
Efficient Management of Spatial RDF Data

John Liagouris

University of Hong Kong

iagouris@cs.hku.hk

Nikos Mamoulis

University of Hong Kong

nikos@cs.hku.hk

Panagiotis Bouros

Humboldt-Universität zu Berlin

bourospa@informatik.hu-berlin.de

Manolis Terrovitis

IMIS ‘Athena’

mter@imis.athena-innovation.gr

March 3, 2014

Abstract

The RDF data model has recently been extended to support representation and querying of spatial

information (i.e., locations and geometries), which is associated with RDF entities. Still, there are lim-

ited efforts towards extending RDF stores to efficiently support spatial queries, such as range selections

(e.g., find entities within a given range) and spatial joins (e.g., find pairs of entities whose locations

are close to each other). In this paper, we propose an extension for RDF stores that supports efficient

spatial data management. Our contributions include an effective encoding scheme for entities having

spatial locations, the introduction of on-the-fly spatial filters and spatial join algorithms, and several

optimizations that minimize the overhead of geometry and dictionary accesses. We implemented the

proposed techniques as an extension to the open-source RDF-3X engine and we experimentally evalu-

ated them using real RDF knowledge bases. The results show that our system offers robust performance

for spatial queries, while introducing little overhead to the original query engine.

1 Introduction

The Resource Description Framework (RDF), originally defined by W3C, has become a standard for

expressing information that does not conform to a crisp schema. Semantic-Web applications manage

large knowledge bases and data ontologies in the form of RDF. RDF is a simple model, where all data

are in the form of 〈subject, property, object〉 (SPO) triples, also known as statements. The subject of

a statement models a resource (e.g., a Web resource) and the property (a.k.a. predicate) denotes the

subject’s relationship to the object, which can be another resource or a simple value (called literal). A

resource is specified by a uniform resource identifier (URI) or by a blank node (denoting an unknown

resource). Simply speaking, an RDF knowledge base is a large graph, where nodes are resources or

literals and edges are properties.

SPARQL is the standard query language for RDF data. A SPARQL query includes a Select clause,

specifying the output variables and a Where clause which includes the conditions that bind the vari-

ables together (or with literals), forming a query graph pattern that has to be matched in the RDF data

graph. The recent GeoSPARQL standard [7], defined by the Open Geospatial Consortium (OGC), ex-

tends RDF and SPARQL to represent geographic information and support spatial queries. Real-world

entities, represented as resources in RDF, may have geometries, modeled by basic shapes, such as points

1

Administrator
 HKU CS Tech Report TR-2014-02

and polygons. A coordinate reference system (CRC) is used to accurately define the geometry and rela-

tive positions of such spatial entities. GeoSPARQL uses the OGC’s Simple Features ontology for spatial

entities. Geospatial filter functions are used to evaluate topological and distance relationships between

entities and express spatial predicates in SPARQL queries. stSPARQL [16], developed independently to

GeoSPARQL, has similar features.

Despite the large volume of work in the past decade toward the development of efficient storage

and querying engines for RDF knowledge bases [5, 6, 8, 11, 12, 22, 26, 27, 28, 29, 30, 31], there exist

only a few efforts to date on the effective handling of spatial semantics in RDF data. In particular, the

current spatial extensions of RDF stores (e.g., Virtuoso [4], Parliament [3], Strabon [17], and others

[10, 24, 25]) focus mainly on supporting GeoSPARQL features, and less on performance optimization.

The features and weaknesses of these systems are reviewed in Section 3. On the other hand, there

is a large number of entities (i.e., resources) in RDF knowledge bases (e.g., YAGO2 [15]), which are

associated with spatial information (i.e., locations). Thus, the power of the state-of-the-art RDF stores is

limited by the inadequate handling of spatial semantics, given that it is not uncommon for user queries to

include spatial predicates.

In this paper, we attempt to fill this gap by proposing a number of extensions that can be applied to

RDF engines in order to efficiently support spatial queries. We present the details of a system, which

extends the open-source RDF-3X store [22]. RDF-3X encodes all values that appear in SPO triples

to identifiers with a help of a dictionary and models the RDF knowledge base as a single, long table

of ID triples. A SPARQL query can then be modeled as a multi-way join on the triples table. The

system creates a clustered B+-tree for each of the six SPO permutations; the query optimizer identifies an

appropriate join order, considering all the available permutations and advanced statistics [21]. RDF-3X is

shown to have robust performance in comparison studies on various RDF datasets and query benchmarks

[8, 22, 29]. Although we have chosen RDF-3X as a proof of concept for implementing our ideas, our

techniques are also applicable to other RDF stores which have been developed recently (e.g., [29]). In a

nutshell, our system includes the following extensions over RDF-3X:

Index Support for Spatial Queries. Similar to previous spatial extensions of RDF stores (e.g., [10]),

our system includes a spatial indexing structure (i.e., an R-tree [13]) for the geometries associated to the

spatial entities. This facilitates the efficient evaluation of queries with very selective spatial components.

State-of-the-art spatial selection and join algorithms based on R-trees are implemented and used in our

system.

Spatial Encoding of Entities. The identifiers given to RDF resources in the dictionary of RDF-3X (and

other RDF stores) do not carry any semantics. Taking advantage of this fact, we encode spatial approx-

imations inside the IDs of entities (i.e., resources) associated to spatial locations and geometries. This

mechanism has several benefits. First, for queries that include spatial components, the IDs of resources

can be used as cheap filters and data can be pruned without having to access the exact geometries of

the involved entities. Second, our encoding scheme does not affect the standard ordering (i.e., sorting)

of triples used by the RDF-3X evaluation engine, therefore it does not conflict with the RDF-3X query

optimizer; in other words, the original system’s performance on non-spatial queries is not compromised.

Finally, our encoding scheme adopts a flexible hierarchical space decomposition so that it can easily

handle spatially skewed datasets and updates without the need to re-assign IDs for all entities.

Spatial Join Algorithms. We design spatial join algorithms tailored to our encoding scheme. Our

Spatial Merge Join (SMJ) algorithm extends the traditional merge join algorithm to process the filter step

of a spatial join at the approximation level of our encoding, while (i) preserving interesting orders of the

qualifying triples that can be used by succeeding operators, and (ii) not breaking the pipeline within the

operator tree. In typical SPARQL queries which usually involve a large number of joins, the last two

aspects are crucial for the overall performance of the system. Our Spatial Hash Join (SHJ-ID) operates

with unordered inputs, using their encodings to identify fast candidate join pairs.

Spatial Query Optimization. In addition to including standard selectivity estimation models and tech-

niques for spatial queries, we extend the query optimizer of RDF-3X to consider spatial filtering opera-

tions that can be applied on the spatially encoded entities. For this purpose, we augment the original join

query graph of a SPARQL expression to include binding of spatial variables via spatial join conditions.

We evaluate our system by comparing it with two commercial spatial RDF management systems,

Virtuoso [4] and OWLIM-SE [2]. For our evaluation, we use two real datasets: LinkedGeoData (LGD)

[1] and YAGO2 [15]. The results demonstrate the superior performance and robustness of our approach.

The rest of the paper is organized as follows. Section 2 includes definitions and examples of GeoSPARQL

queries that we consider in this paper. Section 3 reviews related work on RDF stores and spatial exten-

2

subject property object

Dresden cityOf Germany

Prague cityOf CzechRepublic

Leipzig cityOf Germany

Wrocław cityOf Poland

Dresden sisterCityOf Wrocław

Dresden sisterCityOf Ostrava

Leipzig sisterCityOf Hannover

Dresden hosted RichardWagner

Leipzig hosted JohannSebastianBach

RichardWagner hasName “Richard Wagner”

RichardWagner performedIn Leipzig

RichardWagner performedIn Prague

Dresden hasGeometry “POINT (...)”

Prague hasGeometry “POINT (...)”

Leipzig hasGeometry “POINT (...)”

.

(a) RDF triples (b) Spatial Within query (c) Spatial Join query

Figure 1: Example of RDF data and two spatial queries

sions thereof. In Section 4, we show how RDF-3X can be extended to use a spatial index for the entities

associated with geometries. Section 5 presents our proposal of approximately encoding the geometries

of entities inside their IDs. Query evaluation techniques that take advantage of this encoding are pre-

sented in Section 6. Section 7 presents our extensions to the query optimizer. Section 8 includes our

experimental evaluation and Section 9 concludes the paper.

2 Preliminaries

The SPARQL queries we consider in this work follow the format:

Select [projection clause]

Where [graph pattern]

Filter [condition]

The Select clause includes a set of variables that should be instantiated from the RDF knowledge base

(variables in SPARQL are denoted by a ? prefix). A graph pattern in the Where clause consists of triple

patterns in the form of s p o where any of the s, p and o can be either a constant or a variable. Finally, the

Filter clause includes one or more spatial predicates. For the ease of presentation, in our discussion and

examples, we consider only WITHIN range predicates (for spatial selections) and DISTANCE predicates

(for spatial joins). However, we emphasize that the results of our work are directly applicable to all

spatial predicates defined in the GeoSPARQL standard [7]. In addition, we use a simplified syntax for

expressing queries and not the one of the GeoSPARQL standard because the latter is verbose.

As an example, consider the (incomplete) RDF knowledge base listed in Figure 1(a). Literals and

spatial literals (i.e., geometries) are in quotes. An exemplary query with a range predicate is:

Select ?s ?o
Where

?s cityOf Germany .

?s hosted ?o .

?s hasGeometry ?g .

Filter WITHIN(?g, “POLYGON(...)”);

This query finds the cities of Germany within a specified polygonal range together with the persons

they hosted. Note that there are three variables involved (?s, ?o, and ?g) connected via a set of triple

patterns which also include constants, i.e., Germany. For example, if POLYGON(...) covers the area of

East Germany, (Dresden, RichardWagner) and (Leipsiz, JohannSebastianBach) are results of this query.

The query is represented by the pattern graph of Figure 1(b). In general, queries can be represented as

graphs with chain (e.g., ?s1 hosted ?s2. ?s2 performedIn ?s3.) and star (e.g., ?s cityOf ?o. ?s hosted

RichardWagner.) components.

Another exemplary query, which includes a spatial join predicate, represented by the pattern graph of

Figure 1(c), is:

3

Select ?s1 ?s2
Where

?s1 cityOf Germany .

?s1 sisterCityOf ?s2 .

?s1 hasGeometry ?g1 .

