
SSD: Single Shot MultiBox Detector

Wei Liu1, Dragomir Anguelov2, Dumitru Erhan3, Christian Szegedy3,

Scott Reed4, Cheng-Yang Fu1, Alexander C. Berg1

1UNC Chapel Hill 2Zoox Inc. 3Google Inc. 4University of Michigan, Ann-Arbor
1wliu@cs.unc.edu, 2drago@zoox.com, 3{dumitru,szegedy}@google.com,

4reedscot@umich.edu, 1{cyfu,aberg}@cs.unc.edu

Abstract. We present a method for detecting objects in images using a single

deep neural network. Our approach, named SSD, discretizes the output space of

bounding boxes into a set of default boxes over different aspect ratios and scales

per feature map location. At prediction time, the network generates scores for the

presence of each object category in each default box and produces adjustments to

the box to better match the object shape. Additionally, the network combines pre-

dictions from multiple feature maps with different resolutions to naturally handle

objects of various sizes. SSD is simple relative to methods that require object

proposals because it completely eliminates proposal generation and subsequent

pixel or feature resampling stages and encapsulates all computation in a single

network. This makes SSD easy to train and straightforward to integrate into sys-

tems that require a detection component. Experimental results on the PASCAL

VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy

to methods that utilize an additional object proposal step and is much faster, while

providing a unified framework for both training and inference. For 300× 300 in-

put, SSD achieves 74.3% mAP1 on VOC2007 test at 59 FPS on a Nvidia Titan

X and for 512 × 512 input, SSD achieves 76.9% mAP, outperforming a compa-

rable state-of-the-art Faster R-CNN model. Compared to other single stage meth-

ods, SSD has much better accuracy even with a smaller input image size. Code is

available at: https://github.com/weiliu89/caffe/tree/ssd .

Keywords: Real-time Object Detection; Convolutional Neural Network

1 Introduction

Current state-of-the-art object detection systems are variants of the following approach:

hypothesize bounding boxes, resample pixels or features for each box, and apply a high-

quality classifier. This pipeline has prevailed on detection benchmarks since the Selec-

tive Search work [1] through the current leading results on PASCAL VOC, COCO, and

ILSVRC detection all based on Faster R-CNN[2] albeit with deeper features such as

[3]. While accurate, these approaches have been too computationally intensive for em-

bedded systems and, even with high-end hardware, too slow for real-time applications.

1 We achieved even better results using an improved data augmentation scheme in follow-on

experiments: 77.2% mAP for 300×300 input and 79.8% mAP for 512×512 input on VOC2007.

Please see Sec. 3.6 for details.

2 Liu et al.

Often detection speed for these approaches is measured in seconds per frame (SPF),

and even the fastest high-accuracy detector, Faster R-CNN, operates at only 7 frames

per second (FPS). There have been many attempts to build faster detectors by attacking

each stage of the detection pipeline (see related work in Sec. 4), but so far, significantly

increased speed comes only at the cost of significantly decreased detection accuracy.

This paper presents the first deep network based object detector that does not re-

sample pixels or features for bounding box hypotheses and and is as accurate as ap-

proaches that do. This results in a significant improvement in speed for high-accuracy

detection (59 FPS with mAP 74.3% on VOC2007 test, vs. Faster R-CNN 7 FPS with

mAP 73.2% or YOLO 45 FPS with mAP 63.4%). The fundamental improvement in

speed comes from eliminating bounding box proposals and the subsequent pixel or fea-

ture resampling stage. We are not the first to do this (cf [4, 5]), but by adding a series

of improvements, we manage to increase the accuracy significantly over previous at-

tempts. Our improvements include using a small convolutional filter to predict object

categories and offsets in bounding box locations, using separate predictors (filters) for

different aspect ratio detections, and applying these filters to multiple feature maps from

the later stages of a network in order to perform detection at multiple scales. With these

modifications—especially using multiple layers for prediction at different scales—we

can achieve high-accuracy using relatively low resolution input, further increasing de-

tection speed. While these contributions may seem small independently, we note that

the resulting system improves accuracy on real-time detection for PASCAL VOC from

63.4% mAP for YOLO to 74.3% mAP for our SSD. This is a larger relative improve-

ment in detection accuracy than that from the recent, very high-profile work on residual

networks [3]. Furthermore, significantly improving the speed of high-quality detection

can broaden the range of settings where computer vision is useful.

We summarize our contributions as follows:

– We introduce SSD, a single-shot detector for multiple categories that is faster than

the previous state-of-the-art for single shot detectors (YOLO), and significantly

more accurate, in fact as accurate as slower techniques that perform explicit region

proposals and pooling (including Faster R-CNN).

– The core of SSD is predicting category scores and box offsets for a fixed set of

default bounding boxes using small convolutional filters applied to feature maps.

– To achieve high detection accuracy we produce predictions of different scales from

feature maps of different scales, and explicitly separate predictions by aspect ratio.

– These design features lead to simple end-to-end training and high accuracy, even

on low resolution input images, further improving the speed vs accuracy trade-off.

– Experiments include timing and accuracy analysis on models with varying input

size evaluated on PASCAL VOC, COCO, and ILSVRC and are compared to a

range of recent state-of-the-art approaches.

2 The Single Shot Detector (SSD)

This section describes our proposed SSD framework for detection (Sec. 2.1) and the

associated training methodology (Sec. 2.2). Afterwards, Sec. 3 presents dataset-specific

model details and experimental results.

SSD: Single Shot MultiBox Detector 3

(a) Image with GT boxes (b) 8× 8 feature map (c) 4× 4 feature map

loc : ∆(cx, cy, w, h)
conf : (c1, c2, · · · , cp)

Fig. 1: SSD framework. (a) SSD only needs an input image and ground truth boxes for

each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4)

of default boxes of different aspect ratios at each location in several feature maps with

different scales (e.g. 8 × 8 and 4 × 4 in (b) and (c)). For each default box, we predict

both the shape offsets and the confidences for all object categories ((c1, c2, · · · , cp)).
At training time, we first match these default boxes to the ground truth boxes. For

example, we have matched two default boxes with the cat and one with the dog, which

are treated as positives and the rest as negatives. The model loss is a weighted sum

between localization loss (e.g. Smooth L1 [6]) and confidence loss (e.g. Softmax).

2.1 Model

The SSD approach is based on a feed-forward convolutional network that produces

a fixed-size collection of bounding boxes and scores for the presence of object class

instances in those boxes, followed by a non-maximum suppression step to produce the

final detections. The early network layers are based on a standard architecture used for

high quality image classification (truncated before any classification layers), which we

will call the base network2. We then add auxiliary structure to the network to produce

detections with the following key features:

Multi-scale feature maps for detection We add convolutional feature layers to the end

of the truncated base network. These layers decrease in size progressively and allow

predictions of detections at multiple scales. The convolutional model for predicting

detections is different for each feature layer (cf Overfeat[4] and YOLO[5] that operate

on a single scale feature map).

