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Abstract

Rapid molecular typing of bacterial pathogens is critical for public health epidemiology, surveillance and infection

control, yet routine use of whole genome sequencing (WGS) for these purposes poses significant challenges. Here

we present SRST2, a read mapping-based tool for fast and accurate detection of genes, alleles and multi-locus

sequence types (MLST) from WGS data. Using >900 genomes from common pathogens, we show SRST2 is highly

accurate and outperforms assembly-based methods in terms of both gene detection and allele assignment. We

include validation of SRST2 within a public health laboratory, and demonstrate its use for microbial genome surveillance

in the hospital setting. In the face of rising threats of antimicrobial resistance and emerging virulence among bacterial

pathogens, SRST2 represents a powerful tool for rapidly extracting clinically useful information from raw WGS data.

Source code is available from http://katholt.github.io/srst2/.

Background
Rapid molecular typing of bacterial pathogens is critical

for public health epidemiology, surveillance and infec-

tion control [1,2]. Two key goals of such activities are:

(1) to detect the presence of genes linked to clinically

relevant phenotypes - including virulence genes, anti-

microbial resistance genes or serotype determinants; and

(2) to classify isolates into clonal groups, via multi-locus

sequence typing (MLST [3]) or detection of clone-

specific or other epidemiological markers. Whole genome

sequencing (WGS) or ‘genomic epidemiology’ is increas-

ingly being adopted for these tasks and has the potential

to replace current techniques which are mainly based on

PCR and/or restriction enzyme digestion coupled with se-

quencing or size separation via electrophoresis [1,4]. WGS

is particularly attractive as: (1) it can be applied simultan-

eously to large numbers of bacterial isolates of any species

with no need for organism- or target-specific reagents;

and (2) the resulting data are readily shareable, can be

compared easily with past and future data sets, and are in-

formative for both routine surveillance (monitoring genes

and clones) and detailed outbreak investigation (genome-

wide phylogenies for transmission analysis) [2,4].

WGS has revolutionised pathogen research, and its

potential to revolutionise the practice of public health

epidemiology, surveillance and infection control has

been recognised for some time [4-10]. Despite the en-

thusiasm and several demonstration studies [11-16], the

routine use of WGS poses significant challenges for pub-

lic health and diagnostic laboratories, foremost of which

is a lack of solutions for the rapid and reproducible ex-

traction of informative, interpretable and shareable data

from raw sequence data [1,17].

Currently available methods rely on assembling short

reads into longer contiguous sequences (contigs), which

can be interrogated using BLAST or other search algo-

rithms to identify genes or alleles of interest (for ex-

ample, ARG-Annot [18]; ResFinder, PlasmidFinder and

MLST typer [19-21]; BIGSdb [22,23]). The reliance on

assembly introduces efficiency and sensitivity problems

due to the data, time and computational requirements

for generating high quality assemblies of bacterial ge-

nomes from short reads. There are several assemblers

(for example, Velvet [24], SPAdes [25]) that can produce

a bacterial genome assembly in minutes to hours with a

few gigabytes of memory. However, the production of

high quality assemblies with these tools requires quality
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filtering and other preprocessing of reads as well as opti-

misation of kmer length and other parameters which

in practice requires several alternative assemblies to be

generated and compared [26,27], thus multiplying by an

order of magnitude the amount of computational time

and memory required to produce each genome prior

to typing analysis. Further, the quality of even highly

optimised assemblies remains highly variable, even for

closely related genomes sequenced together in multiplex.

Hence assembly-based analyses of genomes sequenced

with short-read technology are very difficult to standard-

ise and quality control, which is important to ensure ro-

bust, reliable and reproducible assays for use in public

health and infection control.

Here we describe a new tool for genomic epidemiology,

SRST2, which performs fast and accurate detection of

genes and alleles direct from WGS short sequencing reads.

SRST2 can type reads using any sequence database(s) and

can calculate combinatorial sequence types defined in

MLST-style databases [3]. We demonstrate its utility for

routine molecular typing in public health and hospital

laboratories via automated MLST and typing of virulence,

antimicrobial resistance and plasmid genes. SRST2 is

named after our earlier tool SRST (Short Read Sequencing

Typing) which performed MLST on short reads [28], how-

ever the SRST2 code is entirely novel and uses different

read mapping, scoring and reporting algorithms to SRST,

is more stable and robust, and is designed for gene detec-

tion and allele typing as well as MLST.

Implementation

Given a read set and database of reference allele se-

quences, SRST2 is designed to perform two key tasks:

(1) detect the presence of a gene or locus; and (2) deter-

mine the precise or closest matching allele for that locus,

among a set of possible reference allele sequences. The

approach is illustrated in Figure 1. A database of refer-

ence sequences must be provided in fasta format, in

which the fasta headers indicate both the locus (so that

alleles of the same locus can be compared) and a unique

name for each allele. In the case of MLST data an add-

itional database of ST profiles is provided as tab-delimited

text, which assigns STs to unique combinations of alleles.

Current MLST data (allele sequences and profile defini-

tions) can be downloaded from pubmlst.org automatically

using the getmlst.py script supplied with SRST2. For most

MLST schemes, these files are compatible with SRST2

and can be used without modification. Improperly for-

matted databases, or other private sequence databases,

can be easily formatted for use with SRST2 using the

scripts supplied with the program. Any number of se-

quence databases can be analysed in a single run, allowing

for simultaneous typing of MLST, resistance genes and

virulence genes.

