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ABSTRACT
Multi-agent systems designed to work collaboratively with groups
of people typically require private information that people will en-
trust to them only if they have assurance that this information will
be protected. Although Distributed Constraint Optimization (DCOP)
has emerged as a prominent technique for multiagent coordination,
existing algorithms for solving DCOP problems do not adeqately
protect agents’ privacy. This paper analyzes privacy protection and
loss in existing DCOP algorithms. It presents a new algorithm, SS-
DPOP, which augments a prominent DCOP algorithm (DPOP) with
secret sharing techniques. This approach significantly reduces pri-
vacy loss, while preserving the structure of the DPOP algorithm
and introducing only minimal computational overhead. Results
show that SSDPOP reduces privacy loss by 29-88% on average
over DPOP.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, Multiagent systems

General Terms
Algorithms, Performance, Security

Keywords
constraint reasoning, DCOP, privacy

1. INTRODUCTION
Many problem domains within multiagent systems and constraint

processing require new algorithms to provide better privacy. For in-
stance, in the domain of multiagent scheduling, agents must sched-
ule events subject to individual constraints. These agents represent
people whose preferences are personal information. Their calen-
dars may contain the intersection of multiple professional endeav-
ors as well as events relevant to their personal lives. They want a
solution that will optimize global social welfare, but are not willing
to expose their personal information to the other agents.

Resource allocation problems, which arise in many domains are
another example of constraint problems requiring privacy preserv-
ing algorithms. For instance, multiple government and private groups
may plan to aid in a disaster relief effort. They wish to contribute
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resources optimally, but be mutually distrustful and not want the
others to know their holdings and constraints.

Algorithms for distributed constraint optimization (DCOP) [5,
12] provide a useful formalism for solving these types of problems.
In these algorithms, each agent passes messages as necessary to
other agents to collaboratively compute the solution, rather than
surrendering all data to a central server. Experimental analysis [2]
has shown that this approach can improve privacy over a central-
ized approach, but current DCOP algorithms all leak significant
amounts of private information.

A key contribution of this paper is a complete characterization
of where privacy is lost in DCOP algorithms. We identify four
sources of privacy loss: initial vulnerability, intersection vulnera-
bility, domain vulnerability and solution vulnerability. For DCOP
algorithms that organize agents into tree topologies, most privacy
loss is a result of initial vulnerability, agents at the bottom of the
tree revealing information [2].

We use this characterization to identify areas where the judicious
use of cryptographic techniques can provide for greater privacy.
Prior work [8, 13] has placed the entire computation in the crypto-
graphic realm (using secure multiparty computation), adding costly
overhead to constraint processing. In constrast, we protect only the
most “leaky” part of the computation with cryptography.

Another contribution is a novel algorithm that uses secret shar-
ing [7], a well-known cryptographic technique, to greatly reduce
privacy loss without incurring significant runtime overhead. The
algorithm, SSDPOP, augments the DPOP algorithm [6] with secret
sharing in order to protect the privacy of agents at the bottom of the
DCOP topology. Since secret sharing only involves addition and
polynomial interpolation, it is much faster than secure multiparty
computation. While we describe SSDPOP in terms of meeting
scheduling, it can be applied to the full range of DCOP problems.

In following sections, we characterize privacy protection in cur-
rent DCOP algorithms and the vulnerabilities future algorithms must
overcome in order to better preserve privacy. We then present the
SSDOP algorithm in detail and explain how it completely elimi-
nates initial vulnerability, the most egregious of the defined vulner-
abilities. Our experimental results demonstrate large privacy im-
provements of SSDPOP over DPOP and that the efficiency costs of
SSDPOP over DPOP are small.

2. INFORMATION FLOW IN DCOP
A constraint reasoning problem is one in which a set of variables

need to be assigned values, subject to various constraints. In con-
straint optimization, the goal is to find globally optimal values. In
the meeting scheduling domain, shared constraints include infor-
mation about the meetings to be scheduled and the agents partic-
ipanting in each meeting. This information is public, in constrast



to the individual preference constraints (i.e. utilities for schedul-
ing meetings at particular times) which are private and need to be
protected. This definition of public and private information is con-
sistent with other studies [2, 4].

A distributed solution is appropriate for domains where privacy
matters. In addition, distribution may also improve scalability, re-
duce communication costs, or allow increased agent autonomy.

Formally, a discrete distributed constraint optimization (DCOP)
is a tuple (X,D,R) such that X = x1, · · · , xn is a set of variables,
D = d1, · · · , dn is a set of finite domains of the variables, and
R = r1, · · · , rm is a set of relations where a relation ri denotes the
utility assigned to each possible combination of values of the rele-
vant subset of the variables in ri. Negative utilities are costs [6].

For meeting scheduling, the meetings are the variables and the
domain is the set of possible times. The constraints are the agents’
valuations for sets of meetings assigned to possible times.