Convolutional predictors for detection Each added feature layer (or optionally an ex-

isting feature layer from the base network) can produce a fixed set of detection predic-

tions using a set of convolutional filters. These are indicated on top of the SSD network

architecture in Fig. 2. For a feature layer of size m × n with p channels, the basic el-

ement for predicting parameters of a potential detection is a 3 × 3 × p small kernel

that produces either a score for a category, or a shape offset relative to the default box

coordinates. At each of the m× n locations where the kernel is applied, it produces an

output value. The bounding box offset output values are measured relative to a default

2 We use the VGG-16 network as a base, but other networks should also produce good results.

4 Liu et al.

300

300

3

VGG-16
through Conv5_3 layer

19

19

Conv7
(FC7)

1024

10

10

Conv8_2

512

5

5

Conv9_2

256
3

Conv10_2

256 256

38

38

Conv4_3

3

1

Image

Conv: 1x1x1024 Conv: 1x1x256
Conv: 3x3x512-s2

Conv: 1x1x128
Conv: 3x3x256-s2

Conv: 1x1x128
Conv: 3x3x256-s1

D
et

ec
tio

ns
:8

73
2

 p
er

 C
la

ss

Classifier : Conv: 3x3x(4x(Classes+4))

512

448

448

3

Image

7

7

1024

7

7

30

Fully Connected

YOLO Customized Architecture

N
on

-M
ax

im
um

 S
up

pr
es

si
on

Fully Connected

N
on

-M
ax

im
um

 S
up

pr
es

si
on

 D
et

ec
tio

ns
: 9

8
pe

r c
la

ss

Conv11_2

74.3mAP
 59FPS

63.4mAP
 45FPS

Classifier : Conv: 3x3x(6x(Classes+4))

19

19

Conv6
(FC6)

1024

Conv: 3x3x1024

S
S

D
Y

O
LO

Extra Feature Layers

Conv: 1x1x128
Conv: 3x3x256-s1

Conv: 3x3x(4x(Classes+4))

Fig. 2: A comparison between two single shot detection models: SSD and YOLO [5].

Our SSD model adds several feature layers to the end of a base network, which predict

the offsets to default boxes of different scales and aspect ratios and their associated

confidences. SSD with a 300 × 300 input size significantly outperforms its 448 × 448
YOLO counterpart in accuracy on VOC2007 test while also improving the speed.

box position relative to each feature map location (cf the architecture of YOLO[5] that

uses an intermediate fully connected layer instead of a convolutional filter for this step).

Default boxes and aspect ratios We associate a set of default bounding boxes with

each feature map cell, for multiple feature maps at the top of the network. The default

boxes tile the feature map in a convolutional manner, so that the position of each box

relative to its corresponding cell is fixed. At each feature map cell, we predict the offsets

relative to the default box shapes in the cell, as well as the per-class scores that indicate

the presence of a class instance in each of those boxes. Specifically, for each box out of

k at a given location, we compute c class scores and the 4 offsets relative to the original

default box shape. This results in a total of (c+ 4)k filters that are applied around each

location in the feature map, yielding (c+ 4)kmn outputs for a m× n feature map. For

an illustration of default boxes, please refer to Fig. 1. Our default boxes are similar to

the anchor boxes used in Faster R-CNN [2], however we apply them to several feature

maps of different resolutions. Allowing different default box shapes in several feature

maps let us efficiently discretize the space of possible output box shapes.

2.2 Training

The key difference between training SSD and training a typical detector that uses region

proposals, is that ground truth information needs to be assigned to specific outputs in

the fixed set of detector outputs. Some version of this is also required for training in

YOLO[5] and for the region proposal stage of Faster R-CNN[2] and MultiBox[7]. Once

this assignment is determined, the loss function and back propagation are applied end-

to-end. Training also involves choosing the set of default boxes and scales for detection

as well as the hard negative mining and data augmentation strategies.

SSD: Single Shot MultiBox Detector 5

Matching strategy During training we need to determine which default boxes corre-

spond to a ground truth detection and train the network accordingly. For each ground

truth box we are selecting from default boxes that vary over location, aspect ratio, and

scale. We begin by matching each ground truth box to the default box with the best

jaccard overlap (as in MultiBox [7]). Unlike MultiBox, we then match default boxes to

any ground truth with jaccard overlap higher than a threshold (0.5). This simplifies the

learning problem, allowing the network to predict high scores for multiple overlapping

default boxes rather than requiring it to pick only the one with maximum overlap.

Training objective The SSD training objective is derived from the MultiBox objec-

tive [7, 8] but is extended to handle multiple object categories. Let xp
ij = {1, 0} be an

indicator for matching the i-th default box to the j-th ground truth box of category p.

In the matching strategy above, we can have
∑

i x
p
ij ≥ 1. The overall objective loss

function is a weighted sum of the localization loss (loc) and the confidence loss (conf):

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (1)

where N is the number of matched default boxes. If N = 0, wet set the loss to 0. The

localization loss is a Smooth L1 loss [6] between the predicted box (l) and the ground

truth box (g) parameters. Similar to Faster R-CNN [2], we regress to offsets for the

center (cx, cy) of the default bounding box (d) and for its width (w) and height (h).

Lloc(x, l, g) =

N
∑

i∈Pos

∑

m∈{cx,cy,w,h}

xk
ijsmoothL1(l

m
i − ĝmj)

ĝcxj = (gcxj − dcxi)/dwi ĝcyj = (gcyj − dcyi)/dhi

ĝwj = log
(gwj
dwi

)

ĝhj = log
(ghj
dhi

)

(2)

The confidence loss is the softmax loss over multiple classes confidences (c).

Lconf (x, c) = −
N
∑

i∈Pos

xp
ij log(ĉ

p
i)−

∑

i∈Neg

log(ĉ0i) where ĉpi =
exp(cpi)

∑

p exp(c
p
i)

(3)

and the weight term α is set to 1 by cross validation.

Choosing scales and aspect ratios for default boxes To handle different object scales,

some methods [4, 9] suggest processing the image at different sizes and combining the

results afterwards. However, by utilizing feature maps from several different layers in

a single network for prediction we can mimic the same effect, while also sharing pa-

rameters across all object scales. Previous works [10, 11] have shown that using feature

maps from the lower layers can improve semantic segmentation quality because the

lower layers capture more fine details of the input objects. Similarly, [12] showed that

adding global context pooled from a feature map can help smooth the segmentation re-

sults. Motivated by these methods, we use both the lower and upper feature maps for

6 Liu et al.

detection. Figure 1 shows two exemplar feature maps (8×8 and 4×4) which are used in

the framework. In practice, we can use many more with small computational overhead.

