
 10.1101/gr.194201Access the most recent version at doi:
 2001 11: 1725-1729 Genome Res.

Zemin Ning, Anthony J. Cox and James C. Mullikin

 SSAHA: A Fast Search Method for Large DNA Databases

 References

 http://www.genome.org/cgi/content/full/11/10/1725#otherarticles
Article cited in:

 http://www.genome.org/cgi/content/full/11/10/1725#References
This article cites 12 articles, 6 of which can be accessed free at:

 service
Email alerting

 click heretop right corner of the article or
Receive free email alerts when new articles cite this article - sign up in the box at the

 Notes

 http://www.genome.org/subscriptions/
 go to: Genome ResearchTo subscribe to

© 2001 Cold Spring Harbor Laboratory Press

 on August 27, 2006 www.genome.orgDownloaded from

http://www.genome.org/cgi/doi/10.1101/gr.194201
http://www.genome.org/cgi/content/full/11/10/1725#References
http://www.genome.org/cgi/content/full/11/10/1725#otherarticles
http://www.genome.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;11/10/1725&return_type=article&return_url=http%3A%2F%2Fwww.genome.org%2Fcgi%2Freprint%2F11%2F10%2F1725.pdf
http://www.genome.org/subscriptions/
http://www.genome.org

SSAHA: A Fast Search Method for Large
DNA Databases
Zemin Ning,1 Anthony J. Cox,1 and James C. Mullikin2

Informatics Division, The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK

We describe an algorithm, SSAHA(Sequence Search and Alignment by Hashing Algorithm), for performing fast
searches on databases containing multiple gigabases of DNA. Sequences in the database are preprocessed by
breaking them into consecutive k-tuples of k contiguous bases and then using a hash table to store the position
of each occurrence of each k-tuple. Searching for a query sequence in the database is done by obtaining from
the hash table the “hits” for each k-tuple in the query sequence and then performing a sort on the results. We
discuss the effect of the tuple length k on the search speed, memory usage, and sensitivity of the algorithm and
present the results of computational experiments which show that SSAHA can be three to four orders of
magnitude faster than BLAST or FASTA, while requiring less memory than suffix tree methods. The SSAHA
algorithm is used for high-throughput single nucleotide polymorphism (SNP) detection and very large scale
sequence assembly. Also, it provides Web-based sequence search facilities for Ensembl projects.

There is an extensive literature on the topic of DNA and pro-
tein sequence search and alignment, but as the quantity of
available sequence information continues to multiply the
problem remains very much relevant today. The pre-eminent
class of methods for aligning two sequences are those based
on dynamic programming, a technique first brought to bear
on the problem by Needleman and Wunsch (1970) and sub-
ject to many later refinements, most notably by Smith and
Waterman (1981).

The need for greater speed, especially when searching for
matches within a large database of subject sequences, has led
to the development of other software tools such as FASTA
(Lipman and Pearson 1985; Pearson and Lipman 1988),
BLAST (Altschul et al. 1990, 1997) and Cross_match (P.
Green, unpubl.; see http://www.phrap.com). In each case a
preliminary word-based search stage identifies likely candi-
date matches, which are then extended to full alignments.

In recent years, suffix tree algorithms have been gaining
favor as methods for sequence search; an extensive treatment
of the subject is given by Gusfield (1997). Delcher and co-
workers (1999) describe a suffix-tree-based tool that is capable
of aligning genome length sequences and also locating SNPs,
large inserts, significant repeats, tandem repeats, and rever-
sals. Suffix tree methods are attractive because of their poten-
tially fast search speed, but they can devour a large amount of
memory: Delcher et al. quote an upper bound of 37 bytes per
base of the subject sequence for their suffix tree implementa-
tion. For a sequence comparable in size to the human genome
(around three gigabases), one would require a machine with
an exceptionally large amount of memory (at least by current
standards) to fit the associated suffix tree entirely into RAM.