?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1, ?g2) < “300km”;

This query asks for pairs of sister cities (i.e., ?s1 and ?s2) such that the first city (i.e., ?s1) is in Germany

and the distance between them does not exceed 300km. In the exemplary RDF base of Figure 1(a),

(Dresden, Worcław) and (Leipzig, Hanover) are results of this query while (Dresden, Ostrava) is not

returned as the distance between Dresden and Ostrava is around 500km. Note that, in general, there may

be multiple spatial predicates in the filter clause (as well as non-spatial ones), which are combined with

the use of logical operators (i.e., AND, OR, NOT).

3 Related Work

RDF Storage and Query Engines. There have been many efforts toward the efficient storage and index-

ing of RDF data. The most intuitive method is to store all 〈subject, property, object〉 (SPO) statements

in a single, very large triples table. The RDF-3X system [22] is based on this simple architecture; with

the help of appropriate query evaluation [23] and optimization [21] techniques it has been shown to scale

well with the data size. The main idea behind RDF-3X is to create a clustered B+-tree index for each of

the six SPO permutations (i.e., SPO, SOP, PSO, POS, OSP, OPS). A SPARQL query is transformed to a

multi-way self-join query on the triples table; the query engine binds the query variables to SPO values

and joins them (if the query contains literals or filter conditions, these are included as selection condi-

tions). RDF-3X (following an idea from previous work) uses a dictionary to encode URIs and literals

as IDs. Indexing is then applied on the ID-encoded SPO triples. A query is first translated by replacing

URIs or literals by the respective IDs and then evaluated using the six indices; finally, the query results

(in the form of ID-triples) are translated back to their original form. The six indices offer different ways

for accessing and joining the triples; RDF-3X includes a query optimizer to identify a good query eval-

uation plan. The system favors plans that produce interesting orders, where merge joins are pipelined

without intermediate sorts. In addition, a run-time sideways information passing (SIP) mechanism [23]

reduces the cost of long join chains. RDF-3X maintains nine additional aggregate indices, corresponding

to the nine projections of the SPO table (i.e., SP, SO, PO, PS, OS, OP, S, P, O), which provide statistics

to the query optimizer and are also useful for evaluating specialized queries. The query optimizer was

extended in [21] to use more accurate statistics for star-pattern queries. RDF-3X employs a compression

scheme to reduce the size of the indices by differential storage of consecutive triples in them. Hexastore

[26] is a contemporary to RDF-3X proposal, which also indexes SPO permutations on top of a triples

table. An earlier implementation of a triples table by Oracle [12] uses materialized join views to improve

performance.

An alternative storage scheme is to decompose the RDF data into property tables: one binary table

is defined per distinct property, storing the SO pairs that are linked via this property. In order to avoid

the case of having a huge number of property tables, this extreme approach was refined to a clustered-

property tables approach (used by early RDF stores, like Jena [27] and Sesame [11]), where correlated

tables are clustered into the same table and triples with infrequent properties are placed into a left-over

table. Abadi et al. [5] use a column-store database engine to manage one SO table for each property,

sorted by subject and optionally indexed on object.

A common drawback of the column-store approach and RDF-3X is the potentially large number of

joins that have to be evaluated, together with the potentially large intermediate results they generate.

Atre et al. [6] alleviate this problem by introducing a 3D compressed bitmap index, which reduces the

intermediate results before joining them. A similar idea was recently proposed in [29]; the participation

of subjects and objects in property tables is represented as a sparse 3D matrix, which is compressed. Yet

another storage architecture was proposed in [8]. The idea is to first cluster the triples by subject and then

combine multiple triples about the same subject into a single row; the resulting table has 2k+1 columns

storing at most k PO pairs associated with a subject s. Subjects with more than k properties are split into

multiple rows, and those with less than k properties have null values in their tuples. Thus, the system

saves join cost for star-pattern queries, however, it may suffer from redundancy due to repetitions and

null values.

4

Trinity [30] is a distributed memory-based RDF data store, which focuses on graph query operations

such as random walk distance, reachability, etc. RDF data are represented as a huge (distributed) graph

and query evaluation is done in an exploration-based manner; starting from the most selective predicates,

query variables are bound progressively, while the RDF graph is browsed. Trinity’s power lies on the fact

that memory storage eliminates the otherwise very high random access cost for graph exploration. gStore

[31] is an earlier, graph-based approach, which models SPARQL queries as graph pattern matching

queries on the RDF graph.

Spatial Extensions of RDF Stores. The Parliament RDF store, built on top of Jena [27], implements

most of the features of GeoSPARQL [7]. Strabon [17], developed in parallel to Parliament, extends

Sesame [11] to manage spatial RDF data stored in PostGIS. Strabon adopts a column-store approach,

implementing two SO and OS indices for each property table. Spatial literals (e.g., points, polygons) are

given an identifier and are stored at a separate table, which is indexed by an R-tree [13]. Strabon extends

the query optimizer of Sesame to consider spatial predicates and indices. The optimizer applies simple

heuristics to push down (spatial) filters or literal binding expressions in order to minimize intermediate

results. Strabon is shown to outperform Parliament, however, both systems suffer from the poor per-

formance of the RDF stores they are based on (i.e., Jena and Sesame) compared to faster engines (e.g.,

RDF-3X [22]). In addition, Strabon and Parliament lack sophisticated query evaluation and optimization

techniques.

Brodt et al. [10] extend RDF-3X [22] to support spatial data. The extension is limited, since range

selection is the only supported spatial operation. Furthermore, query evaluation is restricted to either

processing the non-spatial query components first and then verifying the spatial ones or the other way

around. Finally, the opportunity of producing an interesting order from a spatial index (in order to

facilitate subsequent joins) is not explored. Geo-Store [24] is another spatial extension of RDF-3X,

which uses space-filing curves as an index; the system supports range and k nearest neighbor queries,

but does not extend the query optimizer of RDF-3X to consider spatial query components. Finally, S-

Store [25] is a spatial extension of gStore [31], which appends to the signatures of spatial entities their

minimum bounding rectangles (MBRs). The hierarchical index of gStore is then adapted to consider

both non-spatial and spatial signatures. Although S-Store was shown to outperform gStore for spatial

queries, it handles spatial information only at a high level (i.e., the data are primarily indexed based on

their structural information). Finally, commercial systems, like Oracle, Virtuoso [4], and OWLIM-SE [2]

have spatial extensions, however, details about their internal design are not public.

4 A Basic Spatial Extension

In the remainder of the paper, we present the steps of extending a standard query evaluation framework

for triple stores (i.e., the framework of RDF-3X) to efficiently handle the spatial components of RDF

queries. In RDF-3X, a query evaluation plan is a tree of operators applied on the base data (i.e., the set

of RDF-triples). The leaves of the tree are any of the 6 SPO clustered indices. The operators apply either

selections or joins. Each operator addresses a triple of the query pattern and instantiates the corresponding

variables; the instantiated triples (or query subgraphs) are passed to the next operator, until they reach the

root operator, which computes instances for the entire query graph.

This section outlines the basic (but essential) spatial extension to RDF-3X and discusses drawbacks of

it that motivated us to design and use a spatial encoding scheme described in Sections 5 and 6. This basic

extension improves the spatial RDF-3X extension of Brodt et al. [10] to support spatial join evaluation.

Spatial Indexing. Spatial entities i.e., resources associated to spatial literals like POINT and POLYGON,

are indexed by an R-tree [13]. For each entity associated to a polygon, there is an entry at a leaf of the

R-tree of the form (mbr, ID), where mbr is the minimum bounding rectangle (MBR) of the polygon. For

each entry associated to a point pt, there is a (pt, ID) entry.

Spatial Selections. Given a query with a spatial selection Filter condition, the optimizer may opt to use

the R-tree to evaluate this condition first and retrieve the IDs of all entities that satisfy it.1 However,

the output fed to the operators that follow (i.e., those that process non-spatial query components) is in a

random order. Thus, query evaluation algorithms that rely on the input being in an interesting order (such

as merge-join) are inapplicable. On the other hand, if the spatial selection is evaluated after another (i.e.,

non-spatial) operator, the R-tree cannot be used because the input is no longer indexed. Therefore, in

1For entities that have point geometries, the spatial selection can always be evaluated exactly using only the R-tree. On the

other hand, if the entities have polygon geometries, the R-tree search may allow for false positives; in this case, the final results of

the spatial filter are confirmed by retrieving the exact polygon geometries from the dictionary, using the IDs of the entities.

5

(a) spatial selection (b) spatial selection (alt.)

(c) spatial join (d) spatial join (alt.)

Figure 2: Query plans in the basic extension

this case, the system must look up the geometries of the entities that qualify the preceding operator at the

dictionary, incurring significant cost. Figures 2(a) and 2(b) illustrate two alternative plans for the spatial

selection query of Figure 1(b). The plan of Figure 2(a) uses the R-tree to perform the spatial selection

and joins the result with the instances of triple ?s cityOf Germany. Finally, the join results are joined

with the results of ?s hosted ?o. The plan of Figure 2(b) first evaluates the non-spatial part of the query

and then looks up and verifies the geometries of all ?s instances in it (i.e., the R-tree is not used here).

Spatial Joins. The R-tree can also be used to evaluate spatial join Filter conditions, by applying join

algorithms based on R-trees. We implemented three algorithms for this purpose. First, the R-tree join

algorithm [9] can be used in the case where both spatially joined variables involved in the Filter condition

are instantiated directly from the base data and do not come as outputs of other query operators. Second,

we use the SISJ algorithm [20] for the case where the R-tree can be used only for one variable. Finally,

we implemented a spatial hash join (SHJ) algorithm [19] for the case where both inputs of the spatial

join filter condition are output by other operators.2 As in the case of spatial selections, spatial join

algorithms do not produce interesting orders and for spatial join inputs that are instantiated by preceding

query operators, the system has to perform dictionary look-ups in order to retrieve the geometries of the

entities before the join. Figures 2(c) and 2(d) illustrate two alternative plans for the spatial join query of

Figure 1(c). The plan of Figure 2(c) applies an R-tree self-join [9] to retrieve nearby (?s1, ?s2) pairs and

then binds ?s1 with the result of ?s1 cityOf Germany. The output is then joined with the result of ?s1
sisterCityOf ?s2. The plan of Figure 2(d) first evaluates the non-spatial part of the query and then looks

up the geometries of all (?s1, ?s2) pairs, and joins them using SHJ.