For each input database, reads are aligned using bowtie2

[29] v2.1.0 or above with the ‘–very-sensitive-local’ and ‘-a’

settings, and all alignments are reported to a file in SAM

format. Mapping sensitivity can be fine-tuned by specifying

to SRST2 any of the parameters available within the bow-

tie2-align command or a maximum number of mismatches

per read (default 10 mismatches allowed). Flags in the

resulting SAM file are modified so that each read is in-

cluded in the pileup for every allele to which it is aligned.

Pileups are generated using SAMtools v0.1.18 [30] mpileup

and parsed by SRST2 to determine percent coverage, diver-

gence, and mismatches as well as to calculate a score for

each possible allele.

Allele scoring

An overview of the scoring approach is given in Figure 1.

We begin with an alignment of reads from sample s to a

reference sequence r. At each position i in the reference se-

quence r (ri), let si be the set of reads in sample s that align

to ri. Let ai be the total number of reads in si, and let bi be

the number of reads in si in which the aligned base does

not match the reference base at ri. If sample s contains the

precise sequence r, then the probability of a mismatched

base at any position in an aligned read is equal to the per-

base error rate of the sequencing technology ei, which for

Illumina is taken to be 0.01, although this can vary depend-

ing on what preprocessing steps are implemented [31,32].

To quantify the evidence against the presence of the

reference sequence r in s, we perform a Binomial test at

each position ri, to generate a one-sided P value Pi to assess

the probability of observing ai-bi successes in ai trials, with

a probability of success of 1-ei. Any change at position

ri - including a base substitution, an insertion of any size

or a deleted base - is treated as a mismatch, incrementing

bi by 1. For large deletions that result in an absence of any

aligned reads (including truncations of the end of the

sequence), ai = 0 and no binomial test is possible. In this

case, the evidence for the deletion is provided by the reads

which align adjacent to the deletion but do not align

across the deletion. Hence we calculate the average num-

ber of reads aligned to the two bases preceding the dele-

tion, di, and conduct the binomial test with ai = bi = di.

We then utilise a non-parametric approach to score

each allele by considering the set of all P values calcu-

lated for reference sequence r. First, to minimise arte-

facts associated with fluctuation in read depths, we (a)

set Pi = 1 where bi = 0, and weight Pi by the relative read

depth (that is, weight of evidence) at position ri com-

pared to those of other positions in r:

weightedPi Pi;w

� �

¼ Pi � ai=rmax depth

� �

We then compare the sorted -log10(Pi) values versus

those of the theoretical distribution of -log10(xj/n) where

Inouye et al. Genome Medicine 2014, 6:90 Page 2 of 16

http://genomemedicine.com/content/6/11/90



Figure 1 (See legend on next page.)
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n = length(r) and xj = 1,2,…n, analogous to a quantile-

quantile (QQ) plot (Figure 1). A linear model is fitted to

the two probability distributions and the resulting slope

is taken as the score for reference sequence r, scorer.

Here we leverage a common criticism of linear models

to our advantage: the susceptibility to outliers at the tails

of the distribution. In this case, outliers are typically

SNPs or indels relative to the sequence r which, because

they result in low P values in the binomial test and thus

very high values of -log10(P), are at the end of the ob-

served distribution (Figure 1). Thus when a linear model

is fitted, its slope increases with the number of well-

supported SNPs and indels compared to the reference.

As a result, among reference alleles of the same locus,

the sequence r with the lowest scorer (flattest slope in

the QQ plot) is the most likely match for sample s.

Reporting outputs

For each sample s and each locus or gene cluster, SRST2

output tables report the lowest scoring allele sequence r,

the average read depth of s across r and indicators of

any evidence against a precise match with r (including

mismatches supported by >50% of aligned reads, or read

depth falling below a cutoff ). Only matches passing the

user-set coverage and divergence cutoffs (by default, >90%

coverage and <10% divergence) are reported. For MLST

data, STs are calculated according to the MLST profiles

database provided, based on the closest matching alleles at

each locus.

Normally, an exact match between r and s would be

assigned if (a) r has the lowest scorer among the set of

alleles of the same locus or gene cluster, and (b) there

are no SNPs or indels between r and s. If (a) holds but

(b) does not, this is indicative of a novel allele and

SRST2 will flag the result in output tables. In such cases,

we recommend that users who are interested in defining

novel alleles should inspect the raw sequence data

(which may be assisted by the alignments, pileups and

consensus fastq files generated by SRST2).

Optionally, SRST2 can report the full details of scoring

s against all reference sequences r, to enable users to

parse and interpret the results to suit specific needs.

These include average depth of s across r, average depth

across the first and last two bases of r, the number of

positions in r in which the majority of aligned reads in s

show a mismatch against r (with SNPs, insertion/deletions

and truncations reported separately), the depth of bases

neighbouring truncations and, for the position with the

greatest proportion of mismatching reads, the total aligned

reads, total mismatching, proportion mismatching, and

binomial P value.

