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ABSTRACT

In this paper, we present an algorithm for designing a linear equal-

izer that is optimal with respect to the structural similarity (SSIM)

index. The optimization problem is shown to be non-convex, thereby

making it non-trivial. The non-convex problem is first converted to

a quasi-convex problem and then solved using a combination of first

order necessary conditions and bisection search. To demonstrate the

usefulness of this solution, it is applied to image denoising and im-

age restoration examples. We show using these examples that opti-

mizing equalizers for the SSIM index does indeed result in higher

perceptual image quality compared to equalizers optimized for the

ubiquitous mean squared error (MSE).

Index Terms— Image restoration.

1. INTRODUCTION

The mean squared error (MSE) has been a popular metric used not

only to assess the quality of images, but also in optimizing vari-

ous image processing algorithms. It has been shown however, that

the MSE is not the best metric either for quality assessment or for

optimizing image processing algorithms [1]. The MSE is popular

because it lends itself well to analysis, and due to a lack of compet-

itive image quality assessment (IQA) algorithms. Recent advances

in full-reference IQA has resulted in a number of powerful new al-

gorithms such as the SSIM index [2], the visual information fidelity

(VIF) criterion [3], and the visual signal to noise ratio [4]. In this

paper, we restrict our focus to the SSIM index.

The SSIM index has been shown to outperform MSE and the

related PSNR in measuring the quality of natural images across a

wide variety of distortions [2]. The SSIM index computes the quality

of a distorted image by comparing the correlations in luminance,

contrast, and structure, locally, between the reference and distorted

images and averaging these quantities over the entire image.

Based on the performance of the SSIM index as a powerful IQA

algorithm, using it as the objective function in optimizing image pro-

cessing algorithms appears very promising. This optimization is not

straightforward however, given the form of the SSIM index, and al-

gorithms that explicitly optimize for it are only recently being de-

veloped. The design of a linear estimator optimized for the SSIM

index and its application to image denoising demonstrated the gain

in perceptual quality of the denoised images compared to traditional

MSE optimal linear estimation [5]. An iterative SSIM optimal bit al-

location technique for image coding has also shown promising gains

in the perceptual quality of the compressed images [6].

In this paper, we formulate and solve the general problem of

designing a linear equalizer of length L that is optimized with re-

spect to the SSIM index. The definition of the SSIM index is ex-

tended to wide sense stationary (WSS) sources, and the optimiza-

tion is carried out using this extended definition. The main con-

tribution of this paper is the solution to the non-convex optimiza-

tion problem. The equalizer is then applied to both image denoising

and image restoration problems. The results demonstrate that using

SSIM-optimal equalizers for image denoising and restoration results

in higher percecptual quality of the restored images when compared

to traditional MSE-optimal solutions.

We begin by a brief introduction to the SSIM index and extend

its definition to WSS processes. The equalization problem is then

formulated and shown to be non-convex. The problem is converted

to a quasi-convex problem and its solution is presented. Finally, the

results are applied to image denoising and restoration problems.

2. THE SSIM INDEX

The most general form of the metric that is used to measure the struc-

tural similarity between two signal vectors x and y in Rn is

SSIM(x,y) = [l(x,y)]α[c(x,y)]β [s(x,y)]γ . (1)

The term l(x,y) =
2µxµy+C1

µ2
x+µ2

y+C1

compares the mean of the signals,

c(x,y) =
2σxσy+C2

σ2
x+σ2

y+C2

compares the variance of the signals, and

s(x,y) =
σxy+C3

σxσy+C3
measures the correlation of the signals. The

quantities µx, µy are the sample means of x and y respectively,

σ2
x, σ2

y are the sample variances of x and y respectively, and σxy

is the sample cross-covariance between x and y. The constants

C1, C2, C3 are used to stabilize the metric for the case where the

means and variances become very small. The parameters α > 0, β >
0, and γ > 0, are used to adjust the relative importance of the three

components. We use the following simplified form of the SSIM in-

dex in our work (with α = β = γ = 1, and C3 = C2/2):

SSIM(x,y) =

„

2µxµy + C1

µ2
x + µ2

y + C1

« „

2σxy + C2

σ2
x + σ2

y + C2

«

. (2)