Feature maps from different levels within a network are known to have different

(empirical) receptive field sizes [13]. Fortunately, within the SSD framework, the de-

fault boxes do not necessary need to correspond to the actual receptive fields of each

layer. We design the tiling of default boxes so that specific feature maps learn to be

responsive to particular scales of the objects. Suppose we want to use m feature maps

for prediction. The scale of the default boxes for each feature map is computed as:

sk = smin +
smax − smin

m− 1
(k − 1), k ∈ [1,m] (4)

where smin is 0.2 and smax is 0.9, meaning the lowest layer has a scale of 0.2 and

the highest layer has a scale of 0.9, and all layers in between are regularly spaced.

We impose different aspect ratios for the default boxes, and denote them as ar ∈
{1, 2, 3, 1

2
, 1

3
}. We can compute the width (wa

k = sk
√
ar) and height (ha

k = sk/
√
ar)

for each default box. For the aspect ratio of 1, we also add a default box whose scale is

s′k =
√
sksk+1, resulting in 6 default boxes per feature map location. We set the center

of each default box to (i+0.5
|fk|

, j+0.5
|fk|

), where |fk| is the size of the k-th square feature

map, i, j ∈ [0, |fk|). In practice, one can also design a distribution of default boxes to

best fit a specific dataset. How to design the optimal tiling is an open question as well.

By combining predictions for all default boxes with different scales and aspect ratios

from all locations of many feature maps, we have a diverse set of predictions, covering

various input object sizes and shapes. For example, in Fig. 1, the dog is matched to a

default box in the 4 × 4 feature map, but not to any default boxes in the 8 × 8 feature

map. This is because those boxes have different scales and do not match the dog box,

and therefore are considered as negatives during training.

Hard negative mining After the matching step, most of the default boxes are nega-

tives, especially when the number of possible default boxes is large. This introduces a

significant imbalance between the positive and negative training examples. Instead of

using all the negative examples, we sort them using the highest confidence loss for each

default box and pick the top ones so that the ratio between the negatives and positives is

at most 3:1. We found that this leads to faster optimization and a more stable training.

Data augmentation To make the model more robust to various input object sizes and

shapes, each training image is randomly sampled by one of the following options:

– Use the entire original input image.

– Sample a patch so that the minimum jaccard overlap with the objects is 0.1, 0.3,

0.5, 0.7, or 0.9.

– Randomly sample a patch.

The size of each sampled patch is [0.1, 1] of the original image size, and the aspect ratio

is between 1

2
and 2. We keep the overlapped part of the ground truth box if the center of

it is in the sampled patch. After the aforementioned sampling step, each sampled patch

is resized to fixed size and is horizontally flipped with probability of 0.5, in addition to

applying some photo-metric distortions similar to those described in [14].

SSD: Single Shot MultiBox Detector 7

3 Experimental Results

Base network Our experiments are all based on VGG16 [15], which is pre-trained on

the ILSVRC CLS-LOC dataset [16]. Similar to DeepLab-LargeFOV [17], we convert

fc6 and fc7 to convolutional layers, subsample parameters from fc6 and fc7, change

pool5 from 2 × 2 − s2 to 3 × 3 − s1, and use the à trous algorithm [18] to fill the

”holes”. We remove all the dropout layers and the fc8 layer. We fine-tune the resulting

model using SGD with initial learning rate 10−3, 0.9 momentum, 0.0005 weight decay,

and batch size 32. The learning rate decay policy is slightly different for each dataset,

and we will describe details later. The full training and testing code is built on Caffe [19]

and is open source at: https://github.com/weiliu89/caffe/tree/ssd .

3.1 PASCAL VOC2007

On this dataset, we compare against Fast R-CNN [6] and Faster R-CNN [2] on VOC2007

test (4952 images). All methods fine-tune on the same pre-trained VGG16 network.

Figure 2 shows the architecture details of the SSD300 model. We use conv4 3,

conv7 (fc7), conv8 2, conv9 2, conv10 2, and conv11 2 to predict both location and

confidences. We set default box with scale 0.1 on conv4 33. We initialize the parameters

for all the newly added convolutional layers with the ”xavier” method [20]. For conv4 3,

conv10 2 and conv11 2, we only associate 4 default boxes at each feature map location

– omitting aspect ratios of 1

3
and 3. For all other layers, we put 6 default boxes as

described in Sec. 2.2. Since, as pointed out in [12], conv4 3 has a different feature

scale compared to the other layers, we use the L2 normalization technique introduced

in [12] to scale the feature norm at each location in the feature map to 20 and learn the

scale during back propagation. We use the 10−3 learning rate for 40k iterations, then

continue training for 10k iterations with 10−4 and 10−5. When training on VOC2007

trainval, Table 1 shows that our low resolution SSD300 model is already more

accurate than Fast R-CNN. When we train SSD on a larger 512× 512 input image, it is

even more accurate, surpassing Faster R-CNN by 1.7% mAP. If we train SSD with more

(i.e. 07+12) data, we see that SSD300 is already better than Faster R-CNN by 1.1%

and that SSD512 is 3.6% better. If we take models trained on COCO trainval35k

as described in Sec. 3.4 and fine-tuning them on the 07+12 dataset with SSD512, we

achieve the best results: 81.6% mAP.

To understand the performance of our two SSD models in more details, we used the

detection analysis tool from [21]. Figure 3 shows that SSD can detect various object

categories with high quality (large white area). The majority of its confident detections

are correct. The recall is around 85-90%, and is much higher with “weak” (0.1 jaccard

overlap) criteria. Compared to R-CNN [22], SSD has less localization error, indicating

that SSD can localize objects better because it directly learns to regress the object shape

and classify object categories instead of using two decoupled steps. However, SSD has

more confusions with similar object categories (especially for animals), partly because

we share locations for multiple categories. Figure 4 shows that SSD is very sensitive

to the bounding box size. In other words, it has much worse performance on smaller

3 For SSD512 model, we add extra conv12 2 for prediction, set smin to 0.15, and 0.07 on conv4 3.

8 Liu et al.

Method data mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast [6] 07 66.9 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8

Fast [6] 07+12 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

Faster [2] 07 69.9 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6

Faster [2] 07+12 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

Faster [2] 07+12+COCO 78.8 84.3 82.0 77.7 68.9 65.7 88.1 88.4 88.9 63.6 86.3 70.8 85.9 87.6 80.1 82.3 53.6 80.4 75.8 86.6 78.9