Major differences between SRST and SRST2

SRST2 is new code and takes an entirely different ap-

proach to read mapping, scoring alignments and report-

ing results than SRST [28], which was designed solely

for MLST and is unsuitable for detection of acquired

genes. In SRST, bwa was used for global alignment of

reads to MLST loci and their flanking sequences; in

SRST2, bowtie2 is used for local alignment of reads to

any locus, without need for flanking sequences, allowing

detection of acquired genes as well as MLST. SRST

scores were calculated in an entirely different way and

were not designed to take into account deletions/trunca-

tions or the relative weight of evidence provided by each

position in the alignment (differences in read depth).

SRST2 allows finer control of mapping and scoring pa-

rameters and provides more detailed reports than SRST.

SRST2 is also faster (2 to 5×) and slightly more reliable

than SRST for MLST analysis (see below).

Methods
Bacterial isolates and sequencing

A total of 231 Listeria monocytogenes isolates were ana-

lysed in this study, at the Microbiological Diagnostic Unit

(MDU) Public Health Laboratory in Victoria, Australia.

MDU is the national reference laboratory for L. monocyto-

genes and the isolates analysed include several from recent

outbreaks as well as from the laboratory’s reference col-

lection. Ethical approval was not required for the use of

reference laboratory isolates in this project. Cultures of

L. monocytogenes isolated from food, environmental or

(See figure on previous page.)

Figure 1 Summary of SRST2 approach. Inputs are reads (fastq format) and one or more databases of reference allele sequences for typing

(fasta format). Reads are aligned to all reference sequences (using bowtie2) and each alignment processed (using SAMtools). At each position in

each alignment, the number of matching and mismatching bases is determined and a binomial test is performed to assess the evidence against

the reference allele; resulting in a set of P values for each reference allele sequence. To determine which of all known reference alleles is most

likely present at a given locus, the P value distributions for known alleles are compared as described in the text. Briefly, for each allele the P values

expected if the reads were derived from the reference allele in the presence of a given level of sequencing error (set to 1% of bases by default) are

regressed on those actually observed, similar to a Q-Q plot; the slope of the fitted line, which increases with the strength of evidence against the

reference allele, is calculated and taken as the score for that allele. The scores file (optional output) contains the scores for each allele at each locus,

along with additional information about the alignments for each allele including percent coverage. For each locus, the allele with the lowest score

is accepted as the closest matching allele (small arrows) and reported in the output table. In MLST mode, sequence type (ST) definitions are

provided as input and used by SRST2 to calculate STs for each read set.
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clinical specimens were purified by two successive

single colony selections after streaking onto horse blood

agar (HBA) incubated for 18 to 24 h at 37°C. Resultant

bacterial growth on the surface of HBA medium was asep-

tically collected and resuspended in a cryotube (Nalgene)

containing 1 mL of sterile glycerol storage broth (1.6% w/v

Tryptone, Oxoid Pty Ltd, LP0042 containing 20% v/v

glycerol) prior to storage at -70°C. Cultures were retrieved

from storage as required and freshly grown (HBA, 18 to

24 h at 37°C) in preparation for DNA extraction. DNA

was extracted from each isolate using QIAmp DNA Mini

Kit (Qiagen) and eluted in EB buffer (Qiagen) (Tris buffer,

no EDTA).

DNA samples were subjected to traditional L. monocy-

togenes MLST analysis [33,34], with a minor modifica-

tion to the annealing temperature for the bglA PCR

(52°C not 45°C). The PCR products were purified with

FastAP Thermosensitive Alkaline Phosphatase (Thermo

Scientific) and Exonuclease I (Thermo Scientific). The

purified PCR products were sequenced using BigDye

Terminator v3 chemistry followed by capillary sequencing

using a 3130xL Genetic Analyzer (Applied Biosystems).

Trace analysis was conducted using BioNumerics version

6.6 with MLST Online plugin version 2.13 and Batch

Sequence Assembly plugin version 1.34.

DNA was subjected to multiplex library preparation

using Nextera XT followed by sequencing using an

Illumina MiSeq. DNA was quantified by Qubit dsDNA

HS Assay Kit (Invitrogen) and normalised to 0.2 ng/μL.

Total 1 ng of DNA was used for Nextera XT DNA Sample

Preparation Kit (Illumina). Tagmentation of genomic

DNA, PCR amplification with dual index primers,

PCR clean-up using Agencourt AMPure XP (Beckman

Coulter), DNA libraries normalization, library pooling

and MiSeq sample loading were performed according to

the manufacturer’s instruction with minor modifications.

For longer than 2 × 250 bp runs on the MiSeq, 25 μL of

AMPure XP beads was added to each PCR-amplified

product during the PCR purification step otherwise

30 μL of AMPure XP beads was added. For some sam-

ples, after PCR purification, DNA fragment size and

library concentration was analysed by 2100 Bioanalyzer

(Agilent Technologies) and Qubit dsDNA HS Assay Kit

(Invitrogen). DNA libraries were normalized manually to

4 nM and libraries with unique indexes were pooled in

equal volumes. Each resulting pooled library was dena-

tured and diluted with 0.2 N NaOH and pre-chilled HT1

(Illumina) to produce a 20 pM denatured library in

1 mM NaOH. Prior to the MiSeq run, the denatured

library was further diluted with pre-chilled HT1 to

approximately 12 to 13.5 pM. A total of 600 μL of

library including 2% (v/v) 20 pM denatured PhiX library

(Illumina) was loaded together with MiSeq reagent kit v3

(Illumina) according to the manufacturer’s instructions.

