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Abstract

Recently, sparse representation based methods have proven to be successful towards solving image restoration

problems. The objective of these methods is to use sparsity prior of the underlying signal in terms of some

dictionary and achieve optimal performance in terms of mean-squared error, a metric that has been widely

criticized in the literature due to its poor performance as a visual quality predictor. In this work, we make one of

the first attempts to employ structural similarity (SSIM) index, a more accurate perceptual image measure, by

incorporating it into the framework of sparse signal representation and approximation. Specifically, the proposed

optimization problem solves for coefficients with minimum L0 norm and maximum SSIM index value.

Furthermore, a gradient descent algorithm is developed to achieve SSIM-optimal compromise in combining the

input and sparse dictionary reconstructed images. We demonstrate the performance of the proposed method by

using image denoising and super-resolution methods as examples. Our experimental results show that the

proposed SSIM-based sparse representation algorithm achieves better SSIM performance and better visual quality

than the corresponding least square-based method.

1 Introduction

In many signal processing problems, mean squared error

(MSE) has been the preferred choice as the optimization

criterion due to its ease of use and popularity, irrespec-

tive of the nature of signals involved in the problem.

The story is not different for image restoration tasks.

Algorithms are developed and optimized to generate the

output image that has minimum MSE with respect to

the target image [1-6]. However, MSE is not the best

choice when it comes to image quality assessment

(IQA) and signal approximation tasks [7]. In order to

achieve better visual performance, it is desired to modify

the optimization criterion to the one that can predict

visual quality more accurately. SSIM has been quite suc-

cessful in achieving superior IQA performance [8]. Fig-

ure 1 demonstrates the difference between the

performance of SSIM and absolute error (the bases for

Lp , MSE, PSNR, etc.). Figure 1c shows the quality map

of the image 1b with reference to 1a, obtained by calcu-

lating the absolute pixel-by-pixel error, which forms the

basis of MSE calculation for quality evaluation. Figure

1d shows the corresponding SSIM quality map which is

used to calculate the SSIM index of the whole image. It

is quite evident from the maps that SSIM performs a

better job in predicting perceived image quality. Specifi-

cally, the absolute error map is uniform over space, but

the texture regions in the noisy image appear to be

much less noisier than the smooth regions. Clearly, the

SSIM map is more consistent with such observations.

The SSIM index and its extensions have found a wide

variety of applications, ranging from image/video coding

i.e., H.264 video coding standard implementation [9],

image classification [10], restoration and fusion [11], to

watermarking, denoising and biometrics (see [7] for a

complete list of references). In most existing works,

however, SSIM has been used for quality evaluation and

algorithm comparison purposes only. SSIM possesses a

number of desirable mathematical properties, making it

easier to be employed in optimization tasks than other

state-of-the-art perceptual IQA measures [12]. But,

much less has been done on using SSIM as an optimiza-

tion criterion in the design and optimization of image

processing algorithms and systems [13-19].

Image restoration problems are of particular interest

to image processing researchers, not only for their prac-

tical value, but also because they provide an excellent
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test bed for image modeling, representation and estima-

tion theories. When addressing general image restora-

tion problems with the help of Bayesian approach, an

image prior model is required. Traditionally, the pro-

blem of determining suitable image priors has been

based on a close observation of natural images. This

leads to simplifying assumptions such as spatial smooth-

ness, low/max-entropy or sparsity in some basis set.

Recently, a new approach has been developed for learn-

ing the prior based on sparse representations. A diction-

ary is learned either from the corrupted image or a

high-quality set of images with the assumption that it

can sparsely represent any natural image. Thus, this

learned dictionary encapsulates the prior information

about the set of natural images. Such methods have pro-

ven to be quite successful in performing image restora-

tion tasks such as image denoising [3] and image super-

resolution [5,20]. More specifically, an image is divided

into overlapping blocks with the help of a sliding win-

dow and subsequently each block is sparsely coded with

the help of dictionary. The dictionary, ideally, models

the prior of natural images and is therefore free from all

(a) (b)

(c) (d)

Figure 1 Comparison of SSIM and MSE for “Barbara” image altered with additive white Gaussian noise. (a) Original image; (b) noisy

image; (c) absolute error map (brighter indicates better quality/smaller absolute difference); (d) SSIM index map (brighter indicates better

quality/larger SSIM value).
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kinds of distortions. As a result the reconstructed

blocks, obtained by linear combination of the atoms of

dictionary, are distortion free. Finally, the blocks are put

back into their places and combined together in light of

a global constraint for which a minimum MSE solution

is reached. The accumulation of many blocks at each

pixel location might affect the sharpness of the image.