In this paper we describe a DNA sequence search algo-
rithm that is based on organizing the DNA database into a
hash table data structure. Other hash table based search meth-
ods have been described by Waterman (1995, Chapter 8) and
by Miller et al. (1999), while Benson (1999) has developed a

tool that uses hashing to detect tandem repeats in sequences.
Our algorithm, which we have called SSAHA(Sequence Search
and Alignment by Hashing Algorithm), exploits the fact that
machines are now available with sufficient RAM to allow us to
store a hash table that can describe a database containing
multiple gigabases of DNA. This enables us to perform very
rapid searches on databases the size of the human genome
and larger.

We analyze the performance of the SSAHAalgorithm
with respect to search speed, memory usage, and sensitivity,
and give the results of computational experiments that show
that our algorithm can be three to four orders of magnitude
faster than BLAST and FASTA.

METHODS

Definitions and Notation
We consider the problem of searching for exact or partial
occurrences of a query sequence Q within a database of subject
sequences D = {S1, S2, . . . ,Sd}. Each sequence in D is labeled
with an integer i, to which we refer as its index. We use the
term k-tuple to denote a contiguous sequence of DNA bases
that is k bases long. A sequence S of DNA that is n bases long
will contain (n�k+1) overlapping k-tuples. The offset of a k-
tuple within S is the position of its first base with respect to
the first base of S. We use the letter j to denote offsets and use
the notation wj(S) to denote the k-tuple of S that has offset j.
Thus, it is clear that the position within D of each occurrence
of each k-tuple may be described by an (i, j) pair. Each of the
four possible nucleotides are encoded as two binary digits as
follows:

f�A� = 002,
f�C� = 012, (1)
f�G� = 102,
f�T� = 112.

Using this encoding, any k-tuple w = b1b2 . . . bk may be rep-
resented uniquely by a 2k bit integer

E�w� = �
i=1

k

4i−1f�bi� i = 1,2,…,k. (2)

1Both authors contributed equally to this paper.
2Corresponding author.
E-MAIL jcm@sanger.ac.uk; FAX 44-1223-494-919.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.194201.

Methods

11:1725–1729 ©2001 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/01 $5.00; www.genome.org Genome Research 1725
www.genome.org

 on August 27, 2006 www.genome.orgDownloaded from

http://www.genome.org

Constructing the Hash Table
The first stage of our algorithm is to convert D into a hash
table. The hash table is stored in memory as two data struc-
tures, a list of positions L and an array A of pointers into L.
There are 4k pointers in A, one for each of the 4k possible
k-tuples. The pointer at position E(w) of A points to the entry
of L that describes the position of the first occurrence of the
k-tuple w in the subject database D. We can obtain the posi-
tions of all occurrences of w in D by traversing L from that
point until we reach the location pointed to by the pointer
that is at position E(w)+1 of A.

The hash table is constructed by making two passes
through the subject data. On each pass, we consider only
non-overlapping k-tuples in the subject sequences; that is, for
the subject sequence Si we consider the k-tuples w0(Si), wk(Si),
w2k(Si), and so on. On the first pass we count all non-
overlapping occurrences in D of each of the 4k possible k-
tuples. From this, we can calculate the pointer positions for A
and allocate the correct amount of memory for L. At this
point, we may decide to ignore all words that have a fre-
quency of occurrence that exceeds a cutoff threshold N; as
well as reducing the size of the hash table, this acts as an
effective filter for spurious matches attributable to repetitive
DNA (see below). Excluding these words from the hash table
is a suitable approach when the hash table is created for a
one-off search. However, for many applications (such as the
Ensembl SSAHAserver) it is more flexible to retain all occur-
rences of all words and implement the cutoff threshold N in
software. It is simple to do this by returning only the hits for
words for which the difference between E(w) and E(w)+1 does
not exceed N. Finally, once we have constructed A, we make
a second pass through the data, using A to place the position
information into L at the correct positions.