SSD300 07 68.0 73.4 77.5 64.1 59.0 38.9 75.2 80.8 78.5 46.0 67.8 69.2 76.6 82.1 77.0 72.5 41.2 64.2 69.1 78.0 68.5

SSD300 07+12 74.3 75.5 80.2 72.3 66.3 47.6 83.0 84.2 86.1 54.7 78.3 73.9 84.5 85.3 82.6 76.2 48.6 73.9 76.0 83.4 74.0

SSD300 07+12+COCO 79.6 80.9 86.3 79.0 76.2 57.6 87.3 88.2 88.6 60.5 85.4 76.7 87.5 89.2 84.5 81.4 55.0 81.9 81.5 85.9 78.9

SSD512 07 71.6 75.1 81.4 69.8 60.8 46.3 82.6 84.7 84.1 48.5 75.0 67.4 82.3 83.9 79.4 76.6 44.9 69.9 69.1 78.1 71.8

SSD512 07+12 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3

SSD512 07+12+COCO 81.6 86.6 88.3 82.4 76.0 66.3 88.6 88.9 89.1 65.1 88.4 73.6 86.5 88.9 85.3 84.6 59.1 85.0 80.4 87.4 81.2

Table 1: PASCAL VOC2007 test detection results. Both Fast and Faster R-CNN

use input images whose minimum dimension is 600. The two SSD models have exactly

the same settings except that they have different input sizes (300×300 vs. 512×512). It

is obvious that larger input size leads to better results, and more data always helps. Data:

”07”: VOC2007 trainval, ”07+12”: union of VOC2007 and VOC2012 trainval.

”07+12+COCO”: first train on COCO trainval35k then fine-tune on 07+12.

objects than bigger objects. This is not surprising because those small objects may not

even have any information at the very top layers. Increasing the input size (e.g. from

300×300 to 512×512) can help improve detecting small objects, but there is still a lot

of room to improve. On the positive side, we can clearly see that SSD performs really

well on large objects. And it is very robust to different object aspect ratios because we

use default boxes of various aspect ratios per feature map location.

3.2 Model analysis

To understand SSD better, we carried out controlled experiments to examine how each

component affects performance. For all the experiments, we use the same settings and

input size (300× 300), except for specified changes to the settings or component(s).

SSD300

more data augmentation? ✔ ✔ ✔ ✔

include { 1

2
, 2} box? ✔ ✔ ✔ ✔

include { 1

3
, 3} box? ✔ ✔ ✔

use atrous? ✔ ✔ ✔ ✔

VOC2007 test mAP 65.5 71.6 73.7 74.2 74.3

Table 2: Effects of various design choices and components on SSD performance.

Data augmentation is crucial. Fast and Faster R-CNN use the original image and the

horizontal flip to train. We use a more extensive sampling strategy, similar to YOLO [5].

Table 2 shows that we can improve 8.8% mAP with this sampling strategy. We do not

know how much our sampling strategy will benefit Fast and Faster R-CNN, but they are

likely to benefit less because they use a feature pooling step during classification that is

relatively robust to object translation by design.

SSD: Single Shot MultiBox Detector 9

animals

total detections (x 357)

0.125 0.25 0.5 1 2 4 8

p
e

rc
e

n
ta

g
e

 o
f

e
a

c
h

 t
y
p

e

0

20

40

60

80

100

Cor

Loc

Sim

Oth

BG

vehicles

total detections (x 415)

0.125 0.25 0.5 1 2 4 8

p
e

rc
e

n
ta

g
e

 o
f

e
a

c
h

 t
y
p

e

0

20

40

60

80

100

Cor

Loc

Sim

Oth

BG

furniture

total detections (x 400)

0.125 0.25 0.5 1 2 4 8

p
e

rc
e

n
ta

g
e

 o
f

e
a

c
h

 t
y
p

e

0

20

40

60

80

100

Cor

Loc

Sim

Oth

BG

animals

total false positives

25 50 100 200 400 800 16003200

p
e
rc

e
n
ta

g
e
 o

f
e
a
c
h
 t
y
p
e

0

20

40

60

80

100
Loc

Sim

Oth

BG

vehicles

total false positives

25 50 100 200 400 800 16003200

p
e
rc

e
n
ta

g
e
 o

f
e
a
c
h
 t
y
p
e

0

20

40

60

80

100
Loc

Sim

Oth

BG

furniture

total false positives

25 50 100 200 400 800 16003200

p
e
rc

e
n
ta

g
e
 o

f
e
a
c
h
 t
y
p
e

0

20

40

60

80

100
Loc

Sim

Oth

BG

Fig. 3: Visualization of performance for SSD512 on animals, vehicles, and furni-

ture from VOC2007 test. The top row shows the cumulative fraction of detections

that are correct (Cor) or false positive due to poor localization (Loc), confusion with

similar categories (Sim), with others (Oth), or with background (BG). The solid red

line reflects the change of recall with strong criteria (0.5 jaccard overlap) as the num-

ber of detections increases. The dashed red line is using the weak criteria (0.1 jaccard

overlap). The bottom row shows the distribution of top-ranked false positive types.

XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL
0

0.2

0.4

0.6

0.8

1

0.28

0.78
0.84

0.98
0.93

0.49

0.880.88
0.91

0.98

0.17

0.67

0.82

0.92
0.96

0.37

0.64

0.77

0.91
0.94

0.47

0.88

0.95
0.990.99

0.09

0.36

0.67
0.70

0.54

0.22

0.70

0.94
0.990.99

airplane bicycle bird boat cat chair table

SSD300: BBox Area

XTT M WXW XTT M WXW XTT M WXW XTT M WXW XTT M WXW XTT M WXW XTT M WXW
0

0.2

0.4

0.6

0.8

1

0.77
0.73

0.86
0.81

0.90

0.68

0.87
0.920.89

0.76

0.65

0.790.78
0.84

0.72 0.71

0.83

0.750.73
0.76

0.870.88
0.940.91

0.87

0.46

0.570.560.58

0.46

0.67

0.870.87
0.92

0.76

airplane bicycle bird boat cat chair table

SSD300: Aspect Ratio

XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL
0

0.2

0.4

0.6

0.8

1

0.69

0.870.87

0.980.96

0.68

0.96
0.910.91

0.97

0.47

0.830.82

0.92

0.99

0.60

0.790.81

0.92
0.97

0.53

0.930.95
0.990.98

0.29

0.47

0.690.70

0.38

0.23

0.68

0.91
0.97

0.93airplane bicycle bird boat cat chair table

SSD512: BBox Area

XTT M WXW XTT M WXW XTT M WXW XTT M WXW XTT M WXW XTT M WXW XTT M WXW
0

0.2

0.4

0.6

0.8

1

0.91

0.83
0.900.890.90

0.83

0.930.96

0.88

0.77 0.75

0.860.850.85

0.77

0.95

0.840.820.82

0.72

0.900.90
0.950.93

0.85

0.54

0.620.63
0.57

0.42

0.59

0.88
0.840.86

0.76

airplane bicycle bird boat cat chair table

SSD512: Aspect Ratio

Fig. 4: Sensitivity and impact of different object characteristics on VOC2007 test

set using [21]. The plot on the left shows the effects of BBox Area per category, and

the right plot shows the effect of Aspect Ratio. Key: BBox Area: XS=extra-small;

S=small; M=medium; L=large; XL =extra-large. Aspect Ratio: XT=extra-tall/narrow;

T=tall; M=medium; W=wide; XW =extra-wide.