Therefore, the distorted image must be considered as

well in order to reach the best compromise between

sharpness and admissible distortions.

Since MSE is employed as the optimization criterion,

the resulting output image might not have the best per-

ceptual quality. This motivated us to replace the role of

MSE with SSIM in the framework. The solution of this

novel optimization problem is not trivial because SSIM

is non-convex in nature. There are two key problems

that have to be resolved before effective SSIM-based

optimization can be performed. First, how to optimally

decompose an image as a linear combination of basis

functions in maximal SSIM, as opposed to minimal

MSE sense. Second, how to estimate the best compro-

mise between the distorted and sparse dictionary recon-

structed images for maximal SSIM. In this article, we

provide solutions to these problems and use image

denoising and image super-resolution as applications to

demonstrate the proposed framework for image restora-

tion problems.

We formulate the problem in Section 2.1 and provide

our solutions to issues discussed above in Sections 2.2

and 2.3. Section 3.1 describes our approach to denoise

the images. The proposed method for image super-reso-

lution is described in Section 3.2 and finally we con-

clude in Section 4.

2 The proposed method

In this section we will incorporate SSIM as our quality

measure, particularly for sparse representation. In con-

trast to what we may expect, it is shown that sparse

representation in minimal L2 norm sense can be easily

converted to maximal SSIM sense. We will also use a

gradient descend approach to solve a global optimiza-

tion problem in maximal SSIM sense. Our framework

can be applied to a wide class of problems dealing with

sparse representation to improve visual quality.

2.1 Image restoration from sparsity

The classic formulation of image restoration problem is

as following:

y = �x + n (1)

where x Î ℝ
n, y Î ℝ

m, n Î ℝ
m, and F Î ℝ

m x n. Here

we assume x and y are vectorized versions, by column

stacking, of original 2-D original and distorted images,

respectively. n is the noise term, which is mostly

assumed to be zero mean, additive, and independent

Gaussian. Generally m <n and thus the problem is ill-

posed. To solve the problem assertion of a prior on the

original image is necessary. The early approaches used

least square (LS) [21] and Tikhonov regularization [22]

as priors. Later minimal total variation (TV) solution

[23] and sparse priors [3] were used successfully on this

problem. Our focus in the current work is to improve

algorithms, in terms of visual quality, that assert sparsity

prior on the solution in term of a dictionary domain.

Sparsity prior has been used successfully to solve dif-

ferent inverse problems in image processing [3,5,24,25].

If our desired signal, x, is sparse enough then it has

been shown that the solution to (1) is the one with

maximum sparsity which is unique (within some �-ball

around x) [26,27]. It can be easily found by solving a

linear programming problem or by orthogonal matching

pursuit (OMP). Not all natural signals are sparse but a

wide range of natural signals can be represented sparsely

in terms of a dictionary and this makes it possible to use

sparsity prior on a wide range of inverse problems. One

major problem is that the image signals are considered

to be high dimensional data and thus, solving (1)

directly is computationally expensive. To tackle this pro-

blem we assume local sparsity on image patches. Here,

it is assumed that all the image patches have sparse

representation in terms of a dictionary. This dictionary

can be trained over some patches [28].

Central to the process of image restoration, using local

sparse and redundant representations, is the solution to

the following optimization problems [3,5],

α̂ij = arg min
α

µij‖α‖0 +
∥

∥�α − RijX
∥

∥

2

2
, (2)

X̂ = arg min
x

‖X − W‖2
2 + λ ‖DHX − Y‖2

2 . (3)

where Y is the observed distorted image, X is the

unknown output restored image, Rij is a matrix that

extracts the (ij) block from the image, Ψ Î ℝ
n x k is the

dictionary with k >n, aij is the sparse vector of coeffi-

cients corresponding to the (ij) block of the image, X̂ is

the estimated image, l is the regularization parameter,

and W is the image obtained by averaging the blocks

obtained using the sparse coefficients vectors α̂ij calcu-

lated by solving optimization problem in (2). This is a

local sparsity-based method that divides the whole

image into blocks and represents each block sparsely

using some trained dictionary Among other advantages,

one major advantage of such a method is the ease to

train a small dictionary as compared to one large global

dictionary This is achieved with the help of (2) which is
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equivalent to (4). As to the coefficients μij, those must

be location dependent, so as to comply with a set of

constraints of the form
∥

∥�α − RijX
∥

∥

2

2
≤ T . Solving this

using the orthonormal matching pursuit [29] is easy,

gathering one atom at a time, and stopping when the

error
∥

∥�α − RijX
∥

∥

2

2
goes below T. This way, the choice

of μij has been handled implicitly Equation (3) applies a

global constraint on the reconstructed image and uses

the local patches and the noisy image as input in order

to construct the output that complies with local-sparsity

and also lies within the proximity of the distorted image

which is defined by amount and type of distortion.

