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Abstract: Recently, the use of portable electroencephalogram (EEG) devices to record brain signals
in both health care monitoring and in other applications, such as fatigue detection in drivers, has
been increased due to its low cost and ease of use. However, the measured EEG signals always
mix with the electrooculogram (EOG), which are results due to eyelid blinking or eye movements.
The eye-blinking/movement is an uncontrollable activity that results in a high-amplitude slow-time
varying component that is mixed in the measured EEG signal. The presence of these artifacts misled
our understanding of the underlying brain state. As the portable EEG devices comprise few EEG
channels or sometimes a single EEG channel, classical artifact removal techniques such as blind source
separation methods cannot be used to remove these artifacts from a single-channel EEG signal. Hence,
there is a demand for the development of new single-channel-based artifact removal techniques.
Singular spectrum analysis (SSA) has been widely used as a single-channel-based eye-blink artifact
removal technique. However, while removing the artifact, the low-frequency components from the
non-artifact region of the EEG signal are also removed by SSA. To preserve these low-frequency
components, in this paper, we have proposed a new methodology by integrating the SSA with
continuous wavelet transform (CWT) and the k-means clustering algorithm that removes the eye-
blink artifact from the single-channel EEG signals without altering the low frequencies of the EEG
signal. The proposed method is evaluated on both synthetic and real EEG signals. The results also
show the superiority of the proposed method over the existing methods.

Keywords: electroencephalogram (EEG); electrooculogram (EOG); singular spectrum analysis (SSA);
continuous wavelet transform (CWT); k-means clustering

1. Introduction

Electroencephalogram (EEG) signals represent the electrical activity of the brain and
are measured by placing electrodes over the scalp. The EEG signals are often used to
understand brain functions such as mental state (or cognitive state) and brain disorders such
as epilepsy and stroke [1–5]. However, the recorded EEG signals are always contaminated
by physiological artifacts, such as electrooculogram (EOG), electromyogram (EMG) and
electrocardiogram (ECG). Unlike other artifacts, the EOG artifact that is a result of the
eye-blink/movement activity and always contaminates the EEG signal. As the eye-blink
is an uncontrollable and involuntary activity and occurs once every 5 s (as in [6]), we
refer to the EOG artifact as an eye-blink artifact in this paper. Therefore, the removal
of these artifacts forms an important stage before analyzing the EEG signals [6]. Hence,
methods such as linear filters have been used for eye-blink artifact removal from EEG
signals. In general, the eye-blink artifact strongly contaminates the low-frequency spectrum
of EEG (0.5–12 Hz) [7]. Therefore, the use of linear filters for the removal of eye-blink
artifacts alters the valuable information from the EEG signal. Later, a regression-based
method was proposed to remove artifacts from multichannel EEG signals [8]. In this
method, the artifact weighting coefficients are computed from the EOG channels, which are
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recorded separately. However, such fixed coefficients may not fully remove the eye-blink
artifacts from the EEG signals.

Blind source separation (BSS) techniques such as independent component analysis
(ICA) and canonical correlation analysis (CCA) techniques have been used to remove arti-
facts from the multichannel EEG signals [9–13]. The ICA technique was extensively used
to remove eye-blink artifacts from EEG signals as compared to the CCA method [12,13].
Several other techniques were also integrated with ICA for efficient removal of eye-blink
artifacts from the multichannel EEG signals [14–17]. The artifact subspace reconstruction
(ASR) method was also proposed to remove the artifact from the EEG signals [18,19].
The performance of this method depends on the user-defined cut-off parameter k. Even
though a detailed study was conducted for selecting the cut-off parameter in [19], inappro-
priate selection of this parameter may result in the loss of EEG information.

Recently, the demand for in-home health monitoring has been increasing due to the
increase in chronic illnesses and population aging [20]. Several studies have employed
portable EEG devices for various applications, including analysis of cognitive state in
stroke survivors, sleep disorders, driver fatigue and event-related potential (ERP)-based
BCI applications [2,21–23]. To reduce the burden and to minimize the stress on the patient,
recently portable EEG devices with a reduced number of EEG channels, including single
EEG channel equipment [24,25], have been developed. Therefore, the existing ICA and ASR
techniques that are popular for multichannel settings cannot be used to remove eye-blink
artifacts from single-channel EEG signals. Therefore, there is a need for new methods that
are customized for processing single-channel EEG signals.