10 Liu et al.

More default box shapes is better. As described in Sec. 2.2, by default we use 6

default boxes per location. If we remove the boxes with 1

3
and 3 aspect ratios, the

performance drops by 0.6%. By further removing the boxes with 1

2
and 2 aspect ratios,

the performance drops another 2.1%. Using a variety of default box shapes seems to

make the task of predicting boxes easier for the network.

Atrous is faster. As described in Sec. 3, we used the atrous version of a subsampled

VGG16, following DeepLab-LargeFOV [17]. If we use the full VGG16, keeping pool5

with 2× 2− s2 and not subsampling parameters from fc6 and fc7, and add conv5 3 for

prediction, the result is about the same while the speed is about 20% slower.

Prediction source layers from:
mAP

use boundary boxes? # Boxes

conv4 3 conv7 conv8 2 conv9 2 conv10 2 conv11 2 Yes No

✔ ✔ ✔ ✔ ✔ ✔ 74.3 63.4 8732

✔ ✔ ✔ ✔ ✔ 74.6 63.1 8764

✔ ✔ ✔ ✔ 73.8 68.4 8942

✔ ✔ ✔ 70.7 69.2 9864

✔ ✔ 64.2 64.4 9025

✔ 62.4 64.0 8664

Table 3: Effects of using multiple output layers.

Multiple output layers at different resolutions is better. A major contribution of

SSD is using default boxes of different scales on different output layers. To measure

the advantage gained, we progressively remove layers and compare results. For a fair

comparison, every time we remove a layer, we adjust the default box tiling to keep the

total number of boxes similar to the original (8732). This is done by stacking more

scales of boxes on remaining layers and adjusting scales of boxes if needed. We do not

exhaustively optimize the tiling for each setting. Table 3 shows a decrease in accuracy

with fewer layers, dropping monotonically from 74.3 to 62.4. When we stack boxes of

multiple scales on a layer, many are on the image boundary and need to be handled

carefully. We tried the strategy used in Faster R-CNN [2], ignoring boxes which are

on the boundary. We observe some interesting trends. For example, it hurts the perfor-

mance by a large margin if we use very coarse feature maps (e.g. conv11 2 (1 × 1)

or conv10 2 (3 × 3)). The reason might be that we do not have enough large boxes to

cover large objects after the pruning. When we use primarily finer resolution maps, the

performance starts increasing again because even after pruning a sufficient number of

large boxes remains. If we only use conv7 for prediction, the performance is the worst,

reinforcing the message that it is critical to spread boxes of different scales over dif-

ferent layers. Besides, since our predictions do not rely on ROI pooling as in [6], we

do not have the collapsing bins problem in low-resolution feature maps [23]. The SSD

architecture combines predictions from feature maps of various resolutions to achieve

comparable accuracy to Faster R-CNN, while using lower resolution input images.

SSD: Single Shot MultiBox Detector 11

3.3 PASCAL VOC2012

We use the same settings as those used for our basic VOC2007 experiments above,

except that we use VOC2012 trainval and VOC2007 trainval and test (21503

images) for training, and test on VOC2012 test (10991 images). We train the models

with 10−3 learning rate for 60k iterations, then 10−4 for 20k iterations. Table 4 shows

the results of our SSD300 and SSD5124 model. We see the same performance trend

as we observed on VOC2007 test. Our SSD300 improves accuracy over Fast/Faster R-

CNN. By increasing the training and testing image size to 512×512, we are 4.5% more

accurate than Faster R-CNN. Compared to YOLO, SSD is significantly more accurate,

likely due to the use of convolutional default boxes from multiple feature maps and our

matching strategy during training. When fine-tuned from models trained on COCO, our

SSD512 achieves 80.0% mAP, which is 4.1% higher than Faster R-CNN.

Method data mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast[6] 07++12 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

Faster[2] 07++12 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

Faster[2] 07++12+COCO 75.9 87.4 83.6 76.8 62.9 59.6 81.9 82.0 91.3 54.9 82.6 59.0 89.0 85.5 84.7 84.1 52.2 78.9 65.5 85.4 70.2

YOLO[5] 07++12 57.9 77.0 67.2 57.7 38.3 22.7 68.3 55.9 81.4 36.2 60.8 48.5 77.2 72.3 71.3 63.5 28.9 52.2 54.8 73.9 50.8

SSD300 07++12 72.4 85.6 80.1 70.5 57.6 46.2 79.4 76.1 89.2 53.0 77.0 60.8 87.0 83.1 82.3 79.4 45.9 75.9 69.5 81.9 67.5

SSD300 07++12+COCO 77.5 90.2 83.3 76.3 63.0 53.6 83.8 82.8 92.0 59.7 82.7 63.5 89.3 87.6 85.9 84.3 52.6 82.5 74.1 88.4 74.2

SSD512 07++12 74.9 87.4 82.3 75.8 59.0 52.6 81.7 81.5 90.0 55.4 79.0 59.8 88.4 84.3 84.7 83.3 50.2 78.0 66.3 86.3 72.0

SSD512 07++12+COCO 80.0 90.7 86.8 80.5 67.8 60.8 86.3 85.5 93.5 63.2 85.7 64.4 90.9 89.0 88.9 86.8 57.2 85.1 72.8 88.4 75.9

Table 4: PASCAL VOC2012 test detection results. Fast and Faster R-CNN use

images with minimum dimension 600, while the image size for YOLO is 448 × 448.

data: ”07++12”: union of VOC2007 trainval and test and VOC2012 trainval.

”07++12+COCO”: first train on COCO trainval35k then fine-tune on 07++12.

