 7000 7500 8000 8500 

Matrix Size 

9000 9500 10000 

Figure 8. Times for Checkpoint Writing and Reading when the application was 
restarted on UIUC machines 

4.3 SRS for Malleable Applications 

In the experiments in this section, the application was started on 8 UT machines 
and restarted on a different number of machines spanning UT and UIUC. In this 
case, the restarted application, through the SRS library, determines the new 
data distributions for the processors and redistributes the stored checkpoint 
data among the processors. The RSS daemon was started on UT. 

In Figure 9, results are shown when the ScaLAPACK QR application corre­
sponding to matrix size 8000 was restarted on different number of processors (3 
UIUC machines - (8 UIUC, 2 UT machines)). The size of a single stored check­
point was 64 MBytes. The time for data redistribution depends on the number 
and size of the data blocks that are communicated during redistribution and the 
network characteristics of the machines between which the data are transferred. 
When the application is restarted on a smaller number of processors, the size of 
the data blocks are large and hence the redistribution time is large. For larger 
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10 

Writing and Redistribution of Checkpoints 
(application=ScaLAPACK QR, Matrix size=8000) 

Checkpoint Writing 
Checkpoint Redistribution 

6 7 

Number of processors 

10 

Figure 9. Times for Checkpoint Writing and Redistribution when the application was 
restarted on different number of processors 

number of processors, the redistribution time decreases due to the reduced size 
of data blocks communicated between the processors. 

Figure 10 shows the dependence of the redistribution times on the problem 
size. For this experiment, the application was initially started on 8 UT machines 
and restarted on 8 UIUC and 2 UT machines. 
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Figure 10. Times for Checkpoint Writing and Redistribution for different problem 
sizes 

5 Steps for Developing and Executing Malleable 
Applications 

Following is the summary of the actions needed for developing and executing 
malleable and migratable MPI message passing applications with the SRS li­
brary. 

1. The user starts IBP depots on all machines where he many execute his 
application. 

2. The user converts his parallel MPI application into a malleable application 
by inserting calls to SRS library. He then compiles and links with the SRS 
library. 
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3. The user then executes RSS on a machine with which the machines for 
application execution will be able to execute. The RSS will output a port 
number on which it listens for requests. 

4. The user creates a configuration file specifying the machine and the port 
number of RSS. 

5. The user stores the configuration file at the working directory of the first 
process of the parallel application. 

6. The user starts his parallel application on a set of machines. The application, 
through the SRS library communicates with the RSS. 

7. In the middle of the application execution, the user can stop the application 
by using the stop-application utility. The user specifies the location and the 
port number of the RSS to the stop-application utility. 

8. The user can restart his application on possibly a different number of proces­
sors in the same way he initially started his application. After the application 
completes, the RSS terminates. 

6 Limitations 

Although the SRS framework is robust in supporting migration of malleable par­
allel applications across heterogeneous environments, it has certain limitations 
in terms of the checkpointing library and the kind of applications it can support. 

1. Although the SRS library can be used in a large number of parallel applica­
tions, it is most suitable to iterative applications where SRS_Check_Stop can 
be inserted at the beginning or at the end of the loop. The SRS library is not 
suitable for applications like multi-component applications where different 
data can be initialized and used at different points in the program. 

2. Currently, the execution context is restored by the user by the use of appro­
priate conditional statements in the program. This approach is cumbersome 
and difficult for the users when programs with multiple nested procedures 
are involved. 

3. The SRS library supports only native data type like single and double pre­
cision floating point numbers, integers, characters etc. It does not support 
checkpointing of complex pointers, files and structures. 

4. Although the main motivation of the SRS library is to help the user pro-
actively stop an executing application and restart and continue it with a 
different configuration, SRS also allows fault tolerance by means of periodic 
checkpointing. However, the fault tolerance supported by SRS is limited in 
that it can tolerate only application failures due to non-deterministic events 
and not due to total processor failures. This is because the IBP depots on 
which the checkpoints are stored also fail when the machines on which the 
IBP depots are located fail. 

5. The machine on which the RSS daemon is executing must be failure-free for 
the duration of the application. 
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7 Related Work 

Checkpointing parallel applications have been widely studied [16,29,25] and 
checkpointing systems for parallel applications have been developed [12,10,33, 
38,31,15,20,34,3,23,20,4,22,21,27]. Some of the systems were developed for 
homogeneous systems [12,11,33,34] while some checkpointing systems allows 
applications to be checkpointed and restarted on heterogeneous systems [15,20, 
3-5,23,21,27]. Calypso [5] and Plinda [23] require application writers to write 
their programs in terms of special constructs and cannot be used with third-
party software. Systems including Dynamic PVM [15] and CUMULVS [20] use 
PVM mechanisms for fault detection and process spawning and can only be used 
with PVM environments. Cocheck [34] and Starfish [3] provide fault tolerance 
with their own MPI implementations and hence are not suitable for distributed 
computing and Grid systems where the more secure MPICH-G [19] is used. 
CUMULVS [20], Dome [4,7], the work by Hofmeister [22] and Deconick [13,14,9], 
DRMS [27] and DyRecT [2,21] are closely related to our research in terms of the 
checkpointing API, the migrating infrastructure and reconfiguration capabilities. 