An adaptive filter is one of the possible solutions to process single-channel EEG signals.
The use of adaptive filters to remove eye-blink artifacts from the EEG signals was first
discussed in [26]. However, the adaptive filters require reference signals to remove the
eye-blink artifacts from single-channel EEG data. Therefore, in [27], the adaptive filter is
combined with discrete wavelet transform (DWT) to solve this problem. In this method,
the reference signal (an approximated eye-blink artifact) needed for the adaptive filter is
estimated from the contaminated EEG signal using DWT. After that, the estimated eye-blink
artifact signal is used as a reference signal to the adaptive filter to remove the eye-blink
artifact from the EEG signal. Recently, the Savitzky–Golay (SG) filter was also used to
estimate the reference signal needed for an adaptive filter [28]. Very recently, the Variational
Mode Extraction (VME) and DWT techniques were combined to remove eye-blink artifacts
from single-channel EEG signals [29]. In this method, first, the eye-blink artifact interval
is identified using VME. Next, a DWT algorithm is employed to filter the contaminated
interval of the EEG signal. Although this method does not significantly alter the non-artifact
regions of the EEG signal, the eye-blink artifact component is partially removed from the
contaminated EEG signal. Along with these methods, a data-driven decomposition method,
namely an ensemble empirical mode decomposition with adaptive noise, is also proposed
to remove eye-blink artifacts from a single-channel EEG signal [30]. However, this method
alters the non-artifact regions of the EEG signal.

Singular spectrum analysis (SSA) is a subspace-based technique used to extract the
low-frequency, oscillating and noise components from uni-variate time-series data [31,32].
Recently, the SSA technique has been applied for processing the biomedical signals [33–36].
The application of SSA for eye-blink artifact removal from single-channel EEG signals was
first studied in [37]. However, identifying the desired signal subspace (eigenvectors) is
a critical step in classical SSA. Therefore, new criteria were proposed in [38] to identify
the eigenvectors that are used to reconstruct the desired signal. In [38], the SSA is com-
bined with an adaptive filter to enhance the performance of the adaptive filter over the
method in [27]. Recently, in [39], with new grouping criteria, the adaptive SSA technique is
combined with ANC (SSA+ANC) and the method showed better performance over the
method in [38]. Moreover, SSA is used as a means to apply ICA on single-channel EEG
signals [40,41]. Very recently, SSA has been used as a smoothing filter in [42] to remove the
eye-blink artifact from the EEG signal. In this method, the user has to adjust the thresh-
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old for faithful separation of the eye-blink artifact from the EEG signal. In other words,
the performance of the method is sensitive to the user-defined threshold.

Even though the SSA is able to extract the eye-blink artifact efficiently, it also removes
the EEG low-frequency information (0.5–12 Hz) from the non-artifact regions. Removing
these components may affect the subsequent analysis of the EEG signal. Recently, the effect
of pre-processing methods on EEG results has been studied in [43] and it concludes that
the selection of artifact removal strategy affects the end application results. Therefore, care
should be taken while designing the artifact removal method. Therefore, in this paper, we
proposed a new technique by combining SSA with continuous wavelet transform (CWT)
and k-means algorithms so that it removes the eye-blink artifact from single-channel EEG
signal without altering the non-artifact regions of the EEG signal. The proposed method
exploited the strengths of both SSA and the CWT in removing the artifact. Unlike the
method in [42], where time-domain features are used, the proposed method used frequency-
domain features of the signal to remove the eye-blink artifact. Moreover, a frequency-based
threshold is defined for SSA to identify the artifact subspace, and such threshold will act
as the cut-off frequency as in a low-pass filter. The performance of the proposed method
(which we call SSA-CWT) is evaluated on synthetic and real single-channel EEG signals.
The results show its superiority over existing methods.

The rest of the paper is organized as follows: The performance measures to evaluate the
efficiency of the proposed and existing method are defined in Section 2. The framework of
the proposed method is discussed in Section 3. The simulation results and their discussions
are presented in Section 4 and Section 5, respectively. Section 6 concludes the paper.

2. Performance Metrics

In this section, we have employed several few performance metrics to evaluate the
performance of the proposed method on a synthetic EEG dataset. We define four commonly
used performance measures to evaluate the performance of the methods on synthetic EEG
data: the relative root mean square error (RRMSE), the canonical correlation analysis (CC),
artifact reduction ratio (λ) and mean absolute error (MAE). To evaluate the performance of
the proposed method on real EEG datasets, we first identify the non-artifact and artifact
intervals of the real EEG signal manually. Then RRMSE and CC between the non-artifact
interval of contaminated and corrected EEG signals is computed.