The two-bits-per-base representation we are using is com-
pact and efficient to process, but has the disadvantage that
there is no way to encode any characters apart from the four
valid bases. Therefore, during the process of creating a hash
table from a data source (such as an ASCII file in FASTA for-
mat), we are faced with choosing between ignoring any un-
recognized characters completely and translating them to one
of the four valid bases. The latter option has the advantage
that the positions of matches found correspond exactly to
positions in the original sequence data. We choose to treat
unrecognized characters as if they were “A”s, which has the
further advantage that any long stretches of unrecognized
characters will be translated to the k-tuple containing all As.
Often, this is already the commonest word in the database

and so will be excluded from matching by the cutoff thresh-
old N.

We illustrate the method with a simple example. Sup-
pose k = 2 and our database D contains just the following
three sequences:
S1 = GTGACGTCACTCTGAGGATCCCCTGGGTGTGG,
S2 = GTCAACTGCAACATGAGGAACATCGACAGGCCCAAGGTCTTCCT,
S3 = GGATCCCCTGTCCTCTCTGTCACATA.

The rows of Table 1 contain the lists of positions for each
of the 16 possible 2-tuples. Taken together, moving from left
to right and then from top to bottom in the table, the con-
catenation of these lists forms L.

Sequence Search
Now we describe how to use the hash table to search for oc-
currences of a query sequence Q within the subject database.
We proceed base-by-base along Q from base 0 to base n�k, in
which n is the length of Q.

At base t, we obtain the list of r positions of the occur-
rences of the k-tuple wt(Q). These are pointed to by entry
E(wt(Q)) of A. We take this list of positions

�i1, j1�, �i2, j2�, . . . , �ir, jr�

and from this we compute a list of hits

H1 = �i1, j1, − t, j1�, H2 = �i2, j2 − t, j2�, . . . , Hr = �ir, jr − t, jr�

which are added to a master list M of hits that we accumulate
as t runs from 0 to n�k. From leftmost to rightmost, the ele-
ments of a hit are referred to as the index, shift, and offset.

Once M has been completed it is sorted, first by index
and then by shift. The final part of the search process is scan-
ning through M looking for “runs” of hits for which the index
and shift are identical. Each such hit represents a run of k
bases that are consistent with a particular alignment between
the query sequence and a particular subject sequence. We can
make some allowance for insertions/deletions by permitting
the shift between consecutive hits in a run to differ by a small
number of bases. If we sort the run of hits by offset, we can
determine regions of exact match between the two sequences
and we can create gapped matches from these by joining to-
gether exact matching regions that are sufficiently close to
one another.

As an example, we search for the query sequence
Q = TGCAACAT within the sequences that we used to form
Table 1. In Table 2, Column 3 shows the positions of occur-
rence in D for each 2-tuple in Q; the corresponding hits are

Table 1. A 2-tuple Hash Table for S1, S2, and S3

w E(w) Positions

AA 0 (2, 19)
AC 1 (1, 9) (2, 5) (2, 11)
AG 2 (1, 15) (2, 35)
AT 3 (2, 13) (3, 3)
CA 4 (2, 3) (2, 9) (2, 21) (2, 27) (2, 33) (3, 21) (3, 23)
CC 5 (1, 21) (2, 31) (3, 5) (3, 7)
CG 6 (1, 5)
CT 7 (1, 23) (2, 39) (2, 43) (3, 13) (3, 15) (3, 17)
GA 8 (1, 3) (1, 17) (2, 15) (2, 25)
GC 9
GG 10 (1, 25) (1, 31) (2, 17) (2, 29) (3, 1)
GT 11 (1, 1) (1, 27) (1, 29) (2, 1) (2, 37) (3, 19)
TA 12 (3, 25)
TC 13 (1, 7) (1, 11) (1, 19) (2, 23) (2, 41) (3, 11)
TG 14 (1, 13) (2, 7) (3, 9)
TT 15

Ning et al.

1726 Genome Research
www.genome.org

 on August 27, 2006 www.genome.orgDownloaded from

http://www.genome.org

shown in Column 4. After sorting, we obtain the list M shown
on the right. The run of four hits highlighted in bold shows
that there is a match between Q and S2, starting at the seventh
base of S2 and continuing for eight bases.

