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SSLIDE: SOUND SOURCE LOCALIZATION FOR INDOORS BASED ON DEEP LEARNING

Yifan Wu, Roshan Ayyalasomayajula, Michael J. Bianco, Dinesh Bharadia, and Peter Gerstoft

University of California, San Diego, La Jolla, CA, USA

ABSTRACT

This paper presents SSLIDE, Sound Source Localization for Indoors

using DEep learning, which applies deep neural networks (DNNs)

with encoder-decoder structure to localize sound sources with ran-

dom positions in a continuous space. The spatial features of sound

signals received by each microphone are extracted and represented

as likelihood surfaces for the sound source locations in each point.

Our DNN consists of an encoder network followed by two decoders.

The encoder obtains a compressed representation of the input likeli-

hoods. One decoder resolves the multipath caused by reverberation,

and the other decoder estimates the source location. Experiments

based on both the simulated and experimental data show that our

method can not only outperform multiple signal classification (MU-

SIC), steered response power with phase transform (SRP-PHAT),

sparse Bayesian learning (SBL), and a competing convolutional neu-

ral network (CNN) approach in the reverberant environment but also

achieve a good generalization performance.

Index Terms— Indoor sound source localization, multipath,

encoder-decoder structure, deep neural networks

1. INTRODUCTION

Sound source localization (SSL) has widespread applications in hu-

man–robot interaction [1], ocean acoustics [2], teleconferencing [3],

and automatic speech recognition [4]. For example, in a hospital,

attending robots can locate and attend to patients based on their

voices [5]. However, SSL in reverberant environments is challenging

due to multipath artifacts in received signals. This effect degrades

SSL performance. Thus, it is important to develop SSL methods

that are robust to reverberation [6].

While traditional SSL algorithms [7–12] rely on estimation the-

ory or statistics, they fail in dynamic and reverberant environments.

A well-known subspace based technique, multiple signal classifica-

tion (MUSIC) [8] is known to suffer from correlated sources which

are prevalent in reverberant environments. Another classical SSL

method, steered response power with phase transform (SRP-PHAT)

[9–11] has been shown to not be robust to non-stationary signal like

speech. Recently, SSL approaches based on deep neural networks

(DNNs) have been proposed [13–20]. Most of the approaches are

based on supervised learning. In [13], a multilayer perceptron DNN

is proposed for DOA estimation. In [14], a SSL framework based on

convolutional neural network (CNN) is proposed. A learning based

SSL approach using discriminative training is presented in [15]. The

authors in [16] propose a convolutional recurrent DNN for SSL and

sound event detection. In [17], a robust SSL guided by deep learn-

ing based time-frequency masking framework was presented. There

are also some works using unsupervised learning [18] and semi-

supervised learning methods based on manifold learning [19], and

deep generative modeling [20]. But all of these methods can only

work well when the sensor-source distance is small, which limits

their implementation in real-world settings.

In this work, we present SSLIDE, a SSL method based on DNN

with encoder-decoder structure. Our method can resolve randomly

located sources in the room and can achieve a good generalization

performance. Inspired by [21], the major novelty of the architec-

ture lies in the two parallel decoders that help in solving two dis-

tinct and independent problems. One decoder is designed to re-

solve the multipath artifacts, and the other to predict the locations

of the sound sources. By training these decoders in parallel, the

DNN learns to jointly predict the locations of sound sources and

remove the multipath artifacts on range offsets. We compare our ap-

proach with other baseline SSL methods, including multiple signal

classification (MUSIC) [8], steered response power with phase trans-

form (SRP-PHAT) [9–11], Sparse Bayesian Learning (SBL) [22],

and CNN [14]. Based on the experiment results, we find SSLIDE

outperforms the baseline methods and generalizes well across space,

perturbations of reverberation time, microphone spacing, and input

speech.

2. PROPOSED METHOD

To understand how the proposed DNN solves for the reverberation

problem and helps in efficient SSL, let us first look into the funda-

mentals of sound transmissions in a given environment. Consider

the acoustics signals in the time domain

yi = s ∗ hi + ni (1)

where yi ∈ R
L is the signal received by ith microphone (i ∈

{1, . . . ,M}, M is the number of microphones), s the source signal,

and ni the noise for the ith microphone. hi is the room impulse re-

sponses (RIRs), which characterizes the reverberation of the room.

Denote y = [y1, . . . , yM ]T ∈ R
M×L as the collections of the

received signal of all sensors with audio length L.

For N arrays with K microphones in each array (i.e. M =
NK), y can be reshaped as a tensor with dimension K×N×L. So,

for a given input received signal y with S snapshots and T datapoints

(number of independent measurements), there are C = TS frames

for y.

2.1. Features extraction

One of the key components in designing a DNN model is to under-

stand the input data and represent it appropriately for the network to

be able to learn the required application using the input data. While

there have been existing works like MUSIC and SRP-PHAT that

enable accurate SSL for environments with low reverberation, their

SSL performance degrades significantly in dynamic and reverberant

environments.

We first use standard beamforming to obtain source location

likelihoods in a 2D space. We obtain Y ∈ C
S×F×K×N , the STFT

output of y with S snapshots and F frequency bins, where L =
2FS. While 2F is the total number of frequency bins in the STFT,
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we only consider the positive half of the frequency bins. For T dat-

apoints, then there are C = TS frames for Y.

Assume a uniform linear array (ULA) and a broadband signal.

Inspired by [23], we can define a 2-D function [23] which can indi-

cate the likelihood of the signal coming from the angle θ and distance

d for array n ∈ {1, ..., N} and frame s ∈ {1, ..., S}