Consider the N sampled contaminated signal x = s + p.a, where s and a are the
true EEG and the EOG artifact signals, respectively and p is an artifact mixing constant.
The following performance metrics are defined as follows:

2.1. Relative Root Measure Square Error (RRMSE)

The RRMSE measure is often used to evaluate the performance of artifact removal
methods on synthetic EEG data. The RRMSE between the two signals a and â can be
defined as

RRMSE =

√√√√√√√√
N
∑

n=1
[a(n)− â(n)]2

N
∑

n=1
a2(n)

× 100(%) (1)

where a and â represent the ground truth eye-blink and the estimated eye-blink artifacts,
respectively. The relationship between the signal-to-noise ratio (SNR) and the artifact
mixing constant p is given by

SNR =
RMS(s)

RMS(pa)

RMS(s) =

√√√√ 1
N

N

∑
n=1

s2(n)
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when the constant p is small, the EOG artifact is small and the SNR of the EEG signal
is high. The low RRMSE value indicates a good estimation of artifacts by the method.
Here, the RRMSE is computed between the true eye-blink and the estimated eye-blink
artifact to understand the efficacy of the proposed method in estimating the artifact from
the contaminated EEG signal.

2.2. Correlation Coefficient (CC)

It is a statistical-based measure, which shows the strong relationship between the two
signals. The CC measure is also used to evaluate the performance of an artifact removal
technique. The CC between the two signals a and â can be defined as

CC =
cov(a, â)

σaaσââ
(2)

where cov(·) represents the covariance between the two signals a and â and σ(·) variance of
the signal itself. The CC value close to one indicates a good estimation of eye-blink artifact
from the contaminated EEG data.

2.3. Artifact Reduction Ratio (λ)

Along with the above-defined two performance measures, we also employed a perfor-
mance metric that quantifies the percentage reduction in artifacts and is defined as

λ =

(
1−

Rclean − Ra f ter

Rclean − Rbe f ore

)
× 100 (3)

where Rclean is set to 1 and the Rbe f ore is the correlation between the true EEG and the
contaminated EEG signals and Ra f ter is the correlation between the true EEG and the
estimated EEG signals. For a good artifact removal method, this value should be high.

2.4. Mean Absolute Error (MAE)

This metric is employed to evaluate the performance of the proposed method in the
frequency domain. It is defined as the sum of the absolute of the difference between the
true EEG signal power spectrum, Ps, and the corrected EEG signal power spectrum Pŝ in a
particular band. The MAE between the spectrums of the true and corrected EEG signals is
defined as

MAE =
∑K

i=1 |Ps(i)− Pŝ(i)|
K

(4)

where K represents the number of frequency bins in a specific band. The MAE value is
expected to be very small for a good artifact removal method.

2.5. Precision and Accuracy

Along with these performance measures, we have also defined two measures associ-
ated to binary classification, precision and accuracy, to detect how precisely and accurately
the proposed method identifies (detected) the artifact and non-artifact intervals of the EEG
signals. The performance measures, precision and accuracy are defined as

Precision =
TP

(TP + FP)
(5)

Accuracy =
TP + TN

(TP + TN + FP + FN)
(6)

where TP, TN, FP and FN are true positive, true negative, false positive and false negative,
respectively. The true positive indicates that the artifact removal method correctly predicted
(detected) the positive class (artifact interval) and true negative indicates that the method
correctly detected the negative class (non-artifact interval). Similarly, false positive and
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false negatives represents that the method incorrectly detected the positive and negative
classes, respectively.

3. Eye-Blink Artifact Removal from Single-Channel EEG Signals

The key components of the proposed method for eye-blink artifact removal is shown
in Figure 1. It is a two-step approach: first, an eye-blink artifact is extracted from the
contaminated single-channel EEG signal using SSA. Next, the extracted eye-blink artifact is
denoised in the non-artifact region using CWT and k−means algorithms.

Grouping
components

Embedding Decomposition

Component
construction
by k-means
information

+Diagonal
averaging CWT

k-means
Clustering

SSA

Figure 1. Block diagram of proposed method for eye-blink artifact removal from single EEG signals.

SSA is a data-driven technique employed to process the single-channel (uni-variate)
time-series data [31,32]. Basically, the SSA technique comprises the following four steps:
embedding, decomposition, grouping and diagonal averaging. Let us consider the contam-
inated EEG signal y, which is a result of the mixing model shown as follows:

y = s + pa (7)

where s and a are the ground truth EEG and the eye-blink artifact signals, respectively,
and p is an artifact mixing constant that changes the signal-to-noise ratio (SNR) of the
measured EEG signal y. When p is small (<1), the artifact contribution is less and results
in a high SNR of the EEG signal y and vice-versa for p > 1. The key steps of SSA are as
follows: in the embedding step of SSA, the given N sampled single-channel EEG signal
y = [y(1), y(2), . . . , y(N)] is mapped into multivariate data matrix Y.

Y =


y(1) y(2) . . . . . . . . . . . . y(K)
y(2) y(3) . . . . . . . . . . . . y(K + 1)

...
... . . . . . . . . . . . .