Agents solving a DCOP need to communicate their preference
constraints on the variables to each other in order to solve the prob-
lem. In current DCOP algorithms, agents communicate directly
with only their neighbors in a given topology and achieve some
privacy using aggregation. Typically, a message containing con-
straint information is passed from agent A to agent B, then agent
B does some computation and passes the result to agent C. The
message from B to C contains information about both A and B’s
constraints. If the constraints are well aggregated, C may be un-
able to determine the constraints of the individual agents, affording
A and B some privacy with respect to C.

However, since A went first, it could not aggregate its infor-
mation with any other agent and B learns A’s constraints. Pro-
tecting privacy with aggregation has a bootstrapping problem in
which at least one agent’s constraints are initially exposed as the
distributed computation begins. We refer to this vulnerability in
existing DCOP algorithms as the initial vulnerability. The initial
vulnerability is the greatest source of privacy loss in DCOP algo-
rithms [2]. Our SSDPOP algorithm eliminates initial vulnerability.

Lesser sources of privacy loss in DCOP appear more relevant
once the initial vulnerability is removed. Two of these vulnera-
bilities occur when aggregation is insufficient to hide the private
information of one or more agents. In particular, an intersection
vulnerability occurs any time that an agent B is constrained by dif-
ferent sets of variables than the other agents in the aggregation,
since B’s partial solution will expose unaggregated variables. A
domain vulnerability occurs when all aggregated agents’ values for
a particular timeslot are the same, and these values are near the
edges of the domain. For example, if the domain interval is [0, 5]
and the aggregate value for A and B is 0, then their individual val-
ues must also be 0. SSDPOP takes measures to reduce privacy loss
from intersection and domain vulnerabilities.

A final source of privacy loss in DCOP is information revealed
by the solution itself: solution vulnerability. Though it is possi-
ble to mitigate solution vulnerability [8], we consider the solution
public information and accept this privacy loss.

3. THE SSDPOP ALGORITHM
This paper focuses on extending the DPOP algorithm [6] to re-

duce its privacy loss. We began with DPOP for the following
reasons: It is simple and efficient. In addition, DPOP has per-
formed well in experimental privacy analysis. DPOP and Adopt
were shown to be the most private algorithms, consistently outper-
forming both other DCOP algorithms and centralized approaches [2].
Thus, privacy improvements in DPOP are a significant advance.

To understand our modifications, it is necessary to explain the
DPOP algorithm and its three phases. First, a Depth-First Search

(DFS) tree is created such that agents who share constraints are in
the same branch. Each agent x identifies its parent and pseudopar-
ents1 in the tree. Second, UTIL messages are propagated up the
tree, starting with the leaves. A UTIL message contains variables
that share constraints with the sending agent’s parent or pseudopar-
ents and a table with utilities for each possible assignment of in-
cluded variables. When an agent receives UTIL messages from all
its children, it aggregates them into a new UTIL message, pruning
away variables not shared by agents above it in the tree and adding
variables that constrain its parents or pseudoparents. This phase
ends when the root receives UTIL messages from all its children.

In the third and final phase, the root agent determines the opti-
mal values for its variables and sends the result to its children in a
VALUE message. Each agent determines its optimal value based
on the computation it performs and the VALUE message sent by its
parent. The agent then sends VALUE messages to its children.

3.1 SSDPOP: DPOP with Secret Sharing
Most of the privacy loss in DPOP can be attributed to initial vul-

nerability. Every leaf in the DFS tree suffers from initial vulnera-
bility. SSDPOP modifies DPOP to protect these leaves. Without
loss of generality, we will assume the tree is a simple chain, and an
agent B is the bottom of the chain. SSDPOP uses secret sharing [7]
to aggregate the results of a single meeting M, without revealing
the individual valuations that went into that meeting. The aggre-
gate values for meeting M are then passed to agent B. Agent B
aggregates this information with his own valuations and sends the
aggregate up the chain. The initial vulnerability is eliminated.

The SSDPOP algorithm has four phases:
(1) Topology building: SSDPOP assigns agents to positions in

the chain. One meeting M is chosen for secret sharing.
(2) Secret sharing: The agents in M use secret sharing to send

aggregate values for M to the bottom agent B without revealing
their individual valuations. B forms a UTIL message combining its
valuations with the aggregate valuations for M.

(3) UTIL phase: Proceeds just as in DPOP, except that other
agents in the chain act as if meeting M does not exist.

(4) VALUE phase: Proceeds as in DPOP, except that agent B will
eventually receive an assignment for all meetings except M. When
B receives the VALUE message from its parent, it computes the
optimal value for M and sends that value up to the relevant agents.

The following two sections describe the first two phases in greater
detail. Phases 3 and 4 are straightforward.