5 Encoding the Spatial Dimension

We observe that in most RDF engines, the IDs given to resources or literals at the dictionary mapping do

not carry any semantics. Instead of assigning random IDs to resources, we propose to encode into the

ID of a resource an approximation of the resource’s location and geometry that can be used to (i) apply

2If the spatial join inputs are very small, we simply fetch the geometries of the input entity sets and do a nested-loops spatial

join.

6

(a)

(b)

Figure 3: Spatial encoding of entity IDs

spatial Filter conditions on-the-fly in a query evaluation plan, and (ii) define spatial operators that apply

on the approximations.

Figure 3(b) illustrates the Hilbert space filling curve, a classic encoding scheme of spatial locations

into one-dimensional values. We partition the space using a grid, and order the cells based on the curve.

We then divide the ID given to a spatial resource r into two components: (i) the Hilbert order of the cell

where r spatially resides occupies the m most significant bits (where 2m/2×2m/2 is the resolution of the

grid), and (ii) a local identifier which distinguishes r to other resources that reside in the same cell as r.

Since the RDF data may also contain resources or literals, which are not spatial, we use a different range

of ID values for non-spatial resources with the help of the least significant bit as a flag. In the toy example

of Figure 3(a), the least significant bit (b0) indicates whether the entity modeled by the ID is spatial (b0

= 1) or non-spatial (b0 = 0), the next 4 bits are used for the local identifier, and the 6 most significant bits

encode the Hilbert order of the cell. For example, in Figure 3(b), entity e1961 is spatial (b0 is set) and it is

located in the cell with Hilbert order 111101 (cell with ID 61), having local code 0100. For a non-spatial

resource, bit b0 would be 0 and the remaining ones would not have any spatial interpretation. Figure 3(c)

illustrates which IDs encode the cities of Figure 1(a).

In the case of a skewed dataset, a cell may overflow, i.e., there could be too many entities falling

inside it rendering the available bits for the local codes of entities in it insufficient. In this case, entities

that do not fit in a full cell are assigned to the parent of the cell in the hierarchical space decomposition.

For instance, consider the data in Figure 3(b) and assume than the cell with ID 61 is full and that the

entity e1931 cannot be assigned to it. e1931 will be assigned to the parent cell, i.e., the square that consists

of the cells 60, 61, 62, and 63. This cell’s encoding has 4 bits, that is, 2 bits less than its children cells.

7

These 2 bits are now used for the local encoding of entities in it. Intuitively, as we go up in the hierarchy

of the grid, each cell can accommodate more entities. An entity that must be assigned to an overflown

cell ends in the first non-full ascendant of that cell as we go up in the hierarchy. The ⌈log2(m/2)⌉ least

significant bits of the local code area are reserved to encode the level of the spatially-encoded cell in the

ID (the most detailed level being 0). In our example, m = 6, hence, 2 bits of the local code are used to

denote the level of the cell that approximates each entity.

The encoding we described is also used for arbitrary geometries that may overlap with more than one

cells of the bottom level. For example, the polygon at the lower left corner of the grid of Figure 3(b)

spans across cells with IDs 1 and 2, thus, it will be assigned to their parent cell, which has a spatial

encoding 0000. Due to the variable number of bits given to the spatial approximations, the encoding is

also suitable for dynamic data (i.e., inserted entities that fall into overflown cells are given less accurate

approximations).

The most important benefit of the spatial encoding scheme is that the (approximate) evaluation of

spatial predicates can be seamlessly combined with the evaluation of non-spatial patterns in SPARQL. For

example, spatial Filter conditions included in a query which are bound to entity variables (for example,

?s hasGeometry ?g, Filter WITHIN (?g, “POLYGON(...)”) can be evaluated on-the-fly at any place

in the evaluation plan where the entity variable (e.g., ?s) has been instantiated, by decoding the IDs

of the instances. Note that the spatial mapping is only approximate (based on the conservative grid

approximation of the spatial locations). Thus, by applying a spatial predicate on the approximations (i.e.,

cells) of the entities, false hits may be included in the results, which need to be verified. This is in line

with classic spatial query evaluation approaches [9], which first evaluate all spatial predicates, based on

conservative approximations (i.e., MBRs) of spatial objects and then refine the final results by accessing

the exact geometries of the objects. This way, random accesses for retrieving the geometries of entities,

whose encoded spatial approximation does not satisfy the spatial Filter conditions of the query can be

avoided.

A side-benefit of using a Hibert-encoded grid to approximate the object geometries is that by counting

the number of resources in each cell (counting is already performed by the mapping scheme), we can have

a spatial histogram to be used for selectivity estimation in query optimization (this issue will be discussed

in detail in Section 7). Finally, extending current systems (e.g., RDF-3X) to use this spatial encoding is

quite easy.

6 Query Evaluation

We now show how our encoding scheme further extends the basic framework presented in Section 4

to apply spatial filters early and on-the-fly and significantly accelerate the evaluation of GeoSPARQL

queries. In a nutshell, after each non-spatial operator that instantiates entity variables, which also appear

in a spatial Filter condition, the condition is applied on the spatially encoded IDs of the entities. In

general, the sooner we apply these on-the-fly spatial filters, the better because they do not incur any I/O

cost and their CPU cost is negligible.3 After the application of a spatial filter, we append a verification bit

(or vbit) to the tuples that survive the filter. If, for a tuple, this bit is 1, the tuple is guaranteed to qualify

the corresponding spatial predicate (no verification is required). On the other hand, if the bit is 0, this

means that it is unknown at this point whether the exact geometries of the entities in the tuple qualify

the spatial predicate (however, they cannot be pruned based on their spatial approximations encoded in

their IDs). By the end of processing all non-spatial query components, for tuples having their vbits 0, the

system has to fetch the exact geometries of the involved entities and perform verification of the spatial

Filter conditions.

6.1 Spatial Range Filtering

Spatial range queries in an RDF graph bind a pattern variable to geometries that are spatially restricted

by a range (e.g., they are within an area defined by a polygon). As an example, consider again the

query depicted in Figure 1(b). Our encoding scheme allows the filtering phase of the spatial range

query to be performed on-the-fly while scanning the indices, as illustrated by the evaluation plan of

Figure 4. The plan searches the OPS and PSO indexes; the objective is to get and merge-join two

lists of ?s, in order to evaluate the non-spatial components (?s cityOf Germany, ?s hosted ?o) of the

3Most spatial predicates, when translated to the grid-based approximations of the encoding, involve distance computations

and/or cheap geometry intersection tests.

8

Figure 4: Plan for the query of Figure 1(b)

Figure 5: Plan for the query of Figure 1(c)

query, i.e., the plan follows the logic of the plan shown in Figure 2(b). Taking advantage of the spatial

encoding, before the merge-join, the plan of Figure 4 applies the spatial filter for (?s hasGeometry

?g, WITHIN(?g,“POLYGON (...)”)) on the instances of ?s that arrive from scanning the OPS and PSO

indexes; a vbit is appended to each survived tuple, to be used by the next operators. In this example,

assume that the spatial entities and the spatial range (i.e., “POLYGON (...)”) are the points and the

shadowed range, respectively, shown in Figure 3(b). Entities e809 and e841 are filtered out from the left

scan, despite being cities in Germany, because they are not within the cells that intersect the given spatial

range. Entity e969 is not filtered out either from the right nor from the left scan, but we cannot ensure

that it qualifies the spatial range predicate either, because its cell-ID 30 (i.e., the cell that encloses e969
in Figure 3) is not completely covered by the spatial query range; therefore the vbit for the tuples that

involve e969 is 0. On the other hand, the vbit for the tuples that contain e585 and e593 is 1 as their cell-ID

18 is completely covered by the spatial range. Therefore, after the merge-join, we only have to fetch and

verify the geometry of e969. Range filtering is applied at the bottom of query plans, after each index scan

that contains a respective spatial variable.

6.2 Spatial Join Filtering

Similar to spatial range selections, the filtering phase for binary spatial join predicates can also be applied

on-the-fly, as soon as the IDs of candidate entity pairs are available. As an example, consider the join

query depicted in Figure 1(c). A possible query evaluation subplan is given in Figure 5, which follows

the flow of the plan shown in Figure 2(d); however, the plan of Figure 5 applies the spatial join filter

(i.e., the distance filter) early. By the time the candidate pairs (?s1, ?s2) are fetched by the index scan on

9

Figure 6: Example of Verification Join

PSO, the filter is applied so that only the pairs of entities that cannot be spatially pruned are passed to the

next operator. Assume that the pairs that qualify ?s1 sisterCityOf ?s2 are as shown at the right-bottom

side of Figure 5, above the search PSO index operator. Assume that the distance threshold (i.e., 300km)

corresponds to the length of the diagonal of each cell in Figure 3. After applying the distance spatial

filter on all (?s1, ?s2) pairs produced by the PSO index scan, the pairs that survive are (e585, e593), (e969,

e1001) and (e585, e329). However, only entities e585 and e593 are guaranteed to be within ǫ distance as

they belong to same cell; thus, the vbit for pair (e585, e593) is 1. When the pairs are merge-joined with

the results of the OPS index-scan operator on the left (for ?s1 cityOf Germany), the vbits of qualifying

tuples are carried forward to the next operator.

In contrast to the range filter that always appears at the bottom level of the operator tree, distance join

filtering can be applied on any intermediate relation that contains two joined spatial variables. This case

is possible when two relations are first joined on attributes other than the spatial entities. In Section 7.1,

we show how the query optimizer can identify all pairs of spatially joined variables in a query, for which

distance join filtering can be applied; here, we only gave an example with a pair coming from an index

scan.

6.3 Verification Join

Verifying the geometries of entities with vbit=0 should be performed in an optimized way that would

avoid an excessive number of random I/Os (which would be worse than simply fetching all the geometry

IDs with sequential scans, even for the verified tuples). We illustrate the idea behind our verification

mechanism with a simple example. Consider again the spatial Within query whose RDF graph is given

in Figure 1(b). Figure 6 depicts an evaluation plan for the query. After filtering the spatial entities that

come from the two index scans, and merge-joining them, we should perform a second (merge) join with

the relation coming from the PSO index for P=hasGeometry in order to get the geometry IDs of the

qualifying entities. This is essential for the non-verified entities, e.g., e969 in our example. However,

since e585 is already verified, its geometry needs not be fetched from disk. Therefore, we have to define

and implement a new join operator for geometry fetching, which disregards verified entities.