...
y(M) y(M + 1) . . . . . . . . . . . . y(N)

 (8)

where M represents the window length and K = N −M + 1. The matrix in (8) is called the
Hankel matrix, as its anti-diagonal elements are constant (same). From (7), we can write
Y = S + A (assuming that p = 1), where S and A represent the trajectory matrices of the
ground truth EEG and eye-blink artifact signals, respectively. Note that we have considered
the artifact mixing constant p = 1 for a simple explanation.

In the decomposition step of SSA, the trajectory matrix Y is decomposed into M trajec-
tory matrices, for example, Y1, Y2, . . . , YM. Hence, the singular value decomposition (SVD)
of Y = UDVT will be performed, where D represents the diagonal matrix whose elements
are singular values and U and V are left and right singular matrices, whose columns are the
eigenvectors of covariance matrix C = YYT and C = YTY, respectively. However, direct
decomposition of Y using SVD will increase the computational complexity. Therefore,
the eigen decomposition of the covariance matrix of C = YYT will be performed first.

Let us consider that λ1, λ2, . . . , λM and u1, u2, . . . , uM represent the eigenvalues and
the eigenvectors of the covariance matrix C = YYT . Moreover, we assume that the eigen-
values are sorted in the descending order of their amplitudes, λ1 ≥ λ2 ≥, . . . ,≥ λM ≥ 0.
Then, the jth trajectory matrix Yj can be represented as

Yj =
√

λjujvT
j j = 1, 2, . . . , M (9)
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from the SVD of Y, vj = YTuj/
√

λj. Substituting vj in (9), then the jth trajectory matrix Yj

can be represented as
Yj = ujuT

j Y (10)

The terms ujuT
j in (10) form a subspace to reconstruct the jth component from the

given signal y.
The main goal in the grouping step of SSA is to construct the eye-blink associated

trajectory matrix A from M trajectory matrices Yj, j = 1, 2, . . . , M. Basically, we try to
identify the appropriate eigenvectors by which we can construct an eye-blink artifact-
associated trajectory matrix A. In the classical SSA technique, the eigenvectors that are used
to construct the eye-blink artifact are identified based on the strength of the eigenvalues
(eigen spectrum) of a covariance matrix C [36]. However, in this work, we have identified
these eigenvectors based on the local mobility or Hjorth mobility [44], which is a signal
complexity measure of each eigenvector [38]. Here, the hypothesis is that the local mobility
of the eigenvectors corresponding to the eye-blink artifact is low and is high for eigenvectors
associated with EEG signals. Therefore, the pre-defined threshold has to be set to identify
the eigenvectors associated to the eye-blink artifact. In fact, finding the eigenvectors
associated with the artifact is similar to identifying the artifact signal subspace from
the given signal space. The parameter for identifying the eye-blink artifact subspace
is computed as follows: as the eigenvector holds the variation of the data, first, M sampled
sinusoidal signal of frequency f is generated. Next, the local mobility of the sinusoidal
signal is computed and it will be used as a threshold. As the threshold, which is used to
identify the artifact subspace, is proportional to the frequency, it is denoted with variable
f . The threshold parameter f of SSA will be acting as a cut-off frequency as in the case
of a low-pass filter. After identifying the eigenvectors (basis functions) associated with
an eye-blink artifact, the trajectory matrix corresponding to an eye-blink artifact (Ā) is
computed using (10).

In fact, the computed trajectory matrix Ā that resulted from the grouping step of SSA
will not hold the Hankel structure. In the diagonal averaging step of SSA, the anti-diagonal
elements are replaced with their average, and the uni-variate signal ā will be constructed
using (11), as follows:

ā(n) =



1
n

n
∑

i=1
Ā(i, n− i + 1) for 1 ≥ n < M

1
M

M
∑

i=1
Ā(i, n− i + 1) for M ≥ n ≤ K

1
N−n+1

N−K+1
∑

i=n−K+1
Ā(i, n− i + 1) for K < n ≤ N

(11)

The extracted eye-blink artifacts ā from the SSA method contain low-frequency EEG
components. The direct subtraction of the extracted eye-blink artifact (ā) from the contam-
inated signal y results in a loss of low-frequency components in the reconstructed EEG
signal. Therefore, denoising of these components from ā has to be performed before it is
subtracted from the contaminated EEG signal y.

Denoising the EEG Components from the Extracted Eye-Blink Artifact (ā)

In order to denoise the EEG components in the extracted eye-blink artifact ā, we
proposed a new methodology. In this method, the time-frequency representation of ā,
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which is the output of the SSA block, is performed using CWT, and it results in a matrix Ã
of size L× N and is denoted by

|Ã| =


ã(1, 1) . . . . . . ã(1, j) . . . . . . ã(1, N)
ã(2, 1) . . . . . . ã(2, j) . . . . . . ã(2, N)

...
... . . . . . . . . . . . .