3.2 Topology Building
This phase chooses a meeting M for secret sharing and a bottom

agent B. There are three constraints on this choice.
The first constraint is that M cannot be a two-agent meeting

where one of the participants is B. In such a situation, B could
simply subtract out his own valuations to derive those of the other
agent. In other words, we must avoid the straightforward intersec-
tion vulnerability. The second constraint, also to avoid an intersec-
tion vulnerability, is that all B’s meetings must contain at least one
agent who also is attending meeting M. This constraint is satisfied
when meeting M includes B.

The last (soft) constraint is to choose the largest possible meeting
M to avoid the domain vulnerability. If all agents in M have the
same valuation for a timeslot and that valuation is extreme, this
information will be revealed by the aggregate of the meeting to
agent B. This problem is less likely to occur for large meetings.

3.3 Secret Sharing
1Ancestors of x in the tree who share constraints with x.



Secret Sharing [7] is used to communicate aggregate valuations
for meeting M to agent B. Secret sharing is a method to divide a
secret among a group of agents, each of which is allocated a share
of the secret.

In the Shamir scheme, secret sharing uses the fact that n (x, y)
coordinate pairs define a polynomial of degree n − 1. The secret
is the y-intercept of the polynomial and the other coefficients are
determined randomly. The dealer gives each of the agents a point
on the curve. When n agents pool their shares, they can use polyno-
mial interpolation to determine the polynomial, and thus the secret.
However, if n− 1 agents pool shares, they learn absolutely nothing.

Two other properties of secret sharing are useful for our pur-
poses: (1) Additive Homomorphism: If ts1 is a share of secret s1

and ts2 is a share of secret of s2, then ts1 + ts2 = ts1+s2 , a share of
s1 + s2. (2) Efficiency: Unlike cryptography requiring exponenti-
ation, secret sharing is efficient, requiring only polynomial evalua-
tion and interpolation.

In the secret-sharing step of SSDPOP, meeting M has n member
agents, x1 · · · xn. Each member generates n shares of the secret and
sends share i to agent xi. Each member then adds the shares it
has received, s1 + · · · + sn, and sends the sum to the bottom agent
B. Due to the additive homomorphism, B can construct aggregate
values for meeting M, but none of the individual values. B then
aggregates its values with the those for M in a UTIL message.

4. RESULTS
In order to evaluate the privacy loss of SSDPOP as it compares

to DPOP, we ran experiments over seven scenarios used in previ-
ous studies [2,4]. We found that SSDPOP reduced average privacy
loss by 29%-76% over DPOP using the VPS metric EntropyTS [4].
The benefits of using SSDPOP appeared even more pronounced for
the D|A metric [3], with an average reduction of 56%-88%. Where
privacy loss did occur in SSDPOP, it was due to domain vulnera-
bilities in the secret shared meeting M.

The overhead incurred by SSDPOP is acceptable in comparison
to running DPOP in a chain. Three factors cause performance dif-
ferences between DPOP and SSDPOP: (1) Selection of the meet-
ing M and the bottom agent B. This takes O(NE) in the worst case
where N is the number of agents and E is the number of events to
be scheduled. (2) Addition of the secret sharing step, which uses
operations that take O(|M|log2|M|) time. (3) Elimination of the se-
lected meeting M from the optimizing computation, which actually
reduced run time. Costs from (1) and (2) can be incurred as prepro-
cessing steps before optimizing.

5. RELATED WORK
Initial privacy work [1,9–11] established the importance of a rig-

orous understanding of privacy for constraint satisfaction problems.
The VPS framework built on this early work and illustrated how
key metrics of privacy from earlier work could be captured and
cross-compared [4]. However, the VPS framework showed pri-
vacy loss to be greater in some DCOP algorithms than in a cen-
tralized one. Further work using these metrics showed that the
DCOP and ADOPT algorithms improved privacy over centralized
approaches [2]. We make use of D|A, a metric for privacy in DCOP
that focuses on the aggregation of certain data, to produce qualita-
tive results [3]. Yokoo et al [13] discuss a secure DisCSP algorithm
that uses cryptographic techniques to ensure strict privacy.

6. CONCLUSION AND FUTURE WORK

The main contributions of this paper are a more complete anal-
ysis of information flow in DCOP algorithms, describing four vul-
nerabilities to privacy loss, and a novel algorithm which signif-
icantly reduces privacy loss. The SSDPOP algorithm augments
DPOP with secret sharing techniques. SSDPOP significantly re-
duces privacy loss, by eliminating initial vulnerability, while min-
imizing domain and intersection vulnerabilities. Results show that
SSDPOP reduces privacy loss by 29-88% on average over DPOP
according to the VPS metrics EntropyTS and D|A. SSDPOP re-
quires only two additional rounds of communication and a prepro-
cessed, polynomial-time computation.

SSDPOP can be extended to protect the leaves in tree topolo-
gies. Extending to trees will cause more opportunity for privacy
loss from domain vulnerability, but such losses may be acceptable
when efficiency concerns prevail.
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