Figure 6 illustrates how this verification join operator works. It first issues a lookup against the

right index by the time the first non-verified entity is encountered from the left input (e.g., e969). After

producing the join result, it pulls the next tuple from the left. If the tuple is verified (e.g., e585 in our

10

Figure 7: Example of SMJ

example), it just produces a result with a NULL value for the corresponding geometry and pushes it to

the next operator. Note that the next operator will disregard any NULL value, because it first checks the

verification bit. In case there was another non-verified entity coming from the left side, then the operator

would not perform a random I/O to the B+-tree of the right input. It would just scan sequentially the

leaf pages of the B+-tree and stop as soon as it encounters the required value, in order to avoid random

accesses.

Note that the verification join mechanism is independent of the particular algorithm used. In the

previous example, we illustrated the case of a merge join, but the same technique can be applied also

when a hash join is to be performed: the hash table is built on the left side (which contains the verification

bits) and the right side is used for probing.

6.4 Spatial Merge Join on Encoded Entities

In this section, we propose a spatial merge join (SMJ) operator that applies directly on the spatial encod-

ings (i.e., the IDs) of the entities from the two join inputs. SMJ assumes that both its inputs are sorted

by the IDs of the spatial entities to be joined. Like the spatial filters discussed above, this algorithm only

produces pairs of entities for which the exact geometries are likely to qualify the spatial join predicate

(typically, a DISTANCE filter). Again, a verification bit is used to indicate whether the join condition is

definitely qualified by a pair. Besides taking advantage of the spatial approximations encoded in the IDs

of the entities, SMJ takes advantage of and preserves the interesting orders of the intermediate results fed

to it (i.e., their sorting based on the IDs of the joined entities). In addition, the algorithm does not break

the pipeline within the operator tree, as any other spatial join algorithm would. The difference between

SMJ and the filtering technique discussed in Section 6.2 is that SMJ is a binary join algorithm that takes

two inputs, while the filtering technique takes a single input of candidate join pairs and merely applies

the join condition on the entity-ID pairs on-the-fly.

SMJ operates similarly to a classic merge join algorithm. In a nutshell, the operator uses a buffer BR

to cache the streaming tuples from its right input R. For each entity el read from the left input L, SMJ

uses the ID of el to compute the minimum and maximum cell-IDs that could include entities er from R,

which could possibly pair with el in the join result, based on the given DISTANCE filter. SMJ then keeps

reading tuples from input R and buffering them into BR, as long as they are likely to join with el. As

soon as BR is guaranteed to contain all possible entities that may pair with el, SMJ computes all join

results for el and discards el (and potentially tuples from BR).

We now provide the details of SMJ. The algorithm is based on the (on-the-fly and on-demand) com-

putation of four cell IDs for each entity e based on e’s ID. These cell IDs refer to the most detailed

level of the grid used in the encoding (e.g., 6 bits for the example of Figure 3). First, minNeighborID

and maxNeighborID are the minimum and maximum non-empty cell-IDs that could include entities that

pair with e in the join result, respectively. To compute these cells, we have to expand e’s cell based

on the distance join threshold and find the minimum and maximum cell-ID that intersects the resulting

range. For example, consider entity e841 contained in cell with ID 26 in Figure 3(b) and assume that

the join distance threshold equals the diagonal length of a cell. For this entity, minNeighborID=18 and

maxNeighborID=39. Second, minChildID and maxChildID correspond to the minimum and maximum

non-empty cell-IDs that have a common ancestor (in the hierarchical Hilbert space decomposition) with

the cell of e. For entity e841, which belongs to the 2nd quadrant of the Hilbert decomposition (i.e., the

ID of e841 has prefix 01), minChildID and maxChildID are the smallest and largest non-empty cell-IDs

in that quadrant, i.e., 18 and 26, respectively.

Just like a traditional merge join, SMJ does not require to have read the inputs entirely before it can

start producing its output; instead it proceeds as new entities come from the inputs. At each step, the

distance join is performed between the current entity el from the left input and all entries in BR. After

11

reading el, SMJ reads entries er and buffers them into BR and stops as soon as er’s minChildID is greater

than the maxNeighborID of el; then we know that we can join el and all entities in BR and then discard

el, because any unseen tuples from R cannot be included within the required distance from el.
4 For

example, consider the buffered inputs of Figure 7 that have to be joined. The maxNeighborID of the first

entity e809 on the left is smaller than the minChildID of entry e1931, therefore e809 cannot be paired with

entries after e1931 (that are guaranteed to have minChildID greater than the maxNeighborID of e809).5

Thus, for any el, we only need to consider all entities in R before the first entity having minChildID

greater than the maxNeighborID of el.

After el has been joined, it is discarded. At that point we also check if buffered tuples in BR can also

be removed. In order to decide this, we use maxNeighborID of each entity on the right. In case this is

smaller than the minChildID of the next entity in L, then the right entry can be safely removed from the

buffer without losing any qualifying pairs. Below, we give a pseudocode for SMJ.

Algorithm: SMJ

Input : Two join inputs L and R; a distance threshold ǫ

Output : Grid-based spatial distance join of L and R

1 Initialize (empty) buffer BR;

2 er = R.get next(); add er to BR;

3 while el = L.get next() do

4 Prune from BR all tuples er such that er .maxNeighborID < el.minChildID

5 while el.maxNeighborID ≥er .maxChildID do

6 er = R.get next(); add er to BR;

7 join el with all tuples in BR and output results to the next operator;

We now discuss some implementation details. First, the required min/maxNeighborID and min/maxChildID

for the entries are computed fast on-the-fly by bit-shifting operations. Grid statistics are used for identify-

ing whether a cell is non-empty. Second, for joining an entity el from L, we scan through the qualifying

entities of BR and compute their grid-based distances to el, but only for entities whose minChildID-

maxChildID range overlaps with the minNeighborID-maxNeighborID range of el; this is a cheap filter

used to avoid grid-based distance computations. Finally, we buffer all tuples that have the same entity ID

(in either input). For such a buffer, we perform the join only once but generate all join pairs.

6.5 Spatial Hash Join on Encoded Entities

If either of the two inputs of a spatial join are not ordered with respect to the joined entities, SMJ is not

applicable. In this case we can still use the IDs of the joined entities to perform the filter step of the

spatial join. The idea is to apply a spatial hash join (SHJ-ID) algorithm (similar to that proposed in [19])

using the approximate geometries of the entities taken from their IDs.6 SHJ-ID simply uses the existing

assignment of the entities to the cells of the grid (as encoded in their IDs) and considers each such cell

as a distinct bucket. The only difference from a typical spatial hash join algorithm is that in the bucket-

to-bucket join phase, we have to consider all levels of the encoding scheme. Therefore, each bucket from

the left input, corresponding to a cell c, is joined with all buckets from the right input which correspond

to all cells that satisfy the DISTANCE filter with c. The output of the spatial hash join is verified as soon

as the geometries of the candidate pairs are retrieved from disk. Note that, in contrast to the algorithm of

Section 6.4, the spatial hash join breaks the pipeline in the operator tree since it starts producing results

only after the assignment of entries to buckets.

6.6 Runtime Optimizations

RDF-3X uses a lightweight Sideways Information Passing (SIP) mechanism for skipping redundant val-

ues when scanning the indexes [23]. Consider a merge join, which binds the values of a variable ?s
coming from two inputs. If the join result is fed to another (upper) merge join operator that binds ?s, then

the upper operator can use the next value v of its other input to notify the lower operator that ?s values

less than v need not be computed.

4Recall that the inputs are sorted by ID and that entities may be encoded at different granularities due to data skew or geometry

extents. Therefore, using the cell-ID of er alone is not sufficient and we have to use the minChildID of er .
5The fact that the entities arrive from the inputs sorted by their IDs guarantees that they are also sorted based on their minChil-

dIDs.
6recall that the actual geometries of the entities have not been retrieved yet; otherwise, the spatial hash join of Section 4 would

be used.

12

(a) RDF query

(b) Join graph GQ

Figure 8: Augmenting a query graph

In the case of spatial joins where at least one side comes from a scan in the R-tree (e.g., consider

the plan shown in Figure 2(a)), SIP is not applicable since there is no global order for the geometries in

the 2D space. On the other hand, the SMJ algorithm proposed in Section 6.4 can use SIP to notify the

operators below its left input which is the minimum ID value for the next entity el to pair with any entity

buffered in BR. For the spatial hash join, we can also use SIP, by creating a bloom filter for one input,

similar to the one RDF-3X constructs for the traditional hash join, and use it to prune tuples from its

other input, while scanning the B+-tree index. A value is pruned if it is not included in the bloom filter.

7 Query Optimization

In this section we describe our extensions to the query optimizer of RDF-3X, in order to take into con-

sideration (i) the R-tree index and the query evaluation plans that involve it (see Section 4) and (ii) the

query evaluation techniques described in Section 6, based on the spatial encoding of entity IDs.

7.1 Augmenting the Query Graph

Consider the query depicted in Figure 8(a). This query includes a spatial distance join between the

geometries ?g1 and ?g2. The filtering phase of the spatial distance join can also be applied on the variables

?s1 and ?s2, using their IDs, as explained in Section 6.4. We call such variables spatial variables. More

formally:

Definition 1 (SPATIAL VARIABLE) A variable ?si at the subject position of a triple pattern ?si hasGe-

ometry ?gi that appears in the Where clause of a query Q is called a spatial variable. We say that two

spatial variables ?si, ?sj (i 6= j) are joined iff ?gi and ?gj appear in the same DISTANCE predicate in

the Filter clause of Q.

Spatial variables are identified in the beginning of the optimization process and they are used to augment

the initial join query graph GQ with additional join edges that correspond to the filtering step of the

spatial operation. For example, the initial GQ for the RDF query of Figure 8(a) is the graph shown in

Figure 8(b), considering solid lines only as edges; the nodes of GQ are the triples of the RDF query graph

and there is an edge between every pair of nodes that have at least one common variable. An ordering of

the edges of GQ corresponds to a join order evaluation plan.