Finally, we note that the method described here will find
matches only in the forward direction. To find matches in the
reverse direction, we simply take the reverse complement of Q
and repeat the procedure.

RESULTS AND DISCUSSION
We have produced a software implementation of the SSAHA
algorithm; all the computational results described in this sec-
tion were obtained by running this software on a 500 MHz
Compaq EV6 processor with 16 Gb of RAM. As subject data we
used the GoldenPath final draft assembly of the July 17, 2000
freeze of the human genome data (International Human Ge-
nome Sequencing Consortium 2001; data downloadable from
http://www.genome.ucsc.edu), comprising ∼ 2.7 gigabases of
DNA split into 292,016 sequences. For query sequences, we
used a set of 177 sequences containing 104,755 bases in total.

Storage Requirements
Storage of the hash table requires 4k+1+8W bytes of RAM in
all, in which the first and second terms account for the
memory requirements of A and L, respectively, and W is the
number of k-tuples in the database. Conceptually, the ele-
ments of A are pointers, but our implementation uses 32-bit
unsigned integers for this purpose because, for a 64-bit archi-
tecture such as the one we are using, this halves the size of A
while retaining the ability to handle a subject database of up
to k232 bases in size, more than enough for our present pur-
poses. W will at most be equal to the total number of bases in
the subject database divided by k. We can cause W to be
considerably less than this if we choose not to store words
whose frequency of occurrence exceeds the cutoff threshold
N. Figure 1 shows the percentage of k-tuples retained when a

hash table is created from our test database using different
values of k and N. However, we note that retaining all occur-
rences of all k-tuples gives us the potential to query the same
data multiple times, using different values of N to adjust the
sensitivity.

Clearly, we also require storage for the query sequences,
although this can be kept to a minimum by loading in query
sequences from disk in batches and using 2-bits-per-base en-
coding. In practice, we have found housekeeping functions,
temporary storage, and the like add ∼ 10%–20% to the total
RAM usage.

Search Speed
The CPU time required for a search may be divided into two
portions, the time Thash required to generate the hash table
and the time Tsearch required for the search itself. Table 3
shows Thash and Tsearch for the data described at the beginning
of this section, in which k varies from 10 to 15 and the cutoff
threshold N is set so that either 90, 95, or 100% of the k-tuples
are retained. Tsearch is the time taken to search for all occur-
rences of each of the 177 query sequences in both the forward
and reverse directions.

The first thing to note is that the value of Thash actually
is not that important, because for a given set of subject data
the hash table needs to be generated only once. After creation,
it can be saved to disk for future use or just retained in RAM
for server applications. Having said this, even in the worst

Table 3. SSAHA Searches for Different Values of k

k

90% 95% 100%

Thash Tsearch Thash Tsearch Thash Tsearch

10 824.0s 102.5s 842.4s 128.8s 868.5s 389.5s
11 798.3s 26.3s 810.5s 36.1s 808.8s 199.1s
12 952.2s 7.3s 969.9s 11.0s 961.2s 119.0s
13 850.8s 2.2s 859.1s 4.5s 851.4s 78.7s
14 914.1s 0.9s 932.0s 2.5s 927.1s 51.6s
15 996.0s 0.1s 1015.5s 1.7s 999.2s 35.4s

Table 2. List of Matches for the Query Sequence

t wt(Q) Positions H M

0 TG (1, 13) (1, 13, 13) (1, 5, 9)
(2, 7) (2, 7, 7) (1, 13, 13)
(3, 9) (3, 9, 9) (2, �2, 3)

1 GC (2, 1, 3)
2 CA (2, 3) (2, 1, 3) (2, 1, 5)

(2, 9) (2, 7, 9) (2, 4, 9)
(2, 21) (2, 19, 21) (2, 7, 7)
(2, 27) (2, 25, 27) (2, 7, 9)
(2, 33) (2, 31, 33) (2, 7, 11)
(3, 21) (3, 19, 21) (2, 7, 13)
(3, 23) (3, 21, 23) (2, 16, 19)