3.4 COCO

To further validate the SSD framework, we trained our SSD300 and SSD512 architec-

tures on the COCO dataset. Since objects in COCO tend to be smaller than PASCAL

VOC, we use smaller default boxes for all layers. We follow the strategy mentioned in

Sec. 2.2, but now our smallest default box has a scale of 0.15 instead of 0.2, and the

scale of the default box on conv4 3 is 0.07 (e.g. 21 pixels for a 300× 300 image)5.

We use the trainval35k [24] for training. We first train the model with 10−3

learning rate for 160k iterations, and then continue training for 40k iterations with

10−4 and 40k iterations with 10−5. Table 5 shows the results on test-dev2015.

Similar to what we observed on the PASCAL VOC dataset, SSD300 is better than Fast

R-CNN in both mAP@0.5 and mAP@[0.5:0.95]. SSD300 has a similar mAP@0.75 as

ION [24] and Faster R-CNN [25], but is worse in mAP@0.5. By increasing the im-

age size to 512 × 512, our SSD512 is better than Faster R-CNN [25] in both criteria.

Interestingly, we observe that SSD512 is 5.3% better in mAP@0.75, but is only 1.2%

better in mAP@0.5. We also observe that it has much better AP (4.8%) and AR (4.6%)

for large objects, but has relatively less improvement in AP (1.3%) and AR (2.0%) for

4
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?cls=mean&challengeid=11&compid=4

5 For SSD512 model, we add extra conv12 2 for prediction, set smin to 0.1, and 0.04 on conv4 3.

12 Liu et al.

Method data
Avg. Precision, IoU: Avg. Precision, Area: Avg. Recall, #Dets: Avg. Recall, Area:

0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

Fast [6] train 19.7 35.9 - - - - - - - - - -

Fast [24] train 20.5 39.9 19.4 4.1 20.0 35.8 21.3 29.5 30.1 7.3 32.1 52.0

Faster [2] trainval 21.9 42.7 - - - - - - - - - -

ION [24] train 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6

Faster [25] trainval 24.2 45.3 23.5 7.7 26.4 37.1 23.8 34.0 34.6 12.0 38.5 54.4

SSD300 trainval35k 23.2 41.2 23.4 5.3 23.2 39.6 22.5 33.2 35.3 9.6 37.6 56.5

SSD512 trainval35k 26.8 46.5 27.8 9.0 28.9 41.9 24.8 37.5 39.8 14.0 43.5 59.0

Table 5: COCO test-dev2015 detection results.

small objects. Compared to ION, the improvement in AR for large and small objects is

more similar (5.4% vs. 3.9%). We conjecture that Faster R-CNN is more competitive

on smaller objects with SSD because it performs two box refinement steps, in both the

RPN part and in the Fast R-CNN part. In Fig. 5, we show some detection examples on

COCO test-dev with the SSD512 model.

3.5 Preliminary ILSVRC results

We applied the same network architecture we used for COCO to the ILSVRC DET

dataset [16]. We train a SSD300 model using the ILSVRC2014 DET train and val1

as used in [22]. We first train the model with 10−3 learning rate for 320k iterations, and

then continue training for 80k iterations with 10−4 and 40k iterations with 10−5. We

can achieve 43.4 mAP on the val2 set [22]. Again, it validates that SSD is a general

framework for high quality real-time detection.

3.6 Data Augmentation for Small Object Accuracy

Without a follow-up feature resampling step as in Faster R-CNN, the classification task

for small objects is relatively hard for SSD, as demonstrated in our analysis (see Fig. 4).

The data augmentation strategy described in Sec. 2.2 helps to improve the performance

dramatically, especially on small datasets such as PASCAL VOC. The random crops

generated by the strategy can be thought of as a ”zoom in” operation and can generate

many larger training examples. To implement a ”zoom out” operation that creates more

small training examples, we first randomly place an image on a canvas of 16× of the

original image size filled with mean values before we do any random crop operation.

Because we have more training images by introducing this new ”expansion” data aug-

mentation trick, we have to double the training iterations. We have seen a consistent

increase of 2%-3% mAP across multiple datasets, as shown in Table 6. In specific, Fig-

ure 6 shows that the new augmentation trick significantly improves the performance on

small objects. This result underscores the importance of the data augmentation strategy

for the final model accuracy.

An alternative way of improving SSD is to design a better tiling of default boxes so

that its position and scale are better aligned with the receptive field of each position on

a feature map. We leave this for future work.