The procedure of augmenting GQ is given in Algorithm AUGMENT. First, we identify all spatial

variables in the query Q; in our example, ?s1 and ?s2. Note that a spatial variable ?si may also appear

either as subject or object in triple patterns, other than ?si hasGeometry ?gi. The second step is to

collect all pairs of nodes in GQ that include at least one spatial variable. In the example of Figure 8(b),

13

all nodes include one of ?s1 and ?s2. Then, for each pair of nodes (ni, nj), where ni 6= nj , such that

ni includes ?s1 and nj includes ?s2, we either add a new edge (if no edge exists between ni and nj)

or we add the spatial join predicate (e.g., DISTANCE(ni.si, nj .sj) < “200km”) in the set of predicates

modeled by the edge between these two nodes (these are equality predicates for their common variables).

For instance, n4 and n5 in the initial GQ are connected by an edge with predicate n4.x = n5.x, but

after the augmentation the predicates on this edge are n4.x = n5.x and DISTANCE(n4.s2, n5.s1) <
“200km”. This implies that the query optimizer will consider two possible subplans for joining n4 with

n5. The first one will first perform the equality join on x and then evaluate the distance predicate whereas

the second subplan will first perform the filtering phase of the spatial join on (s1, s2) and then apply the

equality selection on x. In the augmented GQ for our example (Figure 8(b)) the additional edges are

denoted with dashed lines.

If a query Q also includes WITHIN predicates, in the end of the augmentation procedure and for

each spatial variable ?s whose geometry ?g participates in a WITHIN predicate, we add a condition of

the form WITHIN(?s,GEOMETRY) in the set of filters of Q, so that this filter can be applied in any

(intermediate) relation that contains the spatial variable ?s. Similarly, for each pair (si,sj) of joined

spatial variables, we add the corresponding spatial join condition in the set of filters of Q, so that this

filter can be applied on the fly on every (intermediate) relation that includes both the spatial variables

si and sj . Overall, the final augmented GQ may include more edges than the initial GQ, additional

predicates in the edges, and a set of general spatial filters for variables or pairs of variables that can be

applied on intermediate results of subplans.

Algorithm: AUGMENT

Input : A query Q and its initial join query graph GQ

Output : An augmented query graph GQ for Q

1 Identify all triples in Q that include at least one spatial variable in their subject or object position. Each such

triple corresponds to a node of GQ;

2 for each pair ?si, ?sj of joined spatial variables do

3 for each pair of nodes (ni, nj) ∈ GQ, such that ni includes ?si and n2 includes ?sj do

4 if there is no edge in GQ between ni and nj then

5 Add a new edge denoting the filtering phase of the spatial join of ?si and ?sj ;

6 else

7 Insert the filtering phase of the spatial join predicate of ?si and ?sj in the predicate list of edge

between ni and nj ;

8 For each spatial variable ?s whose geometry appears in a WITHIN predicate, add a condition

WITHIN(?s,GEOMETRY) to the set of filtering conditions of Q;

9 For each pair of spatial variables ?si, ?sj (i 6= j) which are joined in Q, add a condition

DISTANCE(?si, ?sj) Op ǫ to the set of filtering conditions of Q;

10 return GQ;

7.2 Spatial Join Operators

Our plan generator can place a spatial join operation at every level of the operator tree. Table 1 sum-

marizes all possible cases of the L and R inputs of a spatial join (if L and R are swapped there is no

difference because the join is symmetric). The right column includes the join algorithms, which the plan

generator of the query optimizer is going to consider in each case.

Depending on whether the inputs of the join are indexed, sorted, or unsorted, there are different

algorithms to be considered. If both join inputs come ordered by the IDs of the spatial entities to be

joined, then SMJ (Section 6.4) is the algorithm of choice. In the special case where both inputs are the

results of ?si hasGeometry ?gi patterns applied on the entire set of triples, besides of applying SMJ on

the SPO (or SOP) index, we can apply an R-tree self-join [9] on the R-tree index (see Section 4). When

just one of the inputs, e.g., R, is a result of a ?si hasGeometry ?gi pattern, besides SMJ, we can also

apply the SISJ algorithm [20] (see Section 4). In this case, we also consider Index Nested Loops join

using the R-tree, by applying one spatial range query for each tuple of the other input, e.g., L. This is

expected to be cheap only when L is very small. Finally, when either L or R are unsorted, SMJ is not

applicable and we can use SHJ-ID on the entity IDs (Section 6.5), or either SISJ or SHJ depending on

whether one of the inputs is a direct result of a ?si hasGeometry ?gi pattern or not. We also consider

Index Nested Loops or Nested Loops, if any of the inputs is too small.

14

Case Algorithm(s) to Consider

L and R sorted on entity IDs SMJ (Section 6.4)

L and R results of (?si hasGeometry ?gi) SMJ or R-tree Join [9]

L sorted on entity IDs SMJ (Section 6.4), SISJ [20],

R result of a pattern (?s2 hasGeometry ?g2)or Index Nested Loops

L unsorted SHJ-ID (Section 6.5), SISJ [20]

R result of a pattern (?s2 hasGeometry ?g2)or Index Nested Loops

L and R unsorted SHJ-ID, SHJ [19] or Nested Loops

Table 1: Spatial Join Scenarios in Optimal Plan Construction

7.3 Query Optimization

We extend the query optimizer of RDF-3X to consider all possible spatial join cases and algorithms

outlined in Section 7.2. In addition, the optimizer considers the case of performing a spatial selection

Filter using the R-tree (see Section 4). The optimizer also considers any spatial selection and join filter

conditions that are applied on-the-fly; i.e., in plans where the non-spatial query pattern components are

evaluated first, our optimizer uses spatial query selectivity statistics to estimate the output size of these

components after the spatial filter is applied on them. Consider for example, the plan of Figure 4. The

estimated output of the ?s hosted ?o pattern is further refined to consider the spatial WITHIN filter that

follows. In other words, the cardinality of the right input to the merge-join algorithm that follows is

estimated using both RDF-3X statistics on the selectivity of ?s hosted ?o and spatial statistics for the

selectivity of WITHIN(?g,“’POLYGON (...)”).

7.4 Selectivity Estimation

For estimating the selectivity of spatial query components, we use grid-based statistics, similar to previ-

ous work on spatial query optimization (e.g., see [20]). Specifically, we take advantage of statistics that

are obtained by the spatial encoding phase of the entity IDs. For each cell of the grid, defined by the

Hilbert order, we keep track of the number of spatial entities that fall inside. The spatial join or selection

is then applied at the level of the grid, based on uniformity assumptions about the spatial distributions

inside the cells. In addition, we assume independence with respect to the other query components. For

example, for estimating the input cardinality of the right merge-join input at the plan of Figure 4, we

multiply the selectivity of the ?s hosted ?o pattern with that of the WITHIN(?g,“POLYGON (...)”) fil-

ter. In practice, this gives good estimates if the spatial distribution of the entities that instantiate ?s is

independent to the spatial distribution of all entities. In the future, we plan to consider advanced statistics

that capture correlations between spatial and non-spatial predicates.

8 Experimental Evaluation

In this section we present an experimental evaluation of our techniques on spatially enriched RDF data.

Section 8.1 discusses the implementation details of our methodology and the experimental setup. Sec-

tion 8.2 compares our extended version of RDF-3X against the original system [22] and two commercial

triple stores with spatial query support, namely Virtuoso [4] and OWLIM-SE [2].

8.1 Setup

Implementation Details. We implemented our system in C++ (g++ 4.8) and all experiments were con-

ducted on a machine with an i7-3820 CPU at 3.60GHz, a RAID hard disk of 6Tb, and 60Gb of main

memory running Linux Debian (3.11-2-amd64). For the R-tree implementation, we used the open-source

SaIL library [14].

Datasets. We experimentally evaluate our system using two real datasets: LinkedGeoData (LGD) [1] and

YAGO2 [15]. LGD contains user-contributed content from the Open Street Map project, whereas YAGO2

is an RDF knowledge base, derived from Wiki-pedia, WordNet and Geonames. The characteristics of

the two datasets are shown in Table 2. Regarding the spatial distribution of the entities they include, both

datasets are highly skewed; this is reflected by the percentage of geometries that reside at the different

15

LGD (1.5 Gb) YAGO2 (22 Gb)

Triples 15,428,666 205,381,297

Entities 10,619,763 108,592,664

Geometries (points) 3,456,000 4,774,844

Table 2: Characteristics of the datasets

Level 0 (bottom) 1 2 3 4 5 6

LGD 81.2 15.6 2.58 0.5 0.1 0.02 0

YAGO2 75.6 14.7 4.9 2.4 1.6 0.7 0.1

Table 3: Percentage (%) of geometries per grid level

levels of our encoding scheme (see Table 3). Finally, the total size of the database (along with the

dictionary) is 1.5Gb for LGD and 22Gb for YAGO2.

Encoding. We used a grid of 8,192 × 8,192 cells at the bottom level, hence, the maximum number of bits

used in an entity’s ID to encode its cell-ID is 26. This means that we can have up to 13 levels of spatial

approximation. The distribution of geometries in both datasets leaves the top 6 levels empty, therefore

we reserve only 3 bits for the level code (see Section 5) and assign up to 4 geometries to each cell at the

bottom level. This is the maximum granularity we can achieve when the IDs of the entities are 32-bit

integers. Using 64-bit IDs for better spatial approximation is also possible, but it significantly increases

the size of the triple indexes, thus, we should do this only when the total number of entities is greater than

232. Besides, the grid must be relatively small so that it can be kept in the available working memory (for

selectivity estimation purposes). In our case, the grid size is less than 1Gb for both datasets.

Geometries. Within the scope of this evaluation, we only used geometries of type POINT, that is, all

other types of geometries in the original datasets were substituted by a single point.7 In LGD, for each

entity associated with a LINE or a POLYGON, we simply kept one point from the corresponding geom-

etry. Since the latest version of YAGO2 includes two types of geometries, POINT and MULTIPOINT,

we left all points intact and kept only one point from each multipoint (the choice was random). Note that

Tables 2 and 3 refer to the modified datasets that include only points.

Queries. All queries we used in our experiments consist of two parts: (i) an RDF part that can be

evaluated by a traditional SPARQL engine, and (ii) a spatial part, i.e., a FILTER condition that includes

either a WITHIN predicate (for spatial range queries) or a DISTANCE predicate (for spatial distance

joins). The range queries have similar form as that of Figure 1(b); we divide them into four classes

based on the selectivities of the two parts. Queries belonging to class SL have their RDF part more

selective compared to their spatial part and the opposite holds for queries in class LS (S stands for small

result, L for large). For queries in classes SS and LL, both parts roughly have the same selectivity.