Publicly available short read data used in this study

Details of Illumina read sets used in this study are pro-

vided in Table 1 and Table 2. Data tables specifying the

expected STs of each read set, summarised from pub-

lished papers, are given in Additional file 1 [35].

Subsampling of read sets

To explore accuracy at low read depths, 10 genomes

each of S. aureus and E. faecium were selected for

random subsampling of reads to simulate genomes

sequenced to low read depth. To do this, we used the

mean read depth across MLST loci to calculate the

sampling fraction required to achieve approximately

1×, 2×, … 10× mean read depth. We randomly sampled

reads from the forward reads file at the required sampling

fraction, and extracted the corresponding reverse reads,

using Perl scripts. Ten random samples were generated

from each read set at each depth level, generating a total of

1,000 read sets for each species.

Sequence databases used in this study

MLST databases for Staphylococcus aureus, Streptococcus

pneumoniae, Salmonella enterica, Escherichia coli, Entero-

coccus faecium, Listeria monocytogenes and Enterobacter

cloaceae were downloaded from pubmlst.org using the

getmlst.py script included with SRST2 (June 2014).

Antimicrobial resistance gene detection was performed

using the ARG-Annot database of acquired resistance

genes [18]. Allele sequences (DNA) were downloaded in

fasta format [43] (May, 2014). Sequences were clustered

into gene groups with ≥80% identity using CD-hit [44]

and the headers formatted for use with SRST2 using the

scripts provided (cdhit_to_csv.py, csv_to_gene_db.py). A

copy of the formatted sequence database used in this

study is included in the SRST2 github repository [35].

Representative sequences for 18 plasmid replicons

were extracted from GenBank using the accessions and

primer sequences specified by Carattoli et al. [45]. A

copy of the formatted sequence database used in this

study is included in the SRST2 github repository [35].

Simulation of expanded S. aureus MLST database

As more genomes are sequenced and as bacteria con-

tinue to evolve, novel alleles will continue to be discov-

ered and thus the size of allele databases will increase.

To explore the impact of database size on accuracy of

allele detection with SRST2, we simulated expansion of

the current S. aureus MLST database from 2,161 alleles

(mean 309 per locus) to 5,578 alleles (mean 797 per

locus). The additional 500 alleles (approximately) per

locus were generated using netrecodon v6.0.0 [46]. Se-

quences derived from the true MLST database were

used to seed the simulation at each locus as follows.

Existing alleles were translation-aligned between start

Inouye et al. Genome Medicine 2014, 6:90 Page 5 of 16

http://genomemedicine.com/content/6/11/90



(alignment start) and stop (alignment end) codons, those

containing a frameshift or stop codon were removed,

and the modal consensus sequence was exported. The

best-fit DNA substitution model of each true alignment

was determined using the AIC in MrModeltest v2.3, as

implemented in PAUP* v4.0b. In netrecodon, the modal

sequences were forward evolved under the coalescent,

using the parameters of the best-fitting model for each

locus, mutation rate 1E-7 and recombination rate 1E-7/

15 (based on reported r/m of 1/15 [47]). A total of 100

independent replicates of forward evolution were per-

formed per locus, retaining 2,000 sequences per replicate

(N = 200,000 simulated sequences per locus). The first

500 unique simulated sequences at each locus were

added to the MLST database, and duplicate sequences

were removed.

Assembly-based analysis

Assemblies were generated using the de novo assembler

Velvet v1.2.10 [24], with optimal kmer choice for each

read set refined through iterative calls to VelvetOptimiser

v2.2.5 [48]. Briefly, each read set was assembled using a call

to VelvetOptimiser with kmers from 29 up to 89, in steps

of 12. The optimal kmer, k1, was extracted and a second

call to VelvetOptimiser was made using kmers from k1-12

up to k1 + 12, in steps of 4. A final call to VelvetOptimiser

was run using kmers from k2-4 up to k2 + 4, in steps of 2.

The final assembly was that output from the third and final

call to VelvetOptimiser.

For MLST analysis from assemblies, a nucleotide

BLAST + (v2.2.25) search was performed for each locus

and each contig set. In this BLAST search, the contig set

was used to query the database containing all known

allele sequences for a given locus, and the top BLAST

hit was reported. If this hit had ≥90% nucleotide identity

across ≥90% of the length of the reference allele se-

quence, an allele call was recorded. If the hit was an

exact match to a known allele (that is, 100% nucleotide

identity across 100% of the length of the allele sequence),

this was considered a precise allele call. The Python code

used is available within the SRST2 distribution. Where the

hit was not an exact match (n = 42), an alternative nucleo-

tide BLAST analysis was performed using the allele se-

quences as query and the contig set as database, and the

results manually inspected to determine whether it was

possible to identify the correct allele from the assembly.

For gene detection analysis from assemblies, a nucleotide

BLAST search was performed in which the set of reference

sequences (sequence database, that is antimicrobial resist-

ance gene database) was used to query the database of all

contigs for that assembly.

SRST (v1) analysis

The 543 read sets used for validation of SRST2 allele

calling (Table 1) were also analysed using SRST [28], run

with default settings.