α̂ij = arg min
α

‖α‖0subject to
∥

∥�α − RijX
∥

∥

2

2
≤ T (4)

In (3), we have assumed that the distortion operator F

in (1) may be represented by the product DH, where H

is a blurring filter and D the downsampling operator.

Here we have assumed each non-overlapping patch of

the images can be represented sparsely in the domain of

Ψ. Assuming this prior on each patch (2) refers to the

sparse coding of local image patches with bounded

prior, hence building a local model from sparse repre-

sentations. This enables us to restore individual patches

by solving (2) for each patch. By doing so, we face the

problem of blockiness at the patch boundaries when

denoised non-overlapping patches are placed back in

the image. To remove these artifacts from the denoised

images overlapping patches are extracted from the noisy

image which are combined together with the help of (3).

The solution of (3) demands the proximity between the

noisy image, Y, and the output image X, thus enforcing

the global reconstruction constraint. The L2 optimal

solution suggests to take the average of the overlapping

patches [3], thus eliminating the problem of blockiness

in the denoised image.

As stated earlier, we propose a modified restoration

method which incorporates SSIM into the procedure

defined by (2) and (3). It is defined as follows,

α̂ij = arg min
α

µij‖α‖0 + (1 − S(�α, RijX)), (5)

X̂ = arg max
x

S(W, X) + λS(DHX, Y), (6)

where S(·,·) defines the SSIM measure. The expression

for SSIM index is

S(a, y) =
2µaµy + C1

µ2
a + µ2

y + C1

2σa,y + C2

σ 2
a + σ 2

y + C2
, (7)

with μa and μy the means of a and y respectively, σ 2
a

and σ 2
y the sample variances of a and y respectively,

and say the covariance between a and y. The constants

C1 and C2 are stabilizing constants and account for the

saturation effect of the HVS.

Equation (5) aims to provide the best approximation

of a local patch in SSIM-sense with the help of mini-

mum possible number of atoms. The process is per-

formed locally for each block in the image which are

then combined together by simple averaging to con-

struct W. Equation (6) applies a global constraint and

outputs the image that is the best compromise between

the noisy image, Y, and W in SSIM-sense. This step is

very vital because it has been observed that the image

W lacks the sharpness in the structures present in the

image. Due to the masking effect of the HVS, same level

of noise does not distort different visual content equally.

Therefore, the noisy image is used to borrow the con-

tent from its regions which are not convoluted severely

by noise. Use of SSIM is very well-suited for such a

task, as compared to MSE, because it accounts for the

masking effect of HVS and allows us to capture improve

structural details with the help of the noisy image. Note

the use of 1 - S(·, ·) in (5). This is motivated by the fact

that 1 - S(·,·) is a squared variance-normalized L2 dis-

tance [30]. Solutions to the optimization problems in (5)

and (6) are given in Sections 2.2 and 2.3, respectively.

2.2 SSIM-optimal local model from sparse representation

This section discusses the solution to the optimization

problem in (5). Equation (2) can be solved approxi-

mately using OMP [29] by including one atom at a time

and stopping when the error
∥

∥�αij − RijX
∥

∥

2

2
goes below

Tmse = (Cs)2. C is the noise gain and s is the standard

deviation of the noise. We solve the optimization pro-

blem in (5) based on the same philosophy We gather

one atom at a time and stop when S(Ψa,xij) goes above

Tssim, threshold defined in terms of SSIM. In order to

obtain Tssim, we need to consider the relationship

between MSE and SSIM. For the mean reduced a and y,

the expression of SSIM reduces to the following equa-

tion

S(a, y) =
2σa,y + C2

σ 2
a + σ 2

y + C2
, (8)

Subtracting both sides of (8) from 1 yields

1 − S(a, y) = 1 −
2σa,y + C2

σ 2
a + σ 2

y + C2
(9)
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=
σ 2

a + σ 2
y − 2σa,y

σ 2
a + σ 2

y + C2

(10)

=

∥

∥a − y
∥

∥

2

2

σ 2
a + σ 2

y + C2
, (11)

(12)

Equation (12) can be re-arranged to arrive at the fol-

lowing result

S(a, y) = 1 −

∥

∥a − y
∥

∥

2

2

σ 2
a + σ 2

y + C2

(13)

With the help of the equation above, we can calculate

the value of Tssim as follows

Tssim = 1 −
Tmse

σ 2
a + σ 2

y + C2
, (14)

where C2 is the constant originally used in SSIM index

expression [8] and σ 2
a is calculated based on current

approximation of the block given by a: = Ψa.