3 AA (2, 19) (2, 16, 19) (2, 16, 21)
4 AC (1, 9) (1, 5, 9) (2, 19, 21)

(2, 5) (2, 1, 5) (2, 22, 27)
(2, 11) (2, 7, 11) (2, 25, 27)

5 CA (2, 3) (2, �2, 3) (2, 28, 33)
(2, 9) (2, 4, 9) (2, 31, 33)
(2, 21) (2, 16, 21) (3, �3, 3)
(2, 27) (2, 22, 27) (3, 9, 9)
(2, 33) (2, 28, 33) (3, 16, 21)
(3, 21) (3, 16, 21) (3, 18, 23)
(3, 23) (3, 18, 23) (3, 19, 21)

6 AT (2, 13) (2, 7, 13) (3, 21, 23)
(3, 3) (3, �3, 3)

Figure 1 Percentage of data remaining as the cutoff threshold N is
varied, for different values of the word size k.

SSAHA: Fast DNA Search Method

Genome Research 1727
www.genome.org

 on August 27, 2006 www.genome.orgDownloaded from

http://www.genome.org

case Thash is never more than twice the time required to for-
mat the same data for BLAST searches.

For the search itself, the CPU time is dominated by the
sorting of the list of matches M. If we make the simplistic
assumption that each of the four possible nucleotides has an
equal probability of occurrence at each base of D, then the
expected number of occurrences of each k-tuple is given by
W/4k (for m = 3 Gb and k = 12, this evaluates to just under
15). Hence, for a query sequence of length n we would expect
M to contain nW/4k entries. A comparison sort algorithm
such as Quicksort can, on average, sort a list of this length in
O((nW/4k)log(nW/4k)) time. We refer the reader to Knuth’s
(1998) definitive treatise on sorting algorithms. Thus, for a
given hash table (that is, for given values of W and k), we
might expect Tsearch to be O(nlog(n)) with respect to the query
length n. We tested this by extracting from the subject data-
base a contig of around 40 kb, then truncating this contig to
various lengths and measuring the time taken to run the re-
sulting sequences as queries. Using Quicksort , the variation
in search speed was found to be closer to linear than to
O(nlog(n)). We speculate that this pleasing behavior is because
the algorithm is such that the hits happen to come out of the
hash table in an order that ensures Quicksort ’s worst-case
behavior is unlikely to occur. Algorithms such as radix sort
(Knuth 1998, Sec. 5.2.5) perform a guaranteed linear time sort
on a collection of integers having a finite number of digits
(basically by carrying out one pass per digit). We experi-
mented briefly with such methods, but did not find that they
conferred a significant improvement in the search speed.

Now we consider how we might optimize the speed of
the algorithm by varying k and W. Note that W must be
altered indirectly by varying the cutoff threshold N. When
generating the hash table, it is convenient to compute a series
of values for N that cause different percentages of the k-tuples
to be retained. From our formula for the expected size of M,
we might expect Tsearch to be roughly proportional to W and
to drop off rapidly with increasing k. The latter effect is ob-
served readily in Table 3, but we also see that decreasing W
has a far greater effect on the search speed than might be
expected from the simple analysis we gave above; at k = 15 a
10% reduction in W causes the search speed to increase by a
factor of >100! This is because the human genome is, of
course, far from random; in particular, it contains large
stretches of repetitive DNA. In our test data set, some k-tuples
occur hundreds of thousands of times more frequently than
others and so excluding highly repetitive k-tuples has a dis-
proportionate effect on the size of M and hence on Tsearch. In
the first instance, typically we would search a database of
human DNA using a value of N that caused 10% of the k-
tuples to be ignored in the search process. Empirically, we
have found this level of rejection improves the search speed
greatly without noticeable detriment to the sensitivity. How-
ever, the search time is sufficiently small that it is not too
inconvenient to re-run the search with a larger value of N if
we wish to verify that our chosen level of rejection has not
caused us to miss anything.