Web-based analysis with MLST Typer and ResFinder

The 44 S. enterica read sets (Table 1) were analysed

using the MLST Typer [21] and ResFinder [19] websites.

This data set was chosen to begin with as it is the smal-

lest of those used for validation in the manuscript (n = 44).

Each read set took 3 to 4 h to upload and analyse using

these websites, and had to be done in serial as attempting

Table 1 Data sets used to assess accuracy of SRST2

Species Citation N (isolates) Population Sequencing centre Average read
depth

Read length (bp)

Staphylococcus aureus [36] 134 Clonal, ST22 Sanger, UK 24× 55

Staphylococcus aureus [37] 128 Clonal, ST239 Sanger, UK 60× 65

Streptococcus pneumoniae [38] 113 Clonal, ST81 Sanger, UK 30× 55

Salmonella enterica Typhimurium [39] 44 Clonal, ST313 Sanger, UK 34× 76

Shigella (E. coli) [40] 81 Clonal, S. sonnei Sanger, UK 25× 55

Enterococcus faecium [41] 43 Diverse, dominated
by ST203, ST17

Melbourne, Australia 658× 101

Listeria monocytogenes This paper 231 Diverse Melbourne, Australia 36× 152

Table 2 Data sets used to demonstrate utility of SRST2 in the hospital setting

Species Citation N (isolates) Average read depth Read length (bp)

Enterococcus faecium (Figure 7a-c) [41] 43 658× 101

Hospital outbreak investigations (Figure 8a-b) [15] 20 36× 151

K. pneumoniae, E. coli [42] 69, 74 34× 101

Inouye et al. Genome Medicine 2014, 6:90 Page 6 of 16

http://genomemedicine.com/content/6/11/90



to run multiple jobs crashed Java. Therefore it was not

feasible to test all read sets for comparison.

MLST Typer was run using default settings and the

Salmonella enterica MLST database. ResFinder cutoffs

were set to >90% identity, >80% coverage (no >90% cut-

off was available), and ‘all’ AMR loci. To facilitate direct

comparison with ResFinder, the S. enterica read sets

were re-analysed with SRST2 using the ResFinder resist-

ance gene sequence database downloaded from the

ResFinder website (a copy of the SRST2-formatted

ResFinder database is provided in the SRST2 distribution,

along with the ARG-Annot resistance gene database

which we recommend). All S. enterica Typhimurium carry

a chromosomally encoded copy of aac(6’)-Iaa, which is

included in the ResFinder and ARG-Annot databases as it

can occur as an acquired resistance gene in other organ-

isms. Hence this provides a ‘gold standard’ estimate of

gene detection and is reported separately to the acquired

resistance genes for which no independent confirmation

of gene presence/absence is available (Table 3).

Analysis runs and time calculations

All SRST2, SRST, assembly and BLAST analysis was run

on a Linux cluster (iDataplex × 86 system, ‘Barcoo’ clus-

ter at VLSCI [49]). SRST2 was run with default parame-

ters. Details of Velvet assembly and BLAST analysis are

given below. Run times were calculated from time stamps

extracted from log files for SRST2 and Velvet Optimiser

assembly runs.

Statistical analysis

All statistical analysis and data plotting was per-

formed in R. Allele calling performance of SRST2 and

assembly + BLAST was assessed via three metrics: (1) call

rate = total number of allele calls made, for SRST2 this

was a call with ≥90% coverage and no uncertainty re-

corded (that is, with ≥2× read depth at both ends and

also neighbouring any truncations or deleted bases), for

BLAST this was a call with ≥90% coverage and ≥90% nu-

cleotide identity; (2) false positive rate = total number of

correct allele calls as a proportion of all calls; and (3) pro-

portion of all tests resulting in a call with a correct allele,

equal to (call rate) * (1 - (false positive rate)). As these

metrics are proportions, the significance of differences in

performance metrics was calculated using a two-sided

test for equality of proportions (prop.test function in R).

Resistance gene detection was assessed using a cutoff

Table 3 Comparison of SRST2 and ResFinder (ref 19) for

detection of acquired resistance genes

Correct calls N (%)

Aac(6’)-Iaa (chromosomally encoded core gene, expect in all strains)

Both methods 35 (83%)

SRST2 only 7 (17%)

ResFinder only 0

Acquired resistance genes (total 44 detected)

Both methods 24 (55%)

SRST2 only 20 (45%)

ResFinder only 0

42 S. enterica serovar Typhimurium read sets (accessions in Table 1) with >1×

mean read depth were analysed using the ResFinder website, and also with

SRST2 using the sequence database downloaded from the ResFinder website.

Results are shown separately for the chromosomally encoded core resistance

gene aac(6’)-Iaa, which is expected to be in all strains, and horizontally

acquired resistance genes.

Figure 2 Run times for MLST analysis with SRST2. Lines are linear regression of runtime on reads, calculated separately for each species from

public data sets (details in Table 1).
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of ≥90% coverage and ≥90% identity to define the presence

of a gene.