It has already been shown that the main difference

between SSIM and MSE is the divisive normalization

[30,31]. This normalization is conceptually consistent

with the light adaptation (also called luminance mask-

ing) and contrast masking effect of HVS. It has been

recognized as an efficient perceptually and statistically

non-linear image representation model [32,33]. It is

shown to be a useful framework that accounts for the

masking effect in human visual system, which refers to

the reduction of the visibility of an image component in

the presence of large neighboring components [34,35]. It

has also been found to be powerful in modeling the

neuronal responses in the visual cortex [36,37]. Divisive

normalization has been successfully applied in IQA

[38,39], image coding [40], video coding [31] and image

denoising [41].

Equation (14) suggests that the threshold is chosen

adaptively for each patch. The set of coefficients a = (a1,

a2, a3,..., ak) should be calculated such that we get the

best approximation a in terms of SSIM. We search for

the stationary points of the partial derivatives of S with

respect to a. The solution to this problem for orthogonal

set of basis is discussed in [30]. Here we aim to solve a

more general case of linearly independent atoms. The

L2 -based optimal coefficients, {ci}
k
i=1 , can be calculated

by solving the following system of equations

k
∑

j=1

cj

〈

ψi, ψj

〉

=
〈

y, ψi

〉

, 1 ≤ i ≤ k, (15)

We denote the inner product of a signal with the con-

stant signal (1/n, 1/n,..., 1/n) of length n by <ψ >: = <ψ,

1/n >, where < ·, · > represents the inner product.

First, we write the mean, the variance and the covar-

iance of a in terms of a with n the size of the current

block:

µa =

〈

k
∑

i=1

αiψi

〉

=

k
∑

i=1

αi 〈ψi〉 (16)

(n − 1)σ 2
a = 〈a, a〉 − n〈a〉2

=

k
∑

i=1

k
∑

j=1

αiαj

〈

ψiψj

〉

− nµ2
a ,

(17)

(n − 1)σay =
〈

a, y
〉

− n 〈a〉
〈

y
〉

=

k
∑

i=1

αi

〈

y, ψi

〉

− nµaµy,
(18)

where < · > represents the sample mean. The partial

derivatives are given as follows

∂µa

∂αi

= 〈ψi〉 , (19)

(n − 1)
∂σ 2

a

∂αi
= 2

k
∑

j=1

αj

〈

ψi, ψj

〉

− 2nµa 〈ψi〉 , (20)

(n − 1)
∂σay

∂αi
=

〈

y, ψi

〉

− nµy 〈ψi〉 , (21)

The structural similarity can be written as

log S = log
(

2µaµy + C1

)

+ log(2σa,y + C2)

− log
(

σ 2
a + σ 2

y + C2

)

− log
(

µ2
a + µ2

y + C2

) (22)

From logarithmic differentiation of (7) combined with

(19)-(21), we have

1

S

∂S

∂αi
=

2µy 〈ψi〉

2µaµy + C1
−

2µa 〈ψi〉

µ2
aµ

2
y + C1

+
2

[〈

y, ψi

〉

− nµy 〈ψi〉
]

(n − 1)[2σa,y + C2]
−

2
[

∑k
j=1 αj

〈

ψi, ψj

〉

− nµa 〈ψi〉
]

(n − 1)
[

σ 2
a + σ 2

y + C2

] (23)

After subtracting the corresponding DC values from all

the blocks in the image, we are interested only in the parti-

cular case where the atoms are made of oscillatory func-

tions, i.e., when 〈ψi〉 = 0 for 1 ≤ i ≤ k, thus reducing (23) to

1

S

∂S

∂αi
=

2
〈

y, ψi

〉

(n − 1)2σa,y + C2
−

2
(

∑k
j=1 αj

〈

ψi, ψj

〉

)