The characteristics of the spatial join queries (denoted by J) will be discussed in Section 8.2. All query

expressions can be found in the appendix.

Comparison measures. We evaluated each query 5 times (both with cold and warm cache) and re-

port their average response times. The reported runtimes include the query optimization cost (i.e., the

time spent by the optimizer to apply the techniques of Section 7) and the time spent in the ID-to-string

dictionary lookups for the variables in the Select clause.

System Parameters. RDF-3X does not have its own data cache for the query results; instead, it relies

entirely on the OS caching mechanism. The same architectural principle is also adopted in our imple-

mentation (we included a small seperate cache of 40Kb only for the R-tree8). This means that when a

query is executed a second time, its optimization and evaluation is performed from scratch, since there

are no logs or cached results as in a full-fledged database system. The only difference in a subsequent

evaluation of the same query is that some (or even all) disk pages we need are already in the kernel’s

cache; hence, they will not be fetched from disk again (unless we first clear the cache). To illustrate the

effect of caching in the overall response time of the system, we report query evaluation times on warm

and cold caches separately.

7Recall that our query evaluation techniques are general and independent from the types of geometries we have in the database.
8Since the OS caches R-tree pages, we used a small cache size in order to reduce the effect of double caching by the SaIL

library.

16

Query
Number of results OWLIM-SE Virtuoso Baseline Basic extension Encoding

RDF Spatial Combined Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.SL1 524 2,538,712 411 5,836 3,054 15,207 28 2,173 (145) 33 (2) 2,256 (138) 44 (10) 1,067 (134) 56 (26)

LGD.SL2 3,208 2,943,852 2,869 6,245 3,530 14,356 33 2,545 (162) 67 (1) 2,554 (168) 73 (11) 1,280 (175) 149 (73)

LGD.SL3 25,617 2,538,712 20,941 6,626 3,417 20,721 25 2,160 (154) 192 (1) 2,150 (159) 210 (9) 1,224 (138) 230 (27)

LGD.SL4 215,3552,943,852 186,302 9,667 5,379 19,781 2,047 2,541 (136)1,013 (1) 2,623 (141) 997 (12) 1,289 (175) 428 (72)

LGD.LS1 25,617 9,002 86 1,281 59 15,059 53 1,323 (144) 161 (1) 528 (151) 37 (6) 269 (127) 24 (10)

LGD.LS2 191,976 9,002 9 1,702 63 14,645 54 1,781 (140) 717 (2) 569 (152) 41 (8) 271 (130) 25 (10)

LGD.LS3 25,617 913 10 805 46 14,408 21 1,384 (148) 163 (1) 331 (146) 24 (6) 223 (121) 10 (7)

LGD.LS4 191,976 913 3 912 46 13,808 20 1,835 (152) 683 (1) 292 (137) 24 (10) 218 (120) 17 (7)

LGD.SS1 8,621 9,002 69 1,032 58 15,434 54 1,243 (151) 90 (1) 1,235 (152) 88 (13) 279 (125) 24 (10)

LGD.SS2 13,090 9,002 120 708 55 15,380 56 807 (155) 104 (1) 812 (147) 98 (8) 243 (118) 12(10)

LGD.SS3 650 913 1 392 42 12,547 1 1,211 (138) 32 (1) 1,192 (139) 29 (7) 209 (124) 7 (6)

LGD.SS4 25,617 21,564 176 1,782 67 19,541 64 1,382 (133) 162 (1) 1377 (158) 165 (15) 284 (140) 35 (30)

LGD.LL1 191,976 350,674 13,416 4,254 585 17,852 182 1,814 (137) 673 (1) 1,912 (209)742 (106) 519 (223) 182 (114)

LGD.LL2 191,976 498,294 27,731 4,963 891 19,883 523 2,071 (137) 757 (2) 2,163 (158) 823 (63) 771 (224) 228 (123)

Table 4: Spatial range queries on LGD (total response time in msecs - optimizer time in parentheses)

Query
Number of results Baseline Basic extension Encoding

RDF Spatial Combined Cold Warm Cold Warm Cold Warm

YAGO2.SL1 11,547 403,719 1,066 12,896 (51) 114 (1) 12,724 (49) 177 (4) 4,613 (53) 121 (1)

YAGO2.SL2 14,972 152,212 391 9,856 (56) 107 (1) 9,926 (56) 107 (3) 2,310 (74) 147 (2)

YAGO2.SL3 6,030 34,010 69 13,166 (163) 133 (1) 13,212 (167) 139 (9) 1,657 (164) 155 (3)

YAGO2.SL4 2,226 44,674 83 2,781 (46) 73 (1) 2,772 (45) 80 (7) 844 (44) 38 (4)

YAGO2.LS1 2,226 374 56 2,551 (48) 73 (1) 864 (58) 21 (2) 646 (56) 33 (1)

YAGO2.LS2 3,414 81 33 8,348 (51) 75 (1) 1,210 (59) 31 (3) 951 (50) 18 (1)

YAGO2.LS3 285,613 47,929 4,476 80,453 (177) 836 (1) 29,629 (237) 315 (7) 24,026 (174) 94 (2)

YAGO2.LS4 1,646,507 29,943 1,938 120,950 (138) 6,729 (1) 758 (143) 40 (3) 991 (137) 59 (2)

YAGO2.SS1 6,030 9,001 21 12,890 (162) 133 (1) 12,791 (169) 136 (3) 1,167 (157) 172 (2)

YAGO2.SS2 3,414 1,094 79 9,392 (51) 75 (1) 9,345 (49) 78 (2) 1,710 (50) 22 (1)

YAGO2.SS3 2,226 1,827 107 3,117 (46) 73 (1) 3,087 (42) 71 (2) 1,102 (55) 52 (1)

YAGO2.SS4 7,074 7,975 18 4,999 (46) 86 (1) 5,043 (47) 86 (2) 507 (46) 36 (3)

YAGO2.LL1 285,613 199,314 11,218 152,605 (180) 841 (1) 150,218 (180) 839 (2) 86,509 (177) 108 (1)

YAGO2.LL2 152,693 134,593 38,692 13,080 (53) 3,588 (2) 12,893 (51) 3,612 (2) 9,442 (48) 1,336 (1)

Table 5: Spatial range queries on YAGO2 (total response time in msecs - optimizer time in parentheses)

8.2 Comparison

Results on Range Queries. Table 4 shows response times for range queries on the LGD dataset. The

first three columns of the table show the number of results of the RDF query component only, the spatial

component only and the complete query (combined). We first focus on comparing our approach (Encod-

ing) with the basic extension presented in Section 4 (Basic), and the original RDF-3X system (Baseline).

Only for queries where the spatial component is more selective (LS class) Basic utilizes the R-tree in

order to retrieve the entities that fall in the given range; in all other cases, it applies the same plan as

Baseline; i.e, it evaluates the RDF part first and then applies the WITHIN filter to the tuples that qualify

it. On the other hand, Encoding always chooses to evaluate the RDF part of the queries first and uses the

spatial range filtering technique (see Section 6.1) to reduce the number of entities that have to be spatially

verified. Our approach is superior in all queries. In specific, we avoid fetching a large percentage of exact

geometries (98% on average for all range queries in both datasets), which Baseline obtains by random

accesses to the dictionary. Basic gets these geometries from the R-tree in LS queries, however, the sub-

sequent hash-joins applied for the RDF part of the query are expensive. The cost differences between our

approach and Baseline are not extreme because LGD is relatively small and the overhead of randomly

accessing a large number of geometries is smoothened by cached data due to prefetching. In the case

of warm caches, all runtimes are very low so the cost of our approach may exceed the cost of Baseline

sometimes (e.g., see SL queries) due to the overhead of applying the spatial filter on all accessed entities

in the evaluation of the RDF component of the query.

The difference in the optimization times (in parentheses) between warm and cold caches in all alter-

natives is because of including the time spent for parsing the query, resolving the IDs of the URIs/strings

in it, and finally building the optimal plan. Hence, when a query is issued for the first time, it requires

some dictionary lookups for resolving the IDs of the entities. With warm caches, the respective dictionary

pages are already cached by the OS, thus, query optimization is always cheaper. Note that, in most cases,

the time spent for query optimization by our approach is similar to that of Baseline, meaning that the

overhead of augmenting the query graph and using spatial statistics is negligible compared to the query

optimization overhead of the original RDF-3X system.

17

Query
Spatial join Number of OWLIM-SE Virtuoso Baseline Basic extension Encoding

threshold ǫ results Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.J1 0.003 6,831 164,522 159,365 19,694 8,083 198,039 (116)197,280 (1) 1,367 (314)387 (194) 1,479 (312) 297 (195)

LGD.J2 0.01 32,553 >5mins>5mins 72,543 61,019 >5mins >5mins 1,467 (332)380 (216) 1,755 (348) 321 (223)

LGD.J3 0.01 538 13,577 9,423 9,752 3,044 23,801 (146) 21,882 (4) 1,554 (330)418 (216) 1,587 (334) 286 (211)

LGD.J4 0.02 8,742 >5mins>5mins 22,683 17,125 >5mins >5mins 1,755 (373)865 (220) 1,781 (345) 469 (229)

LGD.J5 0.05 747,958 >5mins>5mins 167,199 109,816 >5mins >5mins 1,983 (466)650 (289) 2,625 (457)1,489 (277)

LGD.J6.1 0.0001 25,719 >5mins>5mins >5mins>5mins >5mins >5mins 1,772 (261)765 (132) 1,587 (264) 710 (138)

LGD.J6.2 0.001 35,651 >5mins>5mins >5mins>5mins >5mins >5mins 1,429 (253)434 (132) 1,602 (252) 713 (139)

LGD.J6.3 0.015 374,119 >5mins>5mins >5mins>5mins >5mins >5mins 1,986 (340)612 (208) 2,719 (364)1,435 (216)

Table 6: Spatial distance join queries on LGD (total response time in msecs - optimizer time in parenthe-

ses)

Query
Spatial join Number of Baseline Basic extension Encoding

threshold ǫ results Cold Warm Cold Warm Cold Warm

YAGO2.J1 0.1 2,615 163,549 (66) 148,246 (1) 15,045 (337) 481 (283) 13,924 (329) 345 (283)

YAGO2.J2 0.1 2,232,353 >5 mins >5 mins 49,554 (338) 1,220 (284) 12,212 (554) 909 (493)