Results and discussion
Validation of allele calling

To assess the accuracy of allele identification with

SRST2, we analysed publicly available Illumina data from

543 bacterial genomes of five different species for which

independent MLST data were available (Table 1). With

seven loci in each MLST scheme, this yielded 3,801 allele

calls across 35 loci to assess call rate and false positive

rate. The read sets represented a wide range of average

read depths, with 90% in the range 12× - 130× and 50%

between 20× - 60× (Table 1). For each species, we used

SRST2 to download the latest MLST database from

pubmlst.org and subsequently ran SRST2 using default

parameters. Median run time was 6 min per sample

(interquartile range, 4 to 10 min) and increased linearly

with number of reads (Figure 2). Efficiency can be easily

improved or standardised, without data preprocessing,

by instructing SRST2 to map the first N reads only.

SRST2 call rates and true positive rates increased with

average read depth, stabilizing with depths ≥15× (Figure 3a,

Additional file 2). For comparison, we also assembled

Figure 3 Overall accuracy of SRST2 allele calling and gene detection. (a) MLST analysis of public data from five species (N = 543 genomes,

3,801 loci, details Additional file 1: Table S1). Tests were grouped by read depth and accuracy rates (left y-axis, correct allele calls as a proportion

of tests), calculated at each depth (x-axis, red slashes indicate scale change). Grey bars, number of tests at each depth (right y-axis); Lines, accuracy

of allele calling. (b) MLST analysis of Listeria monocytogenes data (N = 231 genomes, 1,671 loci) conducted in a public health laboratory; colours

and axes as in (a). (c) Accuracy of vanB resistance gene detection for E. faecium read sets subsampled to low depth; y-axis shows proportion of

correct (presence vs. absence) calls as a proportion of 100 tests at each depth; colours and axes as in (a). A call of ‘present’ implies detection

of ≥90% of the length of the gene at ≥90% nucleotide identity.

Table 4 Comparison of SRST2 and SRST (v1, ref 28)

Correct calls N (%)

Both 491 (90.4%)

Neither 18 (3.3%)

SRST2 only 21 (4%)

SRST (v1) only 13 (2.4%)

Summary of correctly called MLST sequence types (STs) for 543 bacterial

isolates from five species (data set detailed in Table 1).
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each read set using Velvet [24] and VelvetOptimiser

[48] and used nucleotide BLAST to identify MLST

alleles (assembly + BLAST method; Methods). At read

depths ≥15×, SRST2 made significantly more allele calls

than assembly + BLAST (call rates 99.9% vs. 95.9%, re-

spectively; P <1 × 10-15), with equivalent accuracy (0.46%

vs. 0.22% of allele calls incorrect; P = 0.16). The heuristic

information provided by SRST2 (that is, confident mis-

matches, insertions, deletions or truncations reported

from read mapping) was a strong indicator of accuracy in

the result: where an exact match was reported (98% of

calls with depth ≥15×), 0.2% of allele calls were incorrect;

where an inexact match was reported, 11.7% of allele

calls were incorrect. Hence, the key difference between

the two methods was the ability of SRST2 to make cor-

rect calls where assembly + BLAST could not make any

call: for read depths ≥15×, SRST2 made a call with

the correct allele 99.4% of the time, compared to only

95.7% for assembly analysis (P <1 × 10-15 for difference in

frequencies of correct allele calls). At sequence type (ST)

level, the difference was even greater: SRST2 achieved ac-

curate ST assignment for 98% of isolates with average

depth ≥15×, whereas assembly + BLAST correctly identi-

fied only 79%. SRST2 also performed better than SRST

and the MLST typer website (which implements an alter-

native assembly + blast approach), see Tables 4 and 5.

To assess performance at low read depths (≤15×), 10

S. aureus read sets were subsampled to low depths

(Methods). This confirmed that an average depth of only

10× was required for SRST2 to achieve >90% call rate

and <0.5% false positives (Figure 3a, Figure 4). MLST

databases can be expected to grow indefinitely due to

increasing diversity and broader sampling. However sim-

ulations (Methods) indicated that doubling the size of

the S. aureus MLST database had no impact on SRST2

accuracy (Figure 3a, Figure 4).

Validation of gene detection using the vanA-B

resistance gene

In addition to reliably distinguishing alleles of a given

gene, SRST2 can also accurately determine the presence

or absence of genes of interest, such as those encoding

antimicrobial resistance or virulence. To evaluate this,

we used 43 E. faecium genomes (Table 1), previously

screened for vancomycin susceptibility and presence of

the VanB vancomycin resistance operon vanABHSXY

[41,50]. Seventeen isolates were vancomycin resistant

(VRE), and all were PCR positive for the vanA-B gene.

These genomes were sequenced to approximately 1,000×

depth and SRST2 correctly detected vanA-B in 17/17

Figure 4 Accuracy of SRST2 allele calling at low read depths and with expanded MLST database size. MLST analysis of public S. aureus

data. (N = 10 read sets; each sampled 100 times to different depths; details in Methods). Tests were grouped by read depth and accuracy rates

(y-axis, correct allele calls as a proportion of all tests), calculated at each depth (x-axis, red slashes indicate scale change from 1× to 10×). Red,

real S. aureus MLST database; blue, expanded S. aureus MLST database (see Methods); grey, unsampled data from five species mapped to real

databases (as shown in Figures 1 and 3).