(n − 1)
(

σ 2
a + σ 2

y + C2

) . (24)
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We equate (24) to zero in order to find the stationary

points. The result is the following linear system of equa-

tions

k
∑

j=1

αj

〈

ψi, ψj

〉

= β
〈

y, ψi

〉

, 1 ≤ i ≤ k, (25)

where

β =
σ 2

a + σ 2
y + C2

2σay + C2
. (26)

where b is an unknown constant dependent on the

statistics of the unknown image block a. Comparing a

with the optimal coefficients in Lp sense denoted by c

and given by (15) results in the following solution:

αi = βci, 1 ≤ i ≤ k, (27)

which implies that the optimal SSIM-based solution

is just a scaling of the optimal L2 -based solution. The

last step is to find b. It is important to note that the

value of b varies over the image and is therefore con-

tent dependent. Also, the scaling factor, b, may lead to

selection of a different set of atoms from the diction-

ary, as compared to L2 where b = 1, which are better

suited to providing a closer and sparser approximation

of the patch in SSIM-sense. After substituting (27) in

the expression (26) for b via (16), (17) and (18) and

then isolating for b gives us the following quadratic

equation

β2(B − A) + βC2 − σ 2
y − C2 = 0. (28)

where

A =
1

n − 1

k
∑

i=1

k
∑

j=1

cicj

〈

ψi, ψj

〉

, (29)

B =
2

n − 1

k
∑

j=1

cj

〈

y, ψj

〉

. (30)

Solving for b and picking a positive value for maximal

SSIM gives us

β =
−C2 +

√

C2
2 + 4(B − A)(σ 2

y + C2)

2(B − A)
. (31)

Now we have all the tools required for an OMP algo-

rithm that perform the sparse coding stage in optimal

SSIM sense. The modified OMP pursuit algorithm is

explained in Algorithm 1. There are two main

differences between the OMP algorithm [29] and the

one proposed in this work. First, the stopping criterion

is based on SSIM. Unlike MSE, SSIM is adaptive accord-

ing to the reference image. In particular, if the distortion

is consistent with the underlying reference e.g., contract

enhancement, the distortion is non-structural and is

much less objectional than structural distortions. Defin-

ing the stopping criterion according to SSIM essentially

means that we are modifying the set of accepted points

(image patches) around the noisy image patch which

can be represented as the linear combination of diction-

ary atoms. This way, in the space of image patches, we

are omitting image patches in the direction of structural

distortion and including the ones which are in the same

direction as the original image patch in the set of accep-

table image patches. Therefore, we can expect to see

more structures in the image constructed using sparsity

as a prior. Second, we calculate the SSIM-optimal coeffi-

cients from the optimal coefficients in L2 -sense using

the derivation in Section 2.2, which are scalar multiple

of the optimal L2 -based coefficients.

2.3 SSIM-based global reconstruction

The solution to this optimization problem defined in

Equation (6) is the image that is the best compromise

between the distorted image and the one obtained

using sparse representation in the maximal SSIM

sense. With the assumption of known dictionary, the

only other thing the optimization problem in (6)

requires is the coefficients aij which can be obtained

by solving optimization problem in (5). SSIM is a local

quality measure when it is applied using a sliding win-

dow, it provides us with a quality map that reflects the

variation of local quality over the whole image. The

global SSIM is computed by pooling (averaging) the

local SSIM map. The global SSIM for an image, Y,

with respect to the reference image, X, is given by the

following equation

S(X, Y) =
1

Nl

∑

ij

S(xij, yij), (32)

where xij = RijX and yij = RijY where Rij is an Nw × N

matrix that extracts the (ij) block from the image. The

expression for local SSIM, S(xij, yij), is given by (7). Nl is

the total number of local windows and can be calculated

as

Nl =
1

Nw
tr

⎛

⎝

∑

ij

RT
ijRij

⎞

 . (33)

where tr(·) denotes the trace of a matrix.
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We use a gradient-descent approach to solve the opti-

mization problem given by (6). The update equation is

given by

X̂k+1 = X̂k + λ �∇YS(X, Y)

= X̂k + λ
1

Nl

�∇Y

∑

ij

S(xij, yij)

= X̂k + λ
1

Nl

∑

ij

RT
ij
�∇yS(xij, yij)

(34)

where

�∇yS(x, y) =
2

NwB2
1B2

2

[

A1B1(B2x − A2y + B1B2(A2 − A1)µx1 + A1A2(B1 − B2)µy1)
]