...
ã(L, 1) . . . . . . ã(L, j) . . . . . . ã(L, N)

 = [ã1, . . . , ãj, . . . , ãN ]

where L is the number of frequencies for which CWT is computed. Each column vector ãj
(j = 1, 2, . . . , N) of |Ã| represents the feature vector of jth sample of ā. Next, each column
vector of |Ã| is clustered using k-means clustering algorithm with C number of clusters.
Then, k-means algorithm provides the labels for each feature vector of |Ã|. These labels
inform to which cluster a particular feature vector (indirectly the sample of ā) has fallen.
With this clustering information, we construct C number of signals using (12)

ãi(j) =

{
ā(j) if ãj ∈ Ci, i = 1, 2, . . . , C & j = 1, 2, . . . , N
0 if ãj /∈ Ci

(12)

Here, ãj represents the jth column vector of matrix |Ã|. After decomposing the signal
ā into C number of signals, say ã1, ã2, . . . . . . , ãC using (12), then, the fractal dimension
(FD) [45] of each component is computed to identify the eye-blink artifact associated
component. The estimated eye-blink artifact (â) is identified based on the FD; usually, it
is low for denoised eye-blink artifacts. Finally, the corrected EEG signal (ŝ) is obtained by
subtracting the estimated eye-blink artifact â from y.

4. Results

To evaluate the performance of the proposed and the existing methods, we have con-
structed synthetically contaminated EEG signals from fatigue EEG data [46,47].

4.1. Construction of Synthetically Contaminated EEG Signal and Eye-Blink Artifact

We have considered 10 subjects’ EEG data from the Fatigue EEG database [46,47]. Each
subject performed a driving task on a static simulator. The EEG data were recorded in two
phases normal and fatigue states using a 32-channel electrode cap with a sampling frequency
of 1000 Hz. More details about the EEG data are discussed in [46,47]. In the construction of a
true EEG signal for the simulation study, first, the raw EEG data measured from Fp1 channel
of ten subjects is down sampled to 250 Hz from 1000 Hz. Next, the baseline drift and the
high-frequency components in the EEG data are removed using a band-pass filter with cut-off
frequencies of 1 and 45 Hz. However, for synthetic simulation, a 10 s artifact-free EEG epoch
is segmented from the filtered EEG data. These artifact-free EEG epochs are served as true
EEG signals (s) for a synthetic simulation study. The synthetic eye-blink artifact data were
constructed as follows: first, we identified the eye-blink artifact region manually and segmented
it from the EEG signal. Next, zeros were padded to the segmented eye-blink component on
both sides such that the length of the signal is 10 s. In order to remove the EEG remnants
present on the eye-blink component, MATLAB smooth command was used. This results in
the ground truth eye-blink artifact signal (a). We have constructed five such eye-blink artifacts
from five subjects. Using these five eye-blink artifacts and ten EEG signals, we constructed
a total of 50 synthetically contaminated EEG signals (y). However, we assumed that the
contaminated EEG signal is additive mixing of both the true EEG signal and the eye-blink
artifact, i.e., y = s + pa. Here, the artifact mixing constant p changes the SNR of the EEG
signal. When the artifact mixing constant is p > 1, the eye-blink artifact contribution in the
contaminated EEG signal is high, and as a result, the SNR of the EEG signal is low. When p < 1,
the eye-blink artifact contribution in the contaminated EEG signal is low, and as a result, the
SNR of the EEG signal is high. Figure 2 shows the synthetically constructed ground truth EEG,
the eye-blink artifact and the contaminated EEG signals for p = 0.5.
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(a) (b) (c)

Figure 2. (a,b) Synthetically constructed ground truth EEG signal (s) and the EOG artifact (a), respec-
tively, and (c) the contaminated EEG signal x = s + pa for the artifact mixing constant p = 0.5.