Table 5 Comparison of SRST2 and MLST Typer (ref 21)

Correct calls N (%)

Both 14 (33%)

Neither 1 (2%)a

SRST2 only 27 (61%)

MLST Typer only 0

Summary of correctly called MLST sequence types (STs) for 42 S. enterica

serovar Typhimurium read sets (accessions in Table 1) with >1× mean

read depth.
aERR023807 had 44× read depth and was not called by MLST Typer, but six/seven

alleles were correctly called by SRST2.
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VRE. In five vancomycin sensitive (VSE) isolates PCR

negative for vanA-B, SRST2 detected VanA-B sequences

at very low depths (<0.2% of average depth), probably

caused by minor but easily identifiable contamination

during VRE-VSE multiplexed sequencing. SRST2 also

confirmed the presence of the entire VanB operon,

which is strongly predictive of the VRE phenotype.

For comparison, assembly + BLAST identified full-length

vanA-B sequences in just 7/17 VRE genomes, with mul-

tiple smaller hits spanning the full-length gene in five

VRE and <50% coverage of the gene identified in the

remaining five VRE. To investigate the effect of sequen-

cing depth on gene detection, we randomly selected five

VRE and five VSE read sets for subsampling at <10×

average read depth. VanA-B was only ever detected in

confirmed VRE genomes, and sensitivity of detection with

SRST2 reached 100% for read sets with ≥5× average read

depth (Figure 3c).

To further explore the relative sensitivity of gene de-

tection with SRST2, we screened all the read sets used

for MLST validation (Table 1) for antimicrobial resist-

ance genes in the ARG-Annot database of acquired resist-

ance genes [18] (Methods). SRST2’s detection of whole

genes was more sensitive than detection of whole or

partial gene sequences by assembly + BLAST (Figure 5):

6.8% of genes detected at ≥90% coverage by SRST2 at

depths ≥15× were not found at ≥90% coverage in as-

semblies. For most of these genes, smaller fragments

were detected by BLAST (Figure 5); however, SRST2

has the advantage of sensitive detection and confident

Figure 5 Resistance gene detection. (a) Venn diagram of antimicrobial resistance genes detected by SRST2 and assembly + BLAST, where the

threshold for ‘detection’ of a gene is ≥90% coverage and ≥90% identity with a reference allele. No genes were detected by assembly + BLAST but

not SRST2. (b) Distribution of average read depths per gene, calculated by SRST2 from mapped reads, for all genes detected by SRST2. (c) Coverage

and nucleotide identity (%ID), as calculated by SRST2, for all genes detected by SRST2 but not by assembly + BLAST. (d) Impact of lowering the

coverage threshold for detection of genes by BLAST (for those genes with ≥15× read depth).
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allele-calling across the full length of genes, even at

low depths (Figures 3c and 5). SRST2 also performed

substantially better than the ResFinder website, which

implements an alternative assembly + blast approach

(Table 3).

Validation of SRST2 in a public health laboratory

To validate SRST2 in a public health laboratory setting,

we analysed 231 clinical isolates of Listeria monocyto-

genes and compared MLST data obtained from gold-

standard PCR and amplicon sequencing with those

obtained from SRST2 or assembly + BLAST analysis

of Illumina MiSeq data (Figure 3b). Sequencing and ana-

lysis were performed by the Microbiological Diagnostic

Unit Public Health Laboratory in Melbourne, Australia,

the national reference laboratory for L. monocytogenes. For

average read depths ≥15×, SRST2 had a substantially

higher call rate than assembly-based analysis (99.6% vs.

95.7%; P <1 × 10-12), with similar low false positive rates

(0.7% vs. 0.6%; P = 0.9). Hence, for samples with ≥15× data,

a total of 99% of all alleles were called correctly by SRST2,

a significantly higher proportion than the 95% achieved

by assembly + BLAST (P <1 × 10-12). At <15× read depths,

SRST2 also performed better than assembly-based analysis

(87% vs. 72% of alleles correctly called, respectively,

P <1 × 10-3; Figure 3b).

Further, SRST2 is already being assessed for routine

MLST analysis of Streptococcus pneumoniae at Public

Health England (Anthony Underwood, personal commu-

nication), and the open-source SRST2 code has been

adapted by Public Health Ontario, Canada to perform

specialist emm typing of Group A Streptococcus [51].

Figure 6 SRST2 analysis of sequence types and beta-lactamase CTX-M-15 genes among hospital isolates. Rates of isolation of different

sequence types (STs), coloured by CTX-M-15 status, as determined by SRST2 run with default parameters on a public data set of strains from a

single hospital. In each species, a single known ST dominates the population (highlighted) and is also the dominant source CTX-M-15 genes.

‘*’ next to an ST indicates a match to the closest defined ST; that is, that for all seven loci the closest known allele is the one belonging to

that ST, however at ≥1 these loci there is an imprecise match (SNP or indel) compared to the known allele sequence. ‘Novel’ indicates a novel

sequence type resulting from a combination of known alleles, with precise matches at all loci (‘NF’ in SRST2 output); ‘Novel*’ indicates a novel

combination of alleles, with ≥1 of those alleles being novel itself (that is, with no exact match in the MLST database) (‘NF*’ in SRST2 output).
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Figure 7 SRST2 analysis of E. faecium hospital data and hospital outbreak investigation. Temporal distribution of isolates is shown in

(a) coloured by vancomycin resistance as inferred from vanA-B detection with SRST2, and in (b) by coloured by sequence type inferred by SRST2.