In image quality assessment, pixel values of local image patches

from the reference and distorted image constitute x and y respec-

tively. The term l(x,y) compares the luminance, c(x,y) compares

the contrast, and s(x,y) compares the structure of the local image

patches. The average of the SSIM values across the image (also

called mean SSIM or MSSIM) gives the final quality measure. The

key idea behind the SSIM index is to acknowledge the fact that nat-

ural images are highly structured, and that the measure of structural

correlation (between the reference and the distorted image) is very

important in deciding the overall visual quality. Further, the SSIM

index measures quality locally and is able to capture local dissimilar-

ities better, unlike global quality measures such as MSE (and hence

PSNR). Though (2) has a form that is more complicated than MSE,

it remains analytically tractable.
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Fig. 1. Block diagram of a general linear time invariant system.

The design objective is to find the linear equalizer block G, given

the observed process y[n], the LTI filter H, and the power spectral

density of the noise process η[n] so that the StatSSIM index between

x[n] and x̂[n] is maximized.

3. PROBLEM FORMULATION

In this section, we first extend the definition of the SSIM index to

measure similarity between WSS random processes. The equaliza-

tion problem is formulated using the extended definition of the SSIM

index. It is shown that the problem is a non-convex function of the

equalizer coefficients.

Definition Given two WSS random processes x[n] and y[n] with

means µx and µy respectively, the statistical SSIM index is defined

as

StatSSIM(x[n], y[n]) =

„

2µxµy + C1

µ2
x + µ2

y + C1

«

„

2E[(x[n] − µx)(y[n] − µy)] + C2

E[(x[n] − µx)2] + E[(y[n] − µy)2] + C2

«

.

(3)

This is a straightforward extension of the pixel domain definition of

the SSIM index by replacing sample means and variances with their

statistical equivalents.

3.1. Equalization Problem

The equalization problem is illustrated in Fig. 1. We assume that

the input to the system x[n] is a WSS process, h[n] is a linear time

invariant (LTI) filter known at the receiver, and the noise process η[n]
is white and its power spectral density (PSD) is know at the receiver.

The following problem is considered. Given a distorted observation

y[n] = h[n] ∗ x[n] + η[n] of the input process x[n], design a filter

g[n] of length N such that the StatSSIM index between the reference

x[n] and the restored process x̂[n] = g[n]∗y[n] is maximized (where

∗ is the convolution operator).

Rewriting the StatSSIM index as a function of g[n] using (3) we

get

StatSSIM(x[n], x̂[n]) =

„

2µxg
T eµy + C1

µ2
x + gT eeT gµ2

y + C1

«

„

2gT cxy + C2

σ2
x + gT Kyyg + C2

«
(4)

where g = [g[0], g[1], . . . , g[N − 1]]T , e = [1, 1, . . . , 1]T are both

length N vectors, µx, µy are the means of the source and observed

processes respectively, cxy = E[(x[n]−µx)(y−eµy)], is the cross-

covariance between the source (x[n]) and the observed processes

(y = (y[n], y[n − 1], . . . , y[n − (N − 1)])T ), σ2
x is the variance of

the source process at zero delay, Kyy = E[(y− eµy)(y− eµy)T ],
is the covariance matrix of size N ×N of the observed process y[n],
and C1, C2 are stabilizing constants.The equalization problem is ex-

pressed as

g
∗ = argmaxg∈RNStatSSIM(x[n], x̂[n]). (5)

4. STATSSIM-OPTIMAL LINEAR EQUALIZATION

From (4) we see that the StatSSIM index is a non-convex function of

the equalizer coefficients g (the numerator is a second degree poly-

nomial in g, while the denominator is a fourth degree polynomial

in g). This implies that local optimality conditions such as Karush-

Kuhn-Tucker (KKT) cannot guarantee global optimality. In particu-

lar, any approach based on descent-type algorithms are likely to get

stuck in local optima. The approach that we take to solve this prob-

lem transforms the non-convex problem into a quasi-convex formu-

lation. Convex optimization problems are efficiently solvable using

widely available optimization techniques and software [7, 8]. We

show, moreover, that in addition to the convex reformulation, we can

obtain a near-closed form solution. In particular, we reduce the N -

tap filter optimization, for any N , into an optimization problem over

only two variables. Exploiting convexity properties, we can quickly

search over one parameter by means of a bisection technique, thus

reducing the problem to a univariate optimization problem. This last

step can be quickly performed by means of an analytic solution of a

simplified problem, which brings us close to the optimal value of the

final variable of our optimization.