4.2. Parameter Settings for Proposed and Existing Methods

The faithful reconstruction of eye-blink artifact components from the contaminated
EEG signal depends on the SSA window length and the parameter f that identifies the
artifact subspace. Therefore, we have performed simulations to select these parameters.
Figure 3 shows the effect of the parameter f and the window length M in extracting the eye-
blink artifact. We have identified the region of the eye-blink component (the artifact region
only) from the fifty extracted eye-blink artifact signals by SSA and computed the mean
eye-blink artifact component. Figure 3a–c shows the mean eye-blink artifact component
(the artifact region) of ā obtained by the SSA method for window lengths M = 22, 32 and
64 and the parameter f = 4, 6, 8, 10 and 12 Hz. We have noticed from Figure 3a–c that the
performance of SSA with f = 4 Hz is low for different window lengths M = 22, 32 and
64. However, the performance of SSA with M = 32 and 64 is stable for f = 6, 8, 10 and
12 Hz, as evident from Figure 3d. The RRMSE curves were plotted with respect to the mean
ground truth eye-blink artifact a. Based on the results in Figure 3d, the parameters of the
SSA method, f and the window length M are set to 8 Hz and 64, respectively, to obtain
better performance. For the proposed denoising methodology, Morlet wavelet transform
has been used to represent the eye-blink artifact obtained by SSA into its time–frequency
feature matrix, which is then given as input to the k-means clustering algorithm. In order to
map the eye-blink artifact component into its time–frequency representation, we compute
the wavelet coefficients in the range of 1 to 12 Hz with an increment of 0.25 Hz. This
results in a feature matrix of size 45× 2500. Such representation maps each sample of the
eye-blink artifact estimated by SSA into a high-dimensional feature vector of size 45× 1. It
was clear from Figure 1 that the number of components (ã1, ã2, . . . , ãC) constructed using
k-means information also increased when the number of clusters (C) increases. As the
eye-blink artifact is a strong component, setting the number of clusters to 2 displayed
better performance on short EEG epochs. Hence, we set the number of clusters to 2
for the proposed method. Based on the recommendations in [42], the parameters of the
k-means+SSA method, the window length and thresholds Th and TSSA are set to 125, 1.4
and 0.01, respectively. In the case of SSA+ANC, we identified better performance with
window length 40. Whereas in the case of the VME-DWT method, the α parameter is set to
1000 and the other parameters are fixed as in [29].
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(a) (b)

(c) (d)

Figure 3. The estimated eye-blink artifacts ā (the artifact region only) by SSA with different thresholds
and the window lengths (a) M = 22, (b) M = 32, and (c) M = 64. (d) Performance of SSA in terms of
RRMSE for varying window length M and thresholds ( f = 4, 6, 8, 10 and 12 Hz). The RRMSEs were
calculated with respect to the ground truth eye-blink signal, a.

4.3. Results with Synthetic EEG Signals

The time–frequency representation of the extracted eye-blink artifact ā, in Figure 4a ob-
tained by SSA, is shown in Figure 4b. As the eye-blink component is a strong component in
ā, also evident from Figure 4a, the feature vectors of the time–frequency matrix (Figure 4b)
between 2.5 and 3.5 s are significantly different. It is clear from the clustering information,
shown in Figure 4c that all of the feature vectors (the columns of time-frequency map)
corresponding to the eye-blink artifact region belong to cluster 2. The features vectors that
correspond to the non-artifact region belong to cluster 1. By computing (12), we have ob-
tained two signals ã1 and ã2, (as C = 2). We have computed the FD of these two components
to identify the eye-blink artifact. As the eye-blink artifact is a low-frequency component, we
expect its corresponding FD to be a low value. Finally, the denoised eye-blink component
is identified based on their FD value. The estimated eye-blink artifact and the corrected
EEG signals using the proposed and the existing methods are shown in Figure 5. Even
though the SSA and SSA+ANC methods extracted the eye-blink artifact very well, they
also extracted the low-frequency EEG information from the non-artifact regions, as shown
in Figure 5a. Although VME-DWT does not alter the non-artifact regions, it removed the
eye-blink artifact partially (see circled region), whereas the k-means+SSA method removes
valuable EEG information (see the circled region in the fourth row). In contrast, it is also
clear from Figure 5b that there is no loss of EEG information with the proposed method.
The RRMSE, the CC, the artifact reduction ratio (λ) and MAE values shown in Figure 5
also reveal the superiority of the proposed method over the existing methods. We also
computed the power spectrums of the true EEG, the contaminated EEG and the corrected
EEG signals to observe any spectral changes in the EEG signal after the artifact removal.
Figure 5c–g shows the superposition plots of the true EEG, contaminated EEG and the
corrected EEG signals using all methods. It can be observed from the power spectrum
plots of the true and corrected EEG signals that the proposed method almost preserves the
low-frequency information of the EEG signal as compared with the existing methods.
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(a)

(b)

(c)

Figure 4. (a) The extracted eye-blink artifact (ā) by SSA, (b) its time–frequency representation using
CWT (normalized plot) and (c) clustering information.