YAGO2.J3 0.1 217 10,540 (331) 549 (284) 10,390 (338) 548 (284) 10,270 (338) 529 (284)

YAGO2.J4 0.1 381 9,258 (333) 402 (283) 9,176 (325) 440 (283) 9,025 (340) 413 (283)

YAGO2.J5 0.1 51 4,463 (360) 399 (284) 4,259 (340) 402 (284) 4,230 (344) 339 (284)

YAGO2.J6 0.1 150,094 >5 mins >5 mins 33,085 (456) 818 (284) 11,038 (670) 742 (495)

YAGO2.J7 0.1 1,927 >5 mins >5 mins 9,480 (340) 998 (276) 4,569 (530) 796 (479)

YAGO2.J8.1 0.001 85,188 >5 mins >5 mins 8,725 (188) 173 (34) 8,776 (167) 201 (43)

YAGO2.J8.2 0.01 86,222 >5 mins >5 mins 8,315 (201) 285 (139) 8,674 (194) 631 (139)

YAGO2.J8.3 0.1 129,802 >5 mins >5 mins 8,592 (341) 446 (283) 7,928 (345) 436 (283)

Table 7: Spatial distance join queries on YAGO2 (total response time in msecs - optimizer time in paren-

theses)

Similar results are observed for range queries on the YAGO2 dataset (see Table 5). Like before,

Encoding always chooses to evaluate the RDF part of the queries first. However, the difference between

our method and Baseline is more profound (in some queries, e.g., YAGO2.LS4, the difference is one

order of magnitude). YAGO2 is much larger than LGD and thus, the avoidance of a huge number of

geometry lookups has higher impact on YAGO2, due to the lower effectiveness of prefetching. Basic

chooses the same plan as Baseline in all cases, except for LS queries, where it opts to evaluate the spatial

selection using the R-tree. In most cases, our approach (which follows a different plan) is superior. Only

for query YAGO2.LS4, our approach should have chosen the R-tree based plan, however, even in this

case, the cost difference between Encoding and Basic is marginal. For some queries (e.g., YAGO2.LS3,

YAGO2.LL1) the cost is high even for our encoding approach. For these queries, we found that the high

cost is due to the dictionary look-ups at the end of the query plans in order to retrieve the query results,

using the qualifying entity IDs (i.e., the IDs that correspond to the variables in the Select clause of the

query). The cost for these essential look-ups cannot be reduced (for example, YAGO2.LL1 must retrieve

the exact descriptions for a large number of pairs of qualifying entities).

Results on Spatial Joins. Tables 6 and 7 show the costs of spatial distance join queries on LGD and

YAGO2, respectively. The threshold 0.1 shown in the tables corresponds to a distance around 10km.

In LGD, all queries have thresholds greater than the diagonal of a cell in our encoding except queries

LGD.J6.1 and LGD.J6.2. In YAGO2, threshold 0.1 is greater than the cell diagonal, but 0.01 is not. After

performing experiments with various types of queries, we found that the SMJ and SHJ-ID algorithms

should only be used when the spatial distance threshold is greater than the diagonal of the grid cell at the

bottom level. Otherwise, they do not produce any verified results and, hence, they have similar or slightly

worse performance compared to directly applying SHJ (as Basic would). We have added this simple rule

of thumb in the optimizer of our system, hence, in all spatial join queries that have a distance threshold

less than the cell diagonal, Encoding applies the same plans as Basic. For this reason, we focus mostly

on queries where the distance threshold is greater than the cell diagonal.

All spatial join queries on the LGD dataset (Table 6) have a similar pattern: they include two disjoint

RDF star-shaped parts with a spatial distance predicate between the geometries of their center nodes.

This is the only type of queries we could define here since the LGD dataset includes a rather poor RDF

part; besides the POI type, there are very few properties such as “label” and “name” which link the POIs

with text attributes. For this type of queries, Baseline can only execute a bushy plan where the two stars

are evaluated separately and then joined in a nested-loop fashion, applying the spatial distance filter. On

the other hand, Basic may choose to apply an R-tree join first for retrieving the candidate pairs within

distance ǫ or to first evaluate RDF part of the query and follow-up with a spatial hash join (SHJ) in the

18

end (e.g., see the plans of Figures 2(c) and (d)). In all queries we tested, Basic chose the SHJ option and

this is quite reasonable; in large datasets, the optimizer would prefer not to perform an expensive spatial

self join over the whole set of points. Finally, Encoding can choose between one of the previous methods

and also try the algorithms of Sections 6.4 and 6.5 on the augmented query graph. Since we have star-

shaped queries and the IDs of the center nodes are coming sorted, SMJ was favored in all queries we

present. Although Encoding is much faster than Baseline, we observe that our encoding does not bring

benefit over Basic for join queries on LGD. The main reason for this is that, due to the data distribution,

our approach does not save any geometry look-ups; every entity from either of the two spatial join inputs

participates in at least one non-verified spatial join pair and therefore it cannot be pruned without fetching

its geometry.

In the YAGO2 dataset, we were able to define alternative queries with spatial join components. As

Table 7 shows, depending on the type of the query and the selectivities of the two parts, our encoding-

based approach uses either SMJ or SHJ-ID. Specifically, SMJ is used in queries J1 and J8.3, whereas

SHD-ID is used in J2, J6, and J7. In queries J8.1 and J8.2 Encoding follows the same plans as Basic. In

the remaining queries (J3, J4 and J5), Basic and our encoding-based approach produced the same plans

as Baseline; these queries include a single connected RDF graph pattern with a rather selective RDF

part. In most queries, the performance of Basic is similar that of Encoding for the reasons we explained

before. For queries YAGO2.J2 and YAGO2.J6 our approach is much faster than Basic not due to the high

number of pruned or verified tuples, but because our approach selects a rather different plan, based on

the augmented query graph, which is much more efficient. In query YAGO2.J7, our approach performs

much better than Basic, because the spatial join inputs have a different spatial distribution and Encoding

can prune many tuples using SHD-ID.

Comparison with Existing Systems. We also compared our system against two popular RDF stores with

geospatial query support, namely OWLIM-SE and Virtuoso. Tables 4 and 6 include the performance of

these systems on range and join queries respectively, on the LGD dataset. We allowed each system to

allocate the whole available memory of the machine and performed the experiments with cold and warm

caches just like for our system. Since these systems have their own data caches, experiments with cold

caches were conducted by clearing the OS cache and restarting the tool. In sum, our system performs

significantly better in all queries, especially in spatial distance joins. We cannot comment about the

reasons, since OWLIM-SE and Virtuoso are closed source and there are no published works describing

their functionality and query optimization techniques. Finally, regarding YAGO2, OWLIM-SE on one

hand could not load the dataset even by using all 64Gb of the available RAM, while on the other hand,

Virtuoso successfully loaded the dataset but we could not evaluate any of the queries correctly (in all of

them zero or incorrect results were returned).

9 Conclusion

In this paper we presented a number of techniques that can be used to extend a RDF stores to effectively

manage of spatial RDF data. We introduced a flexible scheme that encodes approximations of the spatial

features of RDF entities into their IDs. This scheme is based on a hierarchical decomposition of the 2D

space, it is independent from the physical design of the underlying triple store, and it can be effectively

exploited in the evaluation of SPARQL queries with spatial filters. We implemented our ideas by ex-

tending the popular RDF-3X system and conducted detailed experiments with real datasets. In summary,

our approach minimizes the evaluation cost incurred due to the spatial component in all RDF queries. In

addition, it allows the consideration of different plans due to query graph augmentation, which may have

a significant effect as we observed in some of our spatial join queries.

In the future, we plan to extend our query optimizer to consider the spatial distribution of entities

that support a characteristic set [21]. For example, cities that are coastal (and belong to a characteristic

set with this property) have different distribution than the general spatial data distribution of entities.

In addition, we plan to extend our system to support dynamic re-encoding of IDs, in the case where the

RDF data are dynamic and entities can also be deleted. Finally, we will investigate the idea of embedding

discretized spatial coordinates of the data into the leaves of the B+-tree indexes of RDF-3X, in order to

avoid dictionary lookups to retrieve the geometries of entities.

References

[1] Linkedgeodata. http://linkedgeodata.org/About.

19

[2] Owlim-se. http://owlim.ontotext.com/display/OWLIMv43/OWLIM-SE.

[3] Parliament. http://parliament.semwebcentral.org.

[4] Virtuoso. http://virtuoso.openlinksw.com.

[5] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable semantic web data management using

vertical partitioning. In VLDB, 2007.

[6] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix ”bit” loaded: a scalable lightweight join query

processor for rdf data. In WWW, 2010.

[7] R. Battle and D. Kolas. Enabling the geospatial semantic web with parliament and geosparql. Semantic Web,

3(4):355–370, 2012.

[8] M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressangle, O. Udrea, and B. Bhattacharjee.

Building an efficient rdf store over a relational database. In SIGMOD, 2013.

[9] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using r-trees. In SIGMOD,

1993.

[10] A. Brodt, D. Nicklas, and B. Mitschang. Deep integration of spatial query processing into native rdf triple

stores. In GIS, 2010.

[11] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: An architecture for storin gand querying rdf data

and schema information. In Spinning the Semantic Web, pages 197–222, 2003.

[12] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An efficient sql-based rdf querying scheme. In VLDB, 2005.

[13] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD, 1984.

[14] M. Hadjieleftheriou, E. G. Hoel, and V. J. Tsotras. Sail: A spatial index library for efficient application

integration. GeoInformatica, 9(4):367–389, 2005.

[15] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2: A spatially and temporally enhanced

knowledge base from wikipedia. Artificial Intelligence, 194:28–61, 2013.

[16] M. Koubarakis and K. Kyzirakos. Modeling and querying metadata in the semantic sensor web: The model

strdf and the query language stsparql. In ESWC (1), pages 425–439, 2010.

[17] K. Kyzirakos, M. Karpathiotakis, and M. Koubarakis. Strabon: A semantic geospatial dbms. In ISWC (1),

pages 295–311, 2012.

[18] J. Liagouris, N. Mamoulis, P. Bouros, and M. Terrovitis. Efficient management of spatial rdf data. Technical

Report TR-2014-02, CS Department, HKU, www.cs.hku.hk/research/techreps, March 2014.

[19] M.-L. Lo and C. V. Ravishankar. Spatial hash-joins. In SIGMOD, 1996.