(c) Summary of all SRST2 results by sequence type (ST), in order from left to right: single linkage clustering of STs by number of shared alleles;

MLST allele profiles; heatmap indicating the proportion of isolates that carries each resistance gene (scale as indicated), frequency of the ST (axis as

indicated, coloured as in (b)).

Inouye et al. Genome Medicine 2014, 6:90 Page 12 of 16

http://genomemedicine.com/content/6/11/90



Identification of antimicrobial resistant clones

In a hospital setting, the combination of MLST and gene

detection can provide rapid and powerful insights for in-

fection control without specialist bioinformatics know-

ledge. SRST2 analysis of 69 K. pneumoniae and 74 E. coli

genomes from a UK hospital [42] revealed that each

was dominated by a single ST with a high rate of the

extended-spectrum beta-lactamase (ESBL) gene CTX-

M-15 (K. pneumoniae ST490 comprising 25% of total,

71% of ESBL; E. coli ST131 comprising 40% of total, 77%

of ESBL; Figure 6). Routine SRST2 surveillance of ESBL

infections could be indicative of hospital outbreaks and

used to identify which isolates should be investigated via

transmission analysis.

Using the E. faecium genome data, collected as part of

a 12-year hospital study of vancomycin resistance [41],

SRST2 took approximately 30 min to generate the results

and visualisations shown in Figure 7, indicating: (1)

Figure 8 SRST2 analysis of hospital outbreak investigation. (a) Isolate genetic profiles obtained from SRST2 analysis, indicating that case EF4

was distinct in both sequence type and resistance gene profile from the outbreak cases EF2 and EF3. Full WGS analysis showed a similar result

[15]. (b) Isolate genetic profiles obtained from SRST2 analysis, including plasmid replicons detected (pink). The profiles indicate that case EC3

shared the same sequence type as the linked cases EC1 and EC2 (ST94), but lacked the IncA/C plasmid and had a distinct resistance gene profile.

Full WGS analysis showed that EC1 and EC2 isolates were much closer to each other (≤22 SNPs) than to EC3 (>150 SNPs) [15].
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increasing vancomycin resistance over time; (2) a shift in

dominant ST during the same period; and importantly (3)

that this was not attributable to the introduction nor

transmission of a new resistant clone, as the resistance

rates were steady (approximately 50%) across all dominant

STs. Similar conclusions typically require many days of

labour and specialised assays in the diagnostic laboratory

[52] and have been confirmed by detailed WGS analysis

showing frequent acquisition of VanB transposons by

diverse circulating strains [41].

Investigation of outbreaks and carbapenem resistance

mechanisms

We next applied SRST2 to analyse data from real-world

small-scale infection control investigations [15]. SRST2

took 5 min to generate results for suspected outbreaks

of VRE and E. cloaceae (Figure 8), in which suspected

outbreak isolates were readily distinguishable from epi-

demiologically unrelated isolates, consistent with WGS

phylogenies and manual analysis of antimicrobial resist-

ance markers [15]. SRST2 typing of 18 plasmid replicons

[45] also indicated specific plasmid replicons (IncHI2,

IncA/C) associated with two of the resistance profiles.

The authors also reported use of a complex hybrid of

assembly, mapping and manual inspection to deter-

mine carbapenem resistance mechanisms in five Gram-

negative bacteria isolated in close proximity [15]. SRST2

analysis of these five read sets identified the acquired beta-

lactamases OXA-23 in AB223; IMP, SHV-12 and TEM-1

in EC1a; CTX-M-15 and TEM-1 in Eco216; CTX-M-15

and SHV-133 in KP652; and no acquired carbapenemase

genes in EC302. These results are consistent with those

reported from manual analysis [15].

Conclusions
Rapid and reliable extraction of clinically relevant genomic

information will be essential for the adoption of WGS for

infection control and public health surveillance. SRST2

was designed specifically to generate clinically informative

genomic profiles of bacterial pathogens - encompassing

sequence type, antibiotic resistance genes and virulence

genes - direct from raw sequence data. It out-performs al-

ternative approaches, including assembly-based approaches

and our earlier mapping-based MLST software SRST, in

terms of both speed and accuracy. Here we have validated

the use of SRST2 for MLST of L. monocytogenes in a public

health laboratory, and demonstrated its utility in the hos-

pital setting for both infection control investigations and

the identification of antibiotic resistance mechanisms.

Availability and requirements
Project name: SRST2

Project home page: http://katholt.github.io/srst2/

Operating system(s): Platform independent

Programming language: Python

Other requirements: Python 2.7.5 or higher, Bowtie2

v2.1.0 or higher, and SAMtools 0.1.18.

License: BSD

Any restrictions to use by non-academics: None

Additional files

Additional file 1: A CSV table listing the 543 read file accessions

from these data sets together with the corresponding expected

sequence types (STs), which were extracted from published results

of PCR and capillary sequencing and used to assess accuracy of

SRST2 allele calling (shown in Figure 3a).

Additional file 2: Separate plots for call rates and true positive

rates for the six public data sets used for MLST allele typing

validation (these two measures were combined to give the overall

accuracy plot in Figure 3).
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