Table 3 shows that, for the parameters we tried, optimum
search speed was achieved when k was set to 14 or 15 and N
was set to retain 90–95% of the k-tuples; the query was pro-
cessed in around 2 sec, or less. By way of comparison, BLAST
took >10000 CPU sec on the same machine to carry out the
same search and FASTA3 took >8700 CPU sec. For a fairer
comparison, BLAST was run with the “-b 0” option enabled,
which suppresses the output of full alignments. Similarly,

FASTA3 was run with the “-H” option enabled, suppressing
the output of histograms. For BLAST and MegaBLAST, pre-
computed formatted databases were used. We also tried
MegaBLAST(Zhang et al. 2000), which took between 600 and
900 sec, depending on the level of output data specified on
the command line.

SSAHAis fast for large databases because the database is
hashed; thus, search time is independent of the database size
as long as k is selected to keep W/4k small. Both FASTAand
BLAST hash the query and scan the database; therefore, the
search time is related directly to the database size. The
tradeoff, of course, is that SSAHArequires large amounts of
RAM to keep A and L in memory.

Search Sensitivity
It is easy to see that the SSAHAalgorithm will under no cir-
cumstances detect a match of less than k consecutive match-
ing base pairs between query and subject, and almost as easy
to see that, in fact, we require 2k�1 consecutive matching
bases to guarantee that the algorithm will register a hit at some
point in the matching region. In comparison, with their de-
fault settings FASTA, BLAST, and MegaBLASTrequire at least
6, 12, and 30 base pairs, respectively, to register a match.

However, there are various modifications that can be
made to SSAHAto increase sensitivity. The search code can be
adapted to allow one substitution between k-tuples at the ex-
pense of a roughly 10-fold increase in the CPU time required
for a search. By modifying the hash table generation code so
that k-tuples are hashed base-by-base, we can ensure that any
run of k consecutive matching bases will be picked up by the
algorithm, at a cost of a k-fold increase in CPU time and in the
size of the hit list L for a given k.

Software Implementation and Applications
The software used to obtain the results in this paper takes the
form of a library that forms a “core” around which applica-
tions can be built. Because the algorithm works by concat-
enating exact matches between k-tuples, it is clear that for the
software to register a match between two regions we must be
reasonably certain that stretches of k or more consecutive
matching bases will occur at regular intervals. This makes the
software better suited to applications requiring “almost exact”
matches than to situations that demand the detection of
more distant homology. However, there are many useful ap-
plications that meet this criteria. Applications currently under
development from the SSAHAlibrary include the detection of
overlapping reads as part of shotgun sequence assembly and
the determination of contig order and orientation. The En-
sembl project (see http://www.ensembl.org) features a Web
server that allows users to conduct SSAHAsearches of both the
latest GoldenPath assembly of the human genome and the
Ensembl Trace Repository (see http://trace.ensembl.org). At
the time of writing, these datasets contain ∼ 3.2 gigabases and
11 gigabases of sequence data, respectively.

In addition, an earlier implementation of the SSAHAal-
gorithm has been adapted successfully to the detection of
single nucleotide polymorphisms; in fact, this tool was used
to detect over one million of the SNPs now registered at the
dbSNP database (International SNP Map Working Group,
2001; see http://www.ncbi.nlm.nih.gov/SNP/). Two types of
SNPs were detected using ssahaSNP: (1) SNPs detected from
random human genomic reads, as was the case for The SNP
Consortium (TSC) project (http://snp.cshl.org/), and (2) ge-

Ning et al.

1728 Genome Research
www.genome.org

 on August 27, 2006 www.genome.orgDownloaded from

http://www.genome.org

nomic clone overlap SNPs registered at the dbSNP Web site
(query by submitter SC_JCM).