The CUMULVS [20] API is very similar to our API in that it requires the 
application writers to specify the data distributions of the data used in the 
applications and it provides support for some of the commonly used data distri­
butions like block, cyclic etc. CUMULVS also supports stopping and restarting 
of applications. But the applications can be stopped and continued only on the 
same number of processors. Though CUMULVS supports MPI applications, it 
uses PVM as the base infrastructure and hence poses the restriction of executing 
applications on PVM. 

Dome [4,7] supports reconfiguration of executing application in terms of 
changing the parallelism for the application. But the data that can be redis­
tributed for reconfiguration have to be declared as Dome objects. Hence it is 
difficult to use Dome with third-party software like ScaLAPACK where native 
data is used for computations. Also Dome uses PVM as the underlying architec­
ture and cannot be used for message passing applications. 

The work by Hofmeister [22] supports reconfiguration in terms of dynamically 
replacing a software module in the application, moving a module to a different 
processor and adding or removing a module to and from the applications. But 
the package by Hofmeister only works on homogeneous systems. The work by 
Deconinck [13,14,9] is similar to SRS in terms of the checkpointing API and 
the checkpointing infrastructure. Their checkpoint control layer is similar to our 
RSS in terms of managing the distributed data and the protocols for commu­
nication between the applications and the checkpoint control layer is similar to 
ours. By using architecture-independent checkpoints, the checkpoints used in 
their work are heterogeneous and portable. But the work by Deconick does not 
support reconfiguration of application in terms of varying the parallelism for the 
applications. 

The DyRecT [2,21] framework for reconfiguration allows dynamic reconfig­
uration of applications in terms of varying the parallelism by adding or remov­
ing the processors during the execution of parallel application. The user-level 
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checkpointing library in DyRecT also supports the specification of data dis­
tribution. The checkpoints are system-independent and MPI applications can 
use the checkpointing library for dynamic reconfiguration across heterogeneous 
systems. But DyRecT uses LAM MPI [1] for implementing the checkpointing 
infrastructure to use the dynamic process spawning and fault detection mech­
anisms provided by LAM. Hence DyRecT is mainly suitable for workstation 
clusters and not distributed and Grid systems where the more secure MPICH-G 
is used [19]. Also, DyRecT requires the machines to share a common file sys­
tem and hence applications cannot be migrated and reconfigured to distributed 
locations that do not share common file systems. 

The DRMS [27] checkpointing infrastructure uses DRMS programming model 
to support checkpointing and restarting parallel applications on different number 
of processors. It uses powerful checkpointing mechanisms for storing and retriev­
ing checkpoint data to and from permanent storage. It is the closest related work 
to SRS in that it supports a flexible checkpointing API for reconfiguring MPI 
message passing applications implemented on any MPI implementations to be 
reconfigured on heterogeneous systems. But DRMS also does not support mi­
grating and restarting applications on environments that do not share common 
file systems with the environments where the applications initially executed. 

A more recent work by Kale et. al [24] achieves reconfiguration of MPI-
based message passing programs. But reconfiguration is achieved by using a 
MPI implementation called AMPI [8] that is less suitable to Grid systems than 
MPICH-G. 

8 Conclusions and Future Work 

In this paper, a checkpointing infrastructure for developing and executing mal­
leable and migratable parallel applications across heterogeneous sites was ex­
plained. The SRS API has limited number of functions for seamlessly enabling 
parallel applications malleable. The uniqueness of the SRS system is achieved by 
the use of IBP distributed storage infrastructure. Results were shown to evaluate 
the overhead incurred by the applications and the times for storing, reading and 
redistributing checkpoints. The results show that SRS can enable reconfigura-
bility of the parallel applications with limited overhead. 

One of the main goals will be to use precompiler technologies to restore the 
execution context and to relieve the user from having to make major modifica­
tions in his program to provide malleability of his applications. The precompila-
tion strategies will be similar to the approaches taken by Ferrari [17], Dome [7], 
Zandy [39] and Sun et. al. [36]. Other future investigations include support for 
checkpointing files, complex pointers and structures and to provide support for 
different kinds of applications. 

Although the design of the checkpointing framework supports migration of 
heterogeneous environments, the current implementation stores the checkpoint 
data as raw bytes. This approach will lead to misinterpretation of the data by 
the application if, for example, the data is stored on a Solaris system and read 
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by a Linux machine. This is due to the different byte orderings and floating point 

representations followed on different systems. We plan to use the External Data 

Representation (XDR) or Porch Universal Checkpointing Format (UCF) [35,32] 

for representing the checkpoints. 

We also plan to separate the storage nodes for checkpoints from the computa­

tional nodes for application execution by employing the eXNode [6] architecture. 

This will provide robust fault tolerant mechanism for withstanding the processor 

failures in SRS. 

We also intend to collaborate with the CUMULVS project [20] to provide a 

generic visualization architecture tha t will be used to monitor the execution of 

malleable applications. 

There are also plans to extend the RSS daemon to make it fault-tolerant 

by periodically checkpointing its state so that the RSS service can be migrated 

across sites. Presently, all the processes of the parallel application communicate 

with a single RSS deamon. This may pose a problem for the scalability of the 

checkpointing system, especially when large number of machines are involved. 

Our future plan is to implement a distributed RSS system to provide scalability. 
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