We have applied the proposed method to remove the eye-blink artifacts from 50 syn-
thetically contaminated EEG signals. Figure 6 shows the RRMSE, the CC, the artifact
reduction ratio (λ) and the MAE plots obtained by the application of the existing and the
proposed techniques over 50 EEG records for different artifact mixing constants (p). As
discussed earlier, the artifact mixing constant p alters the SNR of the EEG signal. When
p > 1, the SNR of the EEG signal is low, whereas the SNR of the EEG signal is high for
p < 1. Removing the eye-blink artifact is a challenging task when its contribution in the
contaminated EEG signal is low (i.e., p < 1). The relation between p and SNR of the
EEG signal is inversely proportional. The RRMSE and the CC values are computed with
respect to the ground truth eye-blink artifacts. Whereas, the artifact reduction ratio (λ) and
MAE values are computed with respect to the ground-truth EEG signals. It is clear from
Figure 6a–d that in all conditions, the mean RRMSE, the CC, artifact reduction ratio and
MAE values of the proposed method show better performance over SSA, SSA+ANC and
VME-DWT methods. Although the VME-DWT showed comparative performance with the
proposed method (see MAE plot) for p < 1, its performance is poor for p ≥ 1. Furthermore,
the performance of the proposed method is better as compared to k-means+SSA for p < 1
condition. Although the performance of the k-means+SSA method is comparable with the
proposed method for p ≥ 1, its performance is not stable due to the threshold parameters
Th and TSSA.
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(a) (b)

(c) (d) (e)

(g)(f)

Figure 5. (a) The estimated eye-blink artifact (â), (b) the corrected EEG signals (ŝ) using all methods,
for the artifact mixing constant p = 0.5. (c–g) the power spectrums of the true EEG (s), the contami-
nated EEG (y), and the corrected EEG signals of all methods.
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(a) (b)

(c) (d)

Figure 6. Performance of the existing and the proposed methods in terms of (a) RRMSE, (b) CC,
(c) artifact removal ratio (λ) and (d) MAE (in log scale) with respect to the artifact mixing constant p.
(The artifact mixing constant p is ∝ 1/SNR) of the signal.

4.4. Results with Real EEG Signals

To evaluate the performance of the proposed method on the real EEG signals from the
Fatigue EEG dataset (Fatigue EEG DB), we have segmented 50 EEG epochs of length 10 s
from ten subjects’ lengthy EEG records [46,47]. Note that the data are re-sampled to 250
from 1000 Hz. Similarly, from the EEG Motor Movement/Imagery Database (EEG-MMI
DB), an EEG epoch of 10 s from the lengthy EEG signal (eyes open task) obtained from
65 subjects is segmented [48,49]. The sampling frequency of this dataset is 160 Hz. For both
datasets, the segmentation of the EEG epoch is performed such that at least one eye-blink
artifact component is present in the segmented EEG epoch. From these two datasets, we
have constructed in total 105 EEG epochs of length 10 s and evaluated the performance of
the proposed and existing methods. In fact, for real EEG signals there will be no ground-
truth EEG to evaluate the performance. Hence, we manually indicated the non-artifact and
artifact intervals of each record and computed RRMSE and CC values.

The estimated eye-blink artifact and the corrected EEG signals (Fatigue EEG data) with
all the methods are shown in Figure 7a,b. From Figure 7a, we can see that the low-frequency
components are still present in eye-blink artifacts obtained by the SSA and SSA+ANC
methods (see the non-artifact region between 1–4 s). As a result, low-frequency EEG
information is removed from the corrected EEG signal obtained by the SSA and SSA+ANC,
as shown in Figure 7b, whereas the VME-DWT method partially removed the eye-blink
artifact and altered the non-artifact region in the time interval 2–3 s. The k-means+SSA



Sensors 2022, 22, 931 13 of 17

method also altered the non-artifact region of the EEG signals in time interval 1–4 s (as
indicated by circles in Figure 7b). The corrected EEG signal obtained by the k-means+SSA
method and the contaminated EEG signals do not match in the non-artifact region (see 1–4 s
in Figure 7b time interval). However, the corrected EEG signal obtained by the proposed
method perfectly matches with the non-artifact region of the contaminated EEG signal,
as shown in Figure 7b. The RRMSE and CC values shows the superiority of the proposed
method over the existing methods.

(a) (b)

Figure 7. (a) The estimated eye-blink artifact (â) and (b) the corrected EEG signals (ŝ) from the
contaminated EEG signal (y) using the existing and the proposed methods.

As we do not have ground truth EEG signals for real EEG datasets, it is difficult to
assess the performance of the proposed and existing methods in the frequency domain
(power spectrum). However, the manually identified non-artifact and artifact regions of the
EEG epoch are used to evaluate the performance of all methods in-terms of RRMSE and
CC values. Table 1 shows the RRMSE and CC (mean ± standard deviation) values of the
proposed method. Moreover, two binary classifier performance measures, such as precision
and accuracy are also computed to evaluate the performance. Table 2 shows the mean
precision and accuracy values of VME-DWT, k-means+SSA and proposed methods. It is
also evident from Tables 1 and 2 that the proposed method shows superior performance
over the existing methods.