,

A1 = 2µxµy + C1, A2 = 2σxy + C2,

B1 = µ2
x + µ2

y + C1, B2 = σ 2
x + σ 2

y + C2,

(35)

where Nw is the number of pixels in the local image

patch, μx, σ 2
x and sxy represent the sample mean of x,

the sample variance of x, and the sample covariance of

x and y, respectively Equation (34) suggests that aver-

aging of the gradients of local patches is to be calculated

in order to obtain the global SSIM gradient, and thus

the direction and distance of the kth update in X̂ . More

details regarding the computation of SSIM gradient can

be found in [42]. In our experiment, we found this gra-

dient based approach is well-behaved and it takes only a

few iterations for X̂ to converge to a stationary point.

We initialize x̂ as the best MSE solution. Having the

gradient of SSIM we follow an iterative procedure to

solve (6), assuming the initial value derived from mini-

mal MSE solution.

3 Applications
The framework we proposed provides a general

approach that can be used for different applications. To

show the effectiveness of our method we will provide

two applications: image denoising and super-resolution.

3.1 Image denoising

We use the SSIM-based sparse representations frame-

work developed in Sections 2.2 and 2.3 to perform the

task of image denoising. The noise-contaminated image

is obtained using the following equation

Y = X + N, (36)

where Y is the observed distorted image, X is the noise-

free image and N is additive Gaussian noise. Our goal is

to remove the noise from distorted image. Here we train

a dictionary, Ψ, for which the original image can be

represented sparsely in its domain. We use KSVD

method [28] to train the dictionary. In this method the

dictionary, which is trained directly over the noisy image

and denoising is done in parallel. For a fixed number of

iterations, J, we initialize the dictionary by discrete cosine

transform (DCT) dictionary. In each step we update the

image and then the dictionary. First, based on the current

dictionary, sparse coding is done for each patch, and then

KSVD is used to update the dictionary (interested reader

can refer to [28] for details of dictionary updating).

Finally, after doing this procedure J times we execute a

global construction stage, following the gradient descend

procedure. The proposed image denoising algorithm is

summarized in Algorithm 2.

The proposed image denoising scheme is tested on

various images with different amount of noise. In all the

experiments, the dictionary used was of size 64 × 256,

designed to handle patches of 8 × 8 pixels. The value of

noise gain, C, is selected to be 1.15 and l = 30/s [3].

Table 1 shows the results for images Barbara, Lena,

Peppers, House. It also compares the K-SVD method [3]

with the proposed denoising method. It can be observed

that the proposed denoising method achieves better per-

formance in terms of SSIM which is expected to imply

better perceptual quality of the denoised image. Figures

2 and 3 show the denoised images using K-SVD [3] and

the proposed methods along with corresponding SSIM

maps. It can be observed that SSIM-based method out-

performs specially in the texture region which confirms

that the proposed denoising scheme preserves the struc-

tures better and therefore has better perceptual image

quality.

3.2 Image super-resolution

In this section we demonstrate the performance of the

SSIM-based sparse representations when used for image

super-resolution. In this problem, a low resolution

image, Y, is given and a high resolution version of the

image, X, is required as output. We assume that the low

resolution image is produced from high resolution

image based on the following equation:

Y = DHX, (37)

where H represents a blurring matrix, and D is a

downsampling matrix. We use local sparsity model as

prior to regularize this problem that has infinite many

solutions which satisfy (37). Our approach is motivated

by recent results in sparse signal representation, which

suggests that the linear relationships among high-resolu-

tion signals can be accurately recovered from their low-

dimensional projections. Here, we work with two

coupled dictionaries, Ψh for high-resolution patches, and

Ψl for low-resolution ones. The sparse representation of

a low-resolution patch in terms of Ψl will be directly

used to recover the corresponding high resolution patch

from Ψh [20]. Given these two dictionaries, each corre-

sponding patch of low resolution image, y, and high
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resolution image, x, can be represented sparsely with the

same coefficient vector, a in Algorithm 2.

y = � lα (38)

x = �hα (39)

The patch from each location of the low-resolution

image, that needs to be scaled up, is extracted and spar-

sely coded with the help of SSIM-optimal Algorithm 1.

Once the sparse coefficients, a, are obtained, high reso-

lution patches, y, are computed using (39) which are

finally merged by averaging in the overlap area to create

the resulting image. The proposed image super-resolu-

tion algorithm is summarized in Algorithm 3:

The proposed image super resolution scheme is tested

on various images. To be consistent with [20] patches of

5 × 5 pixels were used on the low resolution image.