[20] N. Mamoulis and D. Papadias. Slot index spatial join. TKDE., 15(1):211–231, 2003.

[21] T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality estimation for rdf queries with multiple

joins. In ICDE, 2011.

[22] T. Neumann and G. Weikum. Rdf-3x: a risc-style engine for rdf. PVLDB, 1(1):647–659, 2008.

[23] T. Neumann and G. Weikum. Scalable join processing on very large rdf graphs. In SIGMOD, 2009.

[24] C.-J. Wang, W.-S. Ku, and H. Chen. Geo-store: a spatially-augmented sparql query evaluation system. In GIS,

2012.

[25] D. Wang, L. Zou, Y. Feng, X. Shen, J. Tian, and D. Zhao. S-store: An engine for large rdf graph integrating

spatial information. In DASFAA (2), pages 31–47, 2013.

[26] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic web data management.

PVLDB, 1(1):1008–1019, 2008.

[27] K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds. Efficient rdf storage and retrieval in jena2. In SWDB,

2003.

[28] Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan. Efficient indices using graph partitioning in rdf triple

stores. In ICDE, 2009.

[29] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu. Triplebit: a fast and compact system for large scale rdf

data. PVLDB, 6(7):517–528, 2013.

[30] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine for web scale rdf data. PVLDB,

6(4):265–276, 2013.

[31] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gstore: Answering sparql queries via subgraph matching.

PVLDB, 4(8):482–493, 2011.

20

A Spatial Range Queries

LGD.SL1:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Police .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-5, 50, 0, 55)”)

LGD.SL2:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Hotel .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-10, 50, 0, 60)”)

LGD.SL3:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Pub .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-5, 50, 0, 55)”)

LGD.SL4:

Select ?s
Where

?s label ?l .

?s type Bus stop .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-10, 50, 0, 60)”)

LGD.LS1:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Pub .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-5, 45, 0, 50)”)

LGD.LS2:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Bus stop .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-5, 45, 0, 50)”)

LGD.LS3:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Pub .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-10, 45, -5, 50)”)

21

LGD.LS4:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Bus stop .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-10, 45, -5, 50)”)

LGD.SS1:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Restaurant .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-5, 45, 0, 50)”)

LGD.SS2:

Select ?s
Where

?s label ?l .

?s type Park .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-5, 45, 0, 50)”)

LGD.SS3:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Hospital .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-10, 45, -5, 50)”)

LGD.SS4:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Pub .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-10, 50, -5, 55)”)

LGD.LL1:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Bus stop .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-5, 55, 0, 60)”)

LGD.LL2:

Select ?s
Where

?s name ?n .

?s label ?l .

?s type Bus stop .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(0, 50, 10, 60)”)

22

YAGO2.SL1:

Select ?gn ?fn ?pr
Where

?p hasGivenName ?gn .

?p hasFamilyName ?fn .

?p hasWonPrize ?pr .

?p diedIn ?c .

?c hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-100, 20, -80, 40)”)

YAGO2.SL2:

Select ?c1 ?c2
Where

?a1 hasAirportCode ?c1 .

?a1 linksTo ?a2 .

?a2 hasAirportCode ?c2 .

?a2 hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(120, 20, 170, 70)”)

YAGO2.SL3:

Select ?gn ?fn
Where

?p hasGivenName ?gn .

?p hasFamilyName ?fn .

?p a Wordnet scientist 110560637 .

?p wasBornIn ?c .

?c hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-95, 40, -90, 45)”)

YAGO2.SL4:

Select ?p ?w
Where

?p hasAcademicAdvisor ?a .

?a worksAt ?w .

?w isLocatedIn ?l .

?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-130, 30, -120, 40)”)

YAGO2.LS1:

Select ?p ?w
Where

?p hasAcademicAdvisor ?a .

?a worksAt ?w .

?w isLocatedIn ?l .

?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-160, -50, -150, -40)”)

YAGO2.LS2:

Select ?fn1 ?c1
Where

?p1 hasFamilyName ?fn1 .

?p1 wasBornIn ?c1 .

?p1 isMarriedTo ?p2 .

?p2 wasBornIn ?c2 .

?c2 hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-100, -50, -95, -45)”)

YAGO2.LS3:

Select ?e ?c
Where

?e happenedIn ?l .

?l a ?c .

?c subClassOf Wordnet city 108524735 .

?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-130, 40, -120, 50)”)

23

YAGO2.LS4:

Select ?s
Where

?s subClassOf Geoclass populated place .

?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-120, 30, -115, 35)”)

YAGO2.SS1:

Select ?gn ?fn
Where

?p hasGivenName ?gn .

?p hasFamilyName ?fn .

?p a Wordnet scientist 110560637 .

?p wasBornIn ?c .

?c hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-105, 45, -100, 50)”)

YAGO2.SS2:

Select ?fn1 ?c1
Where

?p1 hasFamilyName ?fn1 .

?p1 wasBornIn ?c1 .

?p1 isMarriedTo p2 .

?p2 wasBornIn ?c2 .

?c2 hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-125, -45, -120, -40)”)

YAGO2.SS3:

Select ?p ?w
Where

?p hasAcademicAdvisor ?a .

?a worksAt ?w .

?w isLocatedIn ?l .

?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-130, -50, -120, -40)”)

YAGO2.SS4:

Select ?p ?w
Where

?p graduatedFrom ?u .

?p worksAt ?w .

?u isLocatedIn ?l .

?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-110, 50, -100, 60)”)

YAGO2.LL1:

Select ?e ?c
Where

?e happenedIn ?l .

?l a ?c .

?c subClassOf Wordnet city 108524735 .

?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-90, 30, -80, 40)”)

YAGO2.LL2:

Select ?p
Where

?p hasArea ?a .

?p isLocatedIn ?l .

?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-100, 30, -90, 40)”)

24

B Spatial Join Queries

LGD.J1:

Select ?s1 ?s2
Where

?s1 type Hotel .

?s1 hasGeometry ?g1 .

?s2 type Hotel .

?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.003”

LGD.J2:

Select ?s1 ?s2
Where

?s1 type Hotel .

?s1 hasGeometry ?g1 .

?s2 type Pub .

?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.01”

LGD.J3:

Select ?s1 ?s2
Where

?s1 name ?n1 .

?s1 label ?l1 .

?s1 type Police .

?s1 hasGeometry ?g1 .

?s2 name ?n2 .

?s2 label ?l2 .

?s2 type Police .

?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.01”

LGD.J4:

Select ?s1 ?s2
Where

?s1 name ?n1 .

?s1 label ?l1 .

?s1 type Pub .

?s1 hasGeometry ?g1 .

?s2 name ?n2 .

?s2 label ?l2 .

?s2 type Police .

?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.02”

LGD.J5:

Select ?s1 ?s2
Where

?s1 type Park .

?s1 hasGeometry ?g1 .

?s2 type Park .

?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.05”

LGD.J6.1:

Select ?s1 ?s2
Where

?s1 name ?n1 .

?s1 label ?l1 .

?s1 type Pub .

?s1 hasGeometry ?g1 .

?s2 name ?n2 .

?s2 label ?l2 .

?s2 type Pub .

?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.0001”

25

LGD.J6.2:

Select ?s1 ?s2
Where

?s1 name ?n1 .

?s1 label ?l1 .

?s1 type Pub .

?s1 hasGeometry ?g1 .

?s2 name ?n2 .

?s2 label ?l2 .

?s2 type Pub .

?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.001”

LGD.J6.3:

Select ?s1 ?s2
Where

?s1 name ?n1 .

?s1 label ?l1 .

?s1 type Pub .

?s1 hasGeometry ?g1 .

?s2 name ?n2 .

?s2 label ?l2 .

?s2 type Pub .

?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.015”

YAGO2.J1:

Select ?c1 ?c2
Where

?a1 hasAirportCode ?c1 .

?a1 hasGeometry ?g1 .

?a2 hasAirportCode ?c2 .

?a2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO2.J2:

Select ?p1 ?p2
Where

?p1 hasGivenName ?gn1 .

?p1 hasFamilyName ?fn1 .

?p1 hasWonPrize ?pr1 .

?p1 wasBornIn ?c1 .

?c1 hasGeometry ?g1 .

?p2 hasGivenName ?gn2 .

?p2 hasFamilyName ?fn2 .

?p2 hasWonPrize ?pr2 .

?p2 wasBornIn ?c2 .

?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO2.J3:

Select ?p ?c1 ?c2
Where

?p hasGivenName ?gn .

?p hasFamilyName ?fn .

?p actedIn ?m .

?m isLocatedIn ?c1 .

?c1 hasGeometry ?g1 .

?p wasBornIn ?c2 .

?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

26

YAGO2.J4:

Select ?p1 ?p2
Where

?p1 hasFamilyName ?fn1 .

?p1 wasBornIn ?c1 .

?c1 hasGeometry ?g1 .

?p1 isMarriedTo ?p2 .

?p2 wasBornIn ?c2 .

?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO2.J5:

Select ?p
Where

?p hasFamilyName ?fn .

?p livesIn ?c1 .

?c1 hasGeometry ?g1 .

?p worksAt ?c2 .

?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO2.J6:

Select ?p1 ?p2
Where

?p1 hasGivenName ?gn1 .

?p1 hasFamilyName ?fn1 .

?p1 a Wordnet scientist 110560637 .

?p1 wasBornIn ?c1 .

?c1 hasGeometry ?g1 .

?p2 hasGivenName ?gn2 .

?p2 hasFamilyName ?fn2 .

?p2 a Wordnet scientist 110560637 .

?p2 diedIn ?c2 .

?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO2.J7:

Select ?p1 ?p2
Where

?p1 graduatedFrom ?u1 .

?u1 hasGeometry ?g1 .

?p2 actedIn ?m2 .

?m2 isLocatedIn ?l2 .

?l2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO2.J8.1:

Select ?p1 ?p2
Where

?p1 worksAt ?w1 .

?w1 hasGeometry ?g1 .

?p2 worksAt ?w2 .

?w2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.001”

YAGO2.J8.2:

Select ?p1 ?p2
Where

?p1 worksAt ?w1 .

?w1 hasGeometry ?g1 .

?p2 worksAt ?w2 .

?w2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.01”

YAGO2.J8.3:

Select ?p1 ?p2
Where

?p1 worksAt ?w1 .

?w1 hasGeometry ?g1 .

?p2 worksAt ?w2 .

?w2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

27