To detect SNPs, ssahaSNP builds a SSAHAhash table of
the human genome using k = 14 and a cutoff threshold of 7,
which causes ∼ 2% of the genome to be excluded from match-
ing. For random human genomic reads, the high quality re-
gion of the base sequence from each read is used as the query.
If an SSAHAmatch is found which extends over nearly the full
length of the high quality region, and if the read does not
match to more than ten other places in the genome, then a
full base-by-base alignment is made between the read and the
localized genomic sequence(s). High quality base discrepan-
cies using the Neighborhood Quality Standard (Altshuler et al.
2000; International SNP Map Working Group 2001) are re-
ported as SNPs. This program can process reads at a rate of
∼ 200 per second against the human genome. For genomic
overlap SNPs, the program generates pseudo-reads from the
human genomic sequence by chopping up the genome into
500 bp pieces every 250 bp. These pseudo-reads are processed
exactly like the random sequencing reads described above,
except we ignore the alignment of the read back to the loca-
tion from which it was derived. The latest run of this program
on a 16-May-2001 freeze of the human genomic clone se-
quence (4.9Gbp) took 26 h to run (on one EV6 CPU and 15Gb
of memory of a Compaq Alpha ES40) and detected about one
million SNPs.

The SSAHAlibrary was developed for Compaq DEC Al-
phas, but has been ported successfully to several other plat-
forms (see http://www.sanger.ac.uk/Software/analysis/
SSAHA/ for the latest information).

ACKNOWLEDGMENTS
We thank Dr. Jaak Vilo of the European Bioinformatics Insti-
tute for his insightful comments regarding sorting algorithms.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J.

1990. Basic Local Alignment Search Tool. J. Mol. Biol.
215: 403–410.

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z.,
Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-
BLAST: A new generation of protein database search programs.
Nucleic Acids Res. 25: 3389–3402.

Altshuler, D., Pollara, V.J., Cowles, C.R., Van Etten, W.J., Baldwin, J.,
Linton, L., and Lander, E.S. 2000. An SNP map of the human
genome generated by reduced representation shotgun
sequencing. Nature 407: 513–516.

Benson, G. 1999. Tandem Repeats Finder: A program to analyze
DNA sequences. Nucleic Acids Res. 27: 573–580.

Delcher, A.L., Kasif, S., Fletschmann, R.D., Peterson, J., White, O.,
and Salzberg, S. 1999. Alignment of whole genomes. Nucleic
Acids Res. 27: 2369–2376.

Gusfield, D. 1997. Algorithms on strings, trees and sequences: Computer
science and computational biology. Cambridge University Press,
Cambridge, UK.

The International Human Genome Sequencing Consortium. Initial
sequencing and analysis of the human genome. Nature
409: 860–921.

The International SNP Map Working Group. 2001. A map of human
genome sequence variation containing 1.4 million single
nucleotide polymorphisms. Nature 409: 928–933.

Knuth, D.E. 1998. The art of computer programming vol. 3: Sorting and
searching. Addison-Wesley, Reading, MA.

Lipman, D.J. and Pearson, W.R. 1985. Rapid and sensitive protein
similarity searches. Science 227: 1435–1441.

Miller, C., Gurd, J., and Brass, A. 1999. A RAPID algorithm for
sequence database comparisons: Application to the identification
of vector contamination in the EMBL databases. Bioinformatics
15: 111–121.

Needleman, S. and Wunsch, C. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two
proteins. J. Mol Biol. 48: 443–453.

Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological
sequence comparison. Proc. Natl. Acad. Sci. 85: 2444–2448.

Smith, T. and Waterman, M. 1981. Identification of common
molecular subsequences. J. Mol. Biol. 147: 195–197.

Waterman, M.S. 1995. Introduction to computational biology: Maps,
sequences and genomes. Chapman and Hall, London.

Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. 2000. A greedy
algorithm for aligning DNA sequences. J. Comp. Biol. 7: 203–214.

Received April 26, 2001; accepted in revised form July 30, 2001.

SSAHA: Fast DNA Search Method

Genome Research 1729
www.genome.org

 on August 27, 2006 www.genome.orgDownloaded from

http://www.genome.org