Each patch is converted to a vector of length 25. The

dictionaries are trained using KSVD [3] with the sizes of

25 × 1024 and 100 × 1024 for the low and the high

resolution dictionaries, respectively. 66 natural images

are used for dictionary training, which are also used in

[43] for similar purpose. To remove artifacts on the

patch edges we set overlap of one pixel during patch

extraction from the image. Fixed number of atoms (3)

has been used by [20] in the sparse coding stage. How-

ever SSIM-OMP determines the number of atoms adap-

tively from patch to patch based on its importance

considering SSIM measure. In order to calculate the

Table 1 SSIM and PSNR comparisons of image denoising results

Image Barbara Lena Peppers House

Noise std 20 25 50 100 20 25 50 100 20 25 50 100 20 25 50 100

PSNR comparison (in dB)

Noisy 22.11 20.17 14.15 8.13 22.11 20.17 14.15 8.13 22.11 20.17 14.15 8.13 22.11 20.17 14.15 8.13

K-SVD 30.85 29.55 25.44 21.65 32.38 31.32 27.79 24.46 30.80 29.72 26.10 21.84 33.16 32.12 28.08 23.54

Proposed 30.88 29.53 25.50 21.74 32.26 31.28 27.80 24.53 30.84 29.84 26.25 21.98 33.04 32.09 28.13 23.59

SSIM comparison

Noisy 0.593 0.503 0.241 0.084 0.531 0.443 0.204 0.074 0.529 0.442 0.212 0.076 0.452 0.368 0.166 0.057

K-SVD 0.894 0.859 0.708 0.519 0.903 0.877 0.733 0.550 0.905 0.883 0.782 0.601 0.909 0.890 0.779 0.549

Proposed 0.906 0.875 0.733 0.526 0.913 0.888 0.754 0.573 0.913 0.894 0.797 0.627 0.915 0.901 0.795 0.574

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 2 Visual comparison of denoising results. (a) Original image; (b) noisy image; (c) SSIM-map of noisy image; (d) KSVD-MSE; (e) SSIM-

map of KSVD-MSE; (f) KSVD-SSIM; (g) SSIM-map of KSVD-SSIM.
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threshold, Tssim, defined in (14), Tmse is calculated using

MSE-based sparse coding stage in [20]. After calculating

sparse representation for all the low resolution patches,

we use them to reconstruct the patches and then the

difference with the original patch is calculated. We set

Tmse to the average of these differences. The perfor-

mance comparison with state-of-the-art method is given

in Table 2. It can be observed that the proposed algo-

rithm outperforms the other methods consistently in

terms of SSIM evaluations. It is also interesting to

observe PSNR improvements in some cases, though

PSNR is not the optimization goal of the proposed

approach. The improvements are not always consistent

(for example, PSNR drops in some cases in Table 1,

while SSIM always improves). There are complicated

reasons behind these results. It needs to be aware that

the so-called “MSE-optimal” algorithms include many

suboptimal and heuristic steps and thus have potentials

to be improved even in the MSE sense. Our methods

are different from the “MSE-optimal” methods in multi-

ple stages. Although the differences are made to

improve SSIM, they may have positive impact on

improving MSE as well. For example, when using the

learned dictionary to reconstruct an image patch, if

SSIM is used to replace MSE in selecting the atoms in

the dictionary, then essentially the set of accepted atoms

in the dictionary have been changed. In particular, since

SSIM is variance normalized, the set of acceptable

reconstructed patches near the noisy patch may be

structurally similar but are significantly different in var-

iance. This may lead to different selections of the atoms

in the dictionary, which when appropriately scaled to

approximate the noisy patch, may result in better recon-

struction result. Although the visual and SSIM

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3 Visual comparison of denoising results. (a) Original image; (b) noisy image; (c) SSIM-map of noisy image; (d) KSVD-MSE; (e) SSIM-

map of KSVD-MSE; (f) KSVD-SSIM; (g) SSIM-map of KSVD-SSIM.