Sensors 2022, 22, 931 14 of 17

Table 1. RRMSE and CC (µ± σ) comparison between the non-artifact interval of contaminated and
corrected EEG signals.

Measures and
Methods

Fatigue EEG DB EEG-MMI DB

RRMSE CC RRMSE CC

SSA 63.6077 ± 11.6133 0.7576 ± 0.1068 71.4361 ± 11.9799 0.6831 ± 0.1106

SSA+ANC 61.4721 ± 9.3272 0.7815 ± 0.0764 61.5249 ± 11.2345 0.7775 ± 0.0862

VME-DWT 6.7885 ± 13.3722 0.9885 ± 0.0283 5.9036 ± 10.9759 0.9922 ± 0.0164

k-means+SSA 16.3888 ± 16.4607 0.9713 ± 0.0598 16.0701 ± 13.7886 0.9770 ± 0.0361

Proposed 4.9198 ± 7.4213 0.9960 ± 0.0139 2.9976 ± 7.3030 0.9969 ± 0.0104

Table 2. Comparison of precision and accuracy (µ± σ) of the proposed method with existing methods
for eye-blink detection on two real EEG datasets.

Measures and
Methods

Fatigue EEG DB EEG-MMI DB

Precision (%) Accuracy (%) Precision (%) Accuracy (%)

VME-DWT 80.0445 ± 14.9771 93.8336 ± 5.0842 72.0040 ± 14.1527 92.8067 ± 4.9993

k-means-DWT 55.5252 ± 12.4375 82.7320 ± 8.7630 57.5738 ± 11.3917 86.8750 ± 7.8568

Proposed 96.1604 ± 4.3639 94.2760 ± 6.3941 98.8142 ± 3.4201 95.4538 ± 2.6401

5. Discussion

Even though the SSA and SSA+ANC methods extract the eye-blink artifact component
efficiently, they also alter the low-frequency component of the EEG signal in the non-artifact
region (from Figures 5a and 7a). However, subtracting the estimated eye-blink artifact
directly from the contaminated EEG signal will also remove the low-frequency components
(0.5–12 Hz) of the EEG signal. This can be a cause of concern in applications such as
driver fatigue detection, where the spectral energy of low-frequency EEG components
is used to detect the fatigue level [50]. The use of low-frequency EEG components to
detect hand movements of subjects with spinal cord injury has been studied in [51,52].
In a recent study, it is found that the low-frequency EEG oscillations could be used as a
biomarker of stroke injury and recovery [53]. Moreover, eye-blink component features
(the frequency, amplitude and phase) are also used in applications such as control of
hand exoskeleton for the paralyzed hand [54–56]. Therefore, in order to preserve these
important low-frequency components at the pre-processing step, we combined SSA with
CWT and k-means algorithms. The results show that the proposed method preserves
these components while removing the eye-blink artifact. As the eye-blink artifact is a
high amplitude component in the EEG signal (particularly in pre-frontal EEG channels),
the proposed method has exploited this inherent feature to remove the eye-blink artifact
without altering the original EEG components. Although the VME-DWT method does not
alter the non-artifact intervals of EEG, it failed to remove the eye-blink artifact completely.
Even though the k-means+SSA method displayed comparable performance as compared
to the proposed method for a few EEG records, for cases where the eye-blink artifact is
stronger, the proposed method fared well in overall performance. In this present study, we
have only considered pre-frontal EEG channel signals. However, it can be expected from
the results that the performance of the proposed method will be degraded further when
the amplitude of the eye-blink artifact that is mixed in the EEG signal is low and this will
be our topic of future research. For example, the eye-blink artifact contribution is low on
fronto-central EEG channels FCx.

6. Conclusions

In this paper, we combined SSA with CWT and the k-means algorithms to preserve the
low-frequency EEG information in the artifact removal process. As the eye-blink artifact
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appears as a slow-time varying and strong component in the contaminated EEG signal,
the proposed method exploited this feature to remove eye-blink artifacts from a single-
channel EEG signal. The proposed method is evaluated on one synthetic and two real
EEG datasets, and results show superior performance over existing techniques. Results
also show the advantage of integrating SSA with CWT and k-means for eye-blink artifact
removal from single-channel EEG signal. Since the present study considered the artifact
removal from pre-frontal channel EEG signals, with the integration of available artifact
detection algorithms, the proposed method could be employed for online applications
where the pre-frontal EEG channel is used. Results show that the proposed method was
successful in removing the eye blink artifact without the loss of original EEG informa-
tion. Although the classification problem using the proposed method was not studied
in the paper, we foresee that the proposed method will offer good performance in the
final application.
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