4.1. Problem Reformulation

Note that the first term of (4) (corresponding to the mean) is a func-

tion only of the sum of the filter coefficients gT e. We use this prop-

erty to simplify the optimization problem in (4) by constraining gT e

= α. With this constraint, the optimization problem simplifies to

finding

"

g(α) = argmaxg∈RN

“

2gT cxy+C2

σ2
x+gT Kyyg+C2

”

,

s.t. : gT e = α.

#

(6)

This problem is a function of α. The overall problem is to find the

highest StatSSIM index by searching over a range of α (typically

in the interval [1 − δ, 1 + δ], for a small δ). The solution to the

optimization problem in (6) is presented in the following section,

along with an efficient search strategy for finding α.

4.2. Solution

The maximization problem in (6) is still non-convex. We convert it

into a quasi-convex optimization problem as follows

g(α) = argmaxg∈RN

„

2gT cxy + C2

σ2
x + gT Kyyg + C2

«

,

s.t. : g
T
e = α,

⇔

min : γ

s.t. :

"

max :
“

2gT cxy+C2

σ2
x+gT Kyyg+C2

”

≤ γ

s.t. : gT e = α,

#

⇔

min : γ

s.t. :

»

min : [γ(σ2
x + gT Kyyg + C2) − (2gT cxy + C2)] ≥ 0

s.t. : gT e = α

–

.

(7)

The first step in the reformulation is the introduction of the auxil-

iary variable γ as an upper bound on (6). The first equivalence rela-

tion holds since minimizing γ is the same as finding the least upper

bound of the function in (6). This is equal to the maximum value



of the function, which exists, as seen by straightforward continuity

arguments. The second equivalence relation holds since the denom-

inator in (6) is strictly positive, allowing us to multiply through and

rearrange terms. Then, γ is a true upper bound if the problem

»

maxg∈RN : γ(σ2
x + gT Kyyg + C2) − (2gT cxy + C2)

s.t. : gT e = α

–

(8)

has a non-negative optimal value. Since the objective function is a

linear term minus a convex quadratic, it is concave. The constraint is

affine, and thus convex. Therefore the overall problem is convex, and

can be solved by introducing a Lagrange multiplier λ and applying

the first order sufficiency condition s

∇g{γ(σ2
x + g

T
Kyyg + C2)−

(2gT
cxy + C2) + λ(gT

e− α)} = 0.
(9)

Solving for g and λ, and denoting them g(α), λ(α) to emphasize

their dependence on α, we have

g(α) =
1

2γ
K

−1
yy (2cxy − λ(α)e)

λ(α) =
1

eT K−1
yy e

(2cT
xyK

−1
yy e − 2γα).

(10)

The optimal γ can then be computed in O(log(1/ǫ)) iterations

using a standard bisection procedure. Such an algorithm is summa-

rized in Fig. 2. In this procedure, the threshold ǫ determines the

tightness of the bound γ. In other words, the solution obtained using

this technique will be within ǫ of the optimal solution. The efficiency

of the algorithm can be improved using better search techniques.

4.3. Search for α

The solution in (10) maximizes the function in (7) to give g(α), i.e.,

it is still a function of α. The optimal solution to (4) is found by

searching over α. The search is over a bounded one-dimensional

interval, and is therefore easy to perform. We present two ways to

speed up this search.

The first is to simply initialize α to the sum of the filter coeffi-

cients of the MSE-optimal filter, i.e., αinit = gT
msee. The second

is a heuristic technique that was found to work better than the first

in all our experiments with natural images. In this technique, α is

initialized to the sum of the filter coefficients of a structure-optimal

filter. By structure-optimal filter, we mean a filter that optimizes only

the structure term in the StatSSIM index without any constraints on

the mean. This would yield a filter that is optimal with respect to

one of the two terms in the StatSSIM index (4). In the following, the

structure-optimal filter is derived.

Following the notation in Section 3.1, our goal is to find a filter

g∗

struct such that

g
∗

struct = argmaxg∈RN

„

2gT cxy + C2

σ2
x + gT Kyyg + C2

«

. (11)

This problem has the same form as (6), and thus can be quickly

solved using the optimization technique given above. The optimal

solution is g∗

struct = 1

γstruct
(Kyy)−1cxy, and so the initial value

of α is αinit = eT g∗

struct. The value of γstruct is computed using

the same algorithm as in Section 4.2, and this value is potentially

different from the γ in Section 4.2.