Table 2 SSIM and PSNR comparisons of image super-resolution results

Image Barbara Lena Baboon House Raccoon Zebra Parthenon Desk Aeroplane Man Moon Bridge

PSNR comparison (in dB)

Yang et al. 30.3 33.4 25.3 34.1 34.0 24.6 28.4 31.9 34.2 33.2 32.2 28.0

Zeyde et al. 31.3 33.8 25.5 35.4 36.5 25.0 28.8 33.8 36.1 34.4 33.3 28.5

Proposed 31.4 33.9 25.6 35.5 37.0 25.1 28.9 33.9 36.4 34.6 33.4 28.6

SSIM comparison

Yang et al. 0.843 0.888 0.680 0.876 0.880 0.760 0.773 0.871 0.829 0.857 0.746 0.754

Zeyde et al. 0.874 0.909 0.710 0.904 0.934 0.789 0.811 0.918 0.860 0.896 0.803 0.783

Proposed 0.877 0.912 0.720 0.906 0.942 0.794 0.815 0.922 0.862 0.900 0.808 0.792
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improvements are only moderate, these are promising

results as an initial attempt of incorporating a percep-

tually more meaningful measure into the optimization

problem of KSVD-based superresolution method. Fig-

ures 4 and 5 compare the reconstructed images

obtained using [5] and the proposed methods for the

Raccoon and the Girl images, respectively. It can be

seen that the proposed scheme preserves many local

structures better and therefore has better perceptual

image quality. The visual quality improvement is also

reflected in the corresponding SSIM maps, which pro-

vide useful guidance on how local image quality is

improved over space. It can be observed from the SSIM

maps that the areas which are relatively more structured

benefit more from the proposed algorithm as the quality

measure used is better at calculating the similarity of

structures as compared to MSE.

4 Conclusions
In this article, we attempt to combine perceptual image

fidelity measurement with optimal sparse signal repre-

sentation in the context of image denoising and image

super-resolution to improve two state-of-the-art algo-

rithms in these areas. We proposed an algorithm to

solve for the optimal coefficients for sparse and redun-

dant dictionary in maximal SSIM sense. We also devel-

oped a gradient descent approach to achieve the best

compromise between the distorted image and the image

reconstructed using sparse representation. Our simula-

tions demonstrate promising results and also indicate

the potential of SSIM to replace the ubiquitous PSNR/

MSE as the optimization criterion in image processing

applications. It must be taken into account that this is

only an early attempt along a new but promising direc-

tion. The main contribution of the current work is

mostly in the general framework and theoretical devel-

opment. Significant improvement in visual quality can

be expected by improving the dictionary learning pro-

cess based on SSIM, as dictionary encapsulates in itself

the prior knowledge about the image to be restored. An

SSIM-optimal dictionary will capture structures con-

tained in the image in a better way and the restoration

task will result into sharper output image. Further

improvement is also expected in the future when some

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4 Visual comparison of super-resolution results. (a) Original image; (b) low resolution image; (c) Yang’s method; (d) SSIM-map of

Yang’s method; (e) proposed method; (f) SSIM-map of proposed method.
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of the advanced mathematical properties of SSIM and

normalized metrics [12] are incorporated into the opti-

mization framework.

Algorithm 1: SSIM-inspired OMP

Initialize: D = {} set of selected atoms, Sopt = 0, r = Y

while Sopt <Tssim

• Add the next best atom in L2 sense to D

• Find the optimal L2 -based coefficient(s) using (15)

• Find the optimal SSIM-based coefficient(s) using

(27) and (31)

• Update the residual r

• Find SSIM-based approximation a

• Calculate Sopt = S(a, y)

end

Algorithm 2: SSIM-inspired image denoising

1. Initialize: X = Y, Ψ = overcomplete DCT dictionary

2. Repeat J times

• Sparse coding stage: use SSIM-optimal OMP to

compute the representation vectors a
ij for each patch

• Dictionary update stage: Use K-SVD [28] to calcu-

late the updated dictionary and coefficients.

Calculate

SSIM-optimal coefficients using (27) and (31)

3. Global Reconstruction: Use gradient descent algo-

rithm to optimize (6), where the SSIM gradient is given

by (35).

Algorithm 3: SSIM-inspired image super

resolution

1. Dictionary Training Phase: trained high and low reso-

lution dictionaries Ψl, Ψh, [20]

2. Reconstruction Phase

• Sparse coding stage: use SSIM-optimal OMP to

compute the representation vectors aijfor all the patches

of low resolution image

• High resolution patches reconstruction: Reconstruct

high resolution patches by Ψhaij

3. Global Reconstruction: merge high-resolution

patches by averaging over the overlapped

region to create the high resolution image.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5 Visual comparison of super-resolution results. (a) Original image; (b) low resolution image; (c) Yang’s method; (d) SSIM-map of

Yang’s method; (e) proposed method; (f) SSIM-map of proposed method.
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