SSD: Single Shot MultiBox Detector 13

cup: 0.91 bowl: 0.87

pizza: 0.96 person: 0.98

cow: 1.00
cow: 0.94 cow: 0.90

cup: 0.70
chair: 0.92

chair: 0.87

chair: 0.80

chair: 0.75

couch: 0.87

dining table: 0.85

tv: 0.94tv: 0.77 person: 1.00 person: 0.99
person: 0.87person: 0.82

frisbee: 0.90

person: 1.00

bicycle: 0.94

traffic light: 0.71

person: 0.92
chair: 0.74

mouse: 0.63keyboard: 0.82

cup: 0.98

bowl: 0.98bowl: 0.97

bowl: 0.81

sandwich: 0.99

dining table: 0.86 person: 1.00

motorcycle: 0.99

backpack: 0.82
person: 1.00 person: 0.90baseball glove: 0.62

person: 0.93person: 0.88

car: 0.99
car: 0.96

car: 0.83

umbrella: 0.86

cat: 0.99

cup: 0.92

tv: 0.89laptop: 0.99

keyboard: 0.99
book: 0.90

bicycle: 0.84

bus: 0.98

bus: 0.94

bus: 0.74

person: 1.00

person: 0.98

person: 0.98

skateboard: 0.97

cup: 0.99

cup: 0.81

cake: 0.86

cake: 0.83

dining table: 0.95 person: 0.86

person: 0.82
person: 0.81

boat: 0.97

person: 1.00

person: 0.98sports ball: 0.67

baseball bat: 0.99

baseball glove: 0.92

person: 0.98
car: 0.98

car: 0.86
car: 0.83 car: 0.80car: 0.63

fire hydrant: 0.98
person: 1.00

person: 1.00
person: 0.98

person: 0.84person: 0.83

bench: 0.84

umbrella: 0.99
umbrella: 0.95

umbrella: 0.92
person: 1.00

car: 0.99

stop sign: 0.72

person: 0.88

dog: 0.99

frisbee: 0.93

person: 0.98
person: 0.97

person: 0.95

person: 0.94

person: 0.90

person: 0.74

bowl: 0.88

chair: 0.84
dining table: 0.92

person: 0.89
car: 1.00 car: 1.00

car: 0.98

motorcycle: 0.88

person: 0.99

person: 0.99

tennis racket: 0.97

chair: 0.80chair: 0.77 chair: 0.72chair: 0.72 chair: 0.66

person: 0.86

bench: 0.73

horse: 0.98

person: 0.94

bottle: 0.97

bottle: 0.97

cup: 0.99
cup: 0.60

fork: 0.71
sandwich: 0.89

dining table: 0.86

person: 0.99person: 0.99
person: 0.94

person: 0.84

person: 0.67

elephant: 0.98

elephant: 0.89

elephant: 0.69

car: 0.85 car: 0.83

car: 0.71 car: 0.69tv: 0.88

laptop: 0.99

laptop: 0.99

keyboard: 0.63 keyboard: 0.63

person: 0.82

dog: 0.67

cup: 0.96

couch: 0.70

person: 1.00
person: 0.96

baseball bat: 0.80
baseball bat: 0.68

bowl: 0.71

bowl: 0.65

chair: 0.92

dining table: 0.80

vase: 0.79

person: 1.00
person: 1.00

person: 0.85

bicycle: 0.98bicycle: 0.98

bicycle: 0.86

backpack: 0.72

person: 0.99person: 0.93person: 0.86person: 0.83

truck: 0.60

dog: 1.00

chair: 0.65

dining table: 0.87

vase: 1.00

person: 1.00

person: 0.95

person: 0.94

skateboard: 0.87

person: 0.99

car: 0.99

car: 0.98

car: 0.97

car: 0.92

car: 0.91

car: 0.80

car: 0.78

car: 0.74

car: 0.72

truck: 0.96

Fig. 5: Detection examples on COCO test-dev with SSD512 model. We show

detections with scores higher than 0.6. Each color corresponds to an object category.

Method

VOC2007 test VOC2012 test COCO test-dev2015

07+12 07+12+COCO 07++12 07++12+COCO trainval35k

0.5 0.5 0.5 0.5 0.5:0.95 0.5 0.75

SSD300 74.3 79.6 72.4 77.5 23.2 41.2 23.4

SSD512 76.8 81.6 74.9 80.0 26.8 46.5 27.8

SSD300* 77.2 81.2 75.8 79.3 25.1 43.1 25.8

SSD512* 79.8 83.2 78.5 82.2 28.8 48.5 30.3

Table 6: Results on multiple datasets when we add the image expansion data aug-

mentation trick. SSD300* and SSD512* are the models that are trained with the new

data augmentation.

14 Liu et al.

XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL
0

0.2

0.4

0.6

0.8

1

0.28

0.78
0.84

0.98
0.93

0.49

0.880.88
0.91

0.98

0.17

0.67

0.82

0.92
0.96

0.37

0.64

0.77

0.91
0.94

0.47

0.88

0.95
0.990.99

0.09

0.36

0.67
0.70

0.54

0.22

0.70

0.94
0.990.99

airplane bicycle bird boat cat chair table

SSD300: BBox Area

XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL
0

0.2

0.4

0.6

0.8

1

0.69

0.870.87

0.980.96

0.68

0.96
0.910.91

0.97

0.47

0.830.82

0.92

0.99

0.60

0.790.81

0.92
0.97

0.53

0.930.95
0.990.98

0.29

0.47

0.690.70

0.38

0.23

0.68

0.91
0.97

0.93airplane bicycle bird boat cat chair table

SSD512: BBox Area

XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL
0

0.2

0.4

0.6

0.8

1

0.40

0.860.87

0.98
0.94

0.67

0.94
0.89

0.93
0.97

0.38

0.75

0.86
0.90

0.96

0.59

0.71

0.79

0.88

0.99

0.69

0.90
0.96

1.000.97

0.25

0.46

0.720.73

0.51

0.43

0.75

0.92
0.990.99

airplane bicycle bird boat cat chair table

SSD300*: BBox Area

XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL
0

0.2

0.4

0.6

0.8

1

0.85
0.90

0.87

0.99

0.92

0.75

0.95
0.900.93

0.97

0.62

0.870.86
0.92

0.99

0.770.76
0.78

0.92
0.97

0.73

0.89

0.980.990.98

0.42

0.58

0.720.74

0.45

0.32

0.70

0.94
0.970.98

airplane bicycle bird boat cat chair table

SSD512*: BBox Area

Fig. 6: Sensitivity and impact of object size with new data augmentation on

VOC2007 test set using [21]. The top row shows the effects of BBox Area per cat-

egory for the original SSD300 and SSD512 model, and the bottom row corresponds to

the SSD300* and SSD512* model trained with the new data augmentation trick. It is

obvious that the new data augmentation trick helps detecting small objects significantly.

3.7 Inference time

Considering the large number of boxes generated from our method, it is essential to

perform non-maximum suppression (nms) efficiently during inference. By using a con-

fidence threshold of 0.01, we can filter out most boxes. We then apply nms with jaccard

overlap of 0.45 per class and keep the top 200 detections per image. This step costs

about 1.7 msec per image for SSD300 and 20 VOC classes, which is close to the total

time (2.4 msec) spent on all newly added layers. We measure the speed with batch size

8 using Titan X and cuDNN v4 with Intel Xeon E5-2667v3@3.20GHz.

Table 7 shows the comparison between SSD, Faster R-CNN[2], and YOLO[5]. Both

our SSD300 and SSD512 method outperforms Faster R-CNN in both speed and accu-

racy. Although Fast YOLO[5] can run at 155 FPS, it has lower accuracy by almost 22%

mAP. To the best of our knowledge, SSD300 is the first real-time method to achieve

above 70% mAP. Note that about 80% of the forward time is spent on the base network

(VGG16 in our case). Therefore, using a faster base network could even further improve

the speed, which can possibly make the SSD512 model real-time as well.

4 Related Work

There are two established classes of methods for object detection in images, one based

on sliding windows and the other based on region proposal classification. Before the

advent of convolutional neural networks, the state of the art for those two approaches

– Deformable Part Model (DPM) [27] and Selective Search [1] – had comparable

performance. However, after the dramatic improvement brought on by R-CNN [22],

which combines selective search region proposals and convolutional network based

post-classification, region proposal object detection methods became prevalent.

The original R-CNN approach has been improved in a variety of ways. The first

set of approaches improve the quality and speed of post-classification, since it requires

SSD: Single Shot MultiBox Detector 15

Method mAP FPS batch size # Boxes Input resolution

Faster R-CNN (VGG16) 73.2 7 1 ∼ 6000 ∼ 1000× 600

Fast YOLO 52.7 155 1 98 448× 448

YOLO (VGG16) 66.4 21 1 98 448× 448

SSD300 74.3 46 1 8732 300× 300

SSD512 76.8 19 1 24564 512× 512

SSD300 74.3 59 8 8732 300× 300

SSD512 76.8 22 8 24564 512× 512

Table 7: Results on Pascal VOC2007 test. SSD300 is the only real-time detection

method that can achieve above 70% mAP. By using a larger input image, SSD512 out-

performs all methods on accuracy while maintaining a close to real-time speed.

the classification of thousands of image crops, which is expensive and time-consuming.