(a) Reference (b) Distorted

(c) MSE-optimal filter (length
7)

(d) SSIM-optimal filter (length
7)

Fig. 3. Img0039.bmp from the ‘City of Austin’ database. 3(a)

Original image. 3(b) Distorted image with σnoise = 35, MSE =

1226.3729, SSIM index = 0.5511. 3(c) Image denoised with a 7-tap

MSE-optimal filter, MSE = 436.6929, SSIM index = 0.6225. 3(d)

Image denoised with a 7-tap SSIM-optimal filter, MSE = 528.0777,

SSIM index = 0.6444.

(a) Reference (b) Distorted

(c) MSE-optimal filter (d) StatSSIM-optimal filter

Fig. 4. A 128×128 block of Barbara image. 4(a) Original im-

age. 4(b) Distorted image with σblur = 1, σnoise = 40, MSE =

1781.9058, SSIM index = 0.5044. 4(c) Image restored with a 11-tap

MSE-optimal filter, MSE = 520.1322, SSIM index = 0.6302. 4(d)

Image restored with a 11-tap SSIM-optimal filter, MSE = 584.9232,

SSIM index = 0.6568.



1. Pick an initial guess of γ (say γ0) between 0 and 1. upper limit = 1,
lower limit = γ0.

2. Evaluate the optimal filter.
3. Is γ(σ2

x + gT Kyyg + C2) − (2gT cxy + C2) ≥ 0?
3a. If true, is (upper limit - lower limit < ǫ)?

3aa. If true, we have found a γ within ǫ of the optimal value. Exit.
3ab. If false, set γi = 0.5*(upper limit + lower limit),

upper limit = γi. Goto step 2.
3b. If false, set γi = 0.5*(upper limit + lower limit), lower limit = γi.

Goto step 2.

Fig. 2. An algorithm to search for the optimal γ.

5. RESULTS

We now apply the SSIM-optimal linear equalizer solution to both

image denoising and image restoration examples. The solution in

the previous section assumes 1-D signals. For consistency, the solu-

tion is applied to vectorized local image patches. Further, the solu-

tion is implemented in the image domain. The following subsections

provides implementation details for each example.

5.1. Denoising results

For the denoising case, the required statistics are computed as fol-

lows. The cross-covariance values at each pixel location are com-

puted from the N2 × 1 vector formed from a local neighborhood

around the given pixel of the observed image. The following rela-

tions are used in the computation.

cxx(0) = cyy(0) − σ2
η. (12)

The first equality holds since the noise is zero-mean, therefore, µy =
µx, and the noise is independent of the source. Similarly, for τ 6= 0,

cyy(τ ) = E[(y[n] − µy)(y[n − τ ]− µy)] = cxx(τ ),

⇒cxy(τ ) = cxx(τ ) = cyy(τ ).
(13)

The first equality relation holds since η[n] and η[n − τ ] are inde-

pendent (of each other, and the source process x[n]) and zero-mean.

The second equality relation easily follows from the first.

The results of image denoising are shown in Fig. 3. SSIM-

optimal denoising is compared to MSE-optimal denoising, and we

see that Fig. 3(d) has a higher perceptual image quality when com-

pared to Fig. 3(c).

5.2. Restoration results

For the restoration case, we follow the heuristic technique presented

in [9] to calculate the required image statistics. For brevity, we omit

the details of this calculation and refer the reader to [9]. As with the

denoising solution, we see that the SSIM-optimal equalizer results in

a higher perceptual image quality of the restored image in Fig. 4(d)

when compared to the MSE-optimally restored image in Fig. 4(c).

6. CONCLUSIONS

In this paper, we formulated the problem of SSIM-optimal linear

equalization. The non-convex problem was re-cast into a quasi-

convex form. This allowed for better tractability and admitted a

unique solution. The proposed solution is near closed-form and its

complexity is independent of the length of the equalizer. The SSIM-

optimal equalizer was then applied to image denoising and restora-

tion examples. Through these examples we showed that optimizing

algorithms for the SSIM index does indeed result in improved visual

quality of the denoised and restored images compared to their MSE

optimally denoised and restored counterparts.
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