SPPnet [9] speeds up the original R-CNN approach significantly. It introduces a spatial

pyramid pooling layer that is more robust to region size and scale and allows the classi-

fication layers to reuse features computed over feature maps generated at several image

resolutions. Fast R-CNN [6] extends SPPnet so that it can fine-tune all layers end-to-

end by minimizing a loss for both confidences and bounding box regression, which was

first introduced in MultiBox [7] for learning objectness.

The second set of approaches improve the quality of proposal generation using deep

neural networks. In the most recent works like MultiBox [7, 8], the Selective Search

region proposals, which are based on low-level image features, are replaced by pro-

posals generated directly from a separate deep neural network. This further improves

the detection accuracy but results in a somewhat complex setup, requiring the training

of two neural networks with a dependency between them. Faster R-CNN [2] replaces

selective search proposals by ones learned from a region proposal network (RPN), and

introduces a method to integrate the RPN with Fast R-CNN by alternating between fine-

tuning shared convolutional layers and prediction layers for these two networks. This

way region proposals are used to pool mid-level features and the final classification

step is less expensive. Our SSD is very similar to the region proposal network (RPN) in

Faster R-CNN in that we also use a fixed set of (default) boxes for prediction, similar

to the anchor boxes in the RPN. But instead of using these to pool features and evaluate

another classifier, we simultaneously produce a score for each object category in each

box. Thus, our approach avoids the complication of merging RPN with Fast R-CNN

and is easier to train, faster, and straightforward to integrate in other tasks.

Another set of methods, which are directly related to our approach, skip the proposal

step altogether and predict bounding boxes and confidences for multiple categories di-

rectly. OverFeat [4], a deep version of the sliding window method, predicts a bounding

box directly from each location of the topmost feature map after knowing the confi-

dences of the underlying object categories. YOLO [5] uses the whole topmost feature

map to predict both confidences for multiple categories and bounding boxes (which

are shared for these categories). Our SSD method falls in this category because we do

not have the proposal step but use the default boxes. However, our approach is more

flexible than the existing methods because we can use default boxes of different aspect

16 Liu et al.

ratios on each feature location from multiple feature maps at different scales. If we only

use one default box per location from the topmost feature map, our SSD would have

similar architecture to OverFeat [4]; if we use the whole topmost feature map and add a

fully connected layer for predictions instead of our convolutional predictors, and do not

explicitly consider multiple aspect ratios, we can approximately reproduce YOLO [5].

5 Conclusions

This paper introduces SSD, a fast single-shot object detector for multiple categories. A

key feature of our model is the use of multi-scale convolutional bounding box outputs

attached to multiple feature maps at the top of the network. This representation allows

us to efficiently model the space of possible box shapes. We experimentally validate

that given appropriate training strategies, a larger number of carefully chosen default

bounding boxes results in improved performance. We build SSD models with at least an

order of magnitude more box predictions sampling location, scale, and aspect ratio, than

existing methods [5, 7]. We demonstrate that given the same VGG-16 base architecture,

SSD compares favorably to its state-of-the-art object detector counterparts in terms of

both accuracy and speed. Our SSD512 model significantly outperforms the state-of-the-

art Faster R-CNN [2] in terms of accuracy on PASCAL VOC and COCO, while being

3× faster. Our real time SSD300 model runs at 59 FPS, which is faster than the current

real time YOLO [5] alternative, while producing markedly superior detection accuracy.

Apart from its standalone utility, we believe that our monolithic and relatively sim-

ple SSD model provides a useful building block for larger systems that employ an object

detection component. A promising future direction is to explore its use as part of a sys-

tem using recurrent neural networks to detect and track objects in video simultaneously.

6 Acknowledgment

This work was started as an internship project at Google and continued at UNC. We

would like to thank Alex Toshev for helpful discussions and are indebted to the Im-

age Understanding and DistBelief teams at Google. We also thank Philip Ammirato

and Patrick Poirson for helpful comments. We thank NVIDIA for providing GPUs and

acknowledge support from NSF 1452851, 1446631, 1526367, 1533771.

References

1. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object

recognition. IJCV (2013)

2. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection

with region proposal networks. In: NIPS. (2015)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR.

(2016)

4. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated

recognition, localization and detection using convolutional networks. In: ICLR. (2014)

SSD: Single Shot MultiBox Detector 17

5. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time

object detection. In: CVPR. (2016)

6. Girshick, R.: Fast R-CNN. In: ICCV. (2015)

7. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using deep

neural networks. In: CVPR. (2014)

8. Szegedy, C., Reed, S., Erhan, D., Anguelov, D.: Scalable, high-quality object detection.

arXiv preprint arXiv:1412.1441 v3 (2015)

9. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks

for visual recognition. In: ECCV. (2014)

10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.

In: CVPR. (2015)

11. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation

and fine-grained localization. In: CVPR. (2015)

12. Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: Looking wider to see better. In: ILCR. (2016)

13. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep

scene cnns. In: ICLR. (2015)

14. Howard, A.G.: Some improvements on deep convolutional neural network based image

classification. arXiv preprint arXiv:1312.5402 (2013)

15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-

nition. In: NIPS. (2015)

16. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition

challenge. IJCV (2015)

17. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image seg-

mentation with deep convolutional nets and fully connected crfs. In: ICLR. (2015)

18. Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm

for signal analysis with the help of the wavelet transform. In: Wavelets. Springer (1990)

286–297

19. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,

Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: MM. (2014)

20. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural

networks. In: AISTATS. (2010)

21. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: ECCV

2012. (2012)

22. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object

detection and semantic segmentation. In: CVPR. (2014)

23. Zhang, L., Lin, L., Liang, X., He, K.: Is faster r-cnn doing well for pedestrian detection. In:

ECCV. (2016)

24. Bell, S., Zitnick, C.L., Bala, K., Girshick, R.: Inside-outside net: Detecting objects in context

with skip pooling and recurrent neural networks. In: CVPR. (2016)

25. COCO: Common Objects in Context. http://mscoco.org/dataset/

#detections-leaderboard (2016) [Online; accessed 25-July-2016].

26. Dollar, P.: Coco api. https://github.com/pdollar/coco (2016)

27. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, de-

formable part model. In: CVPR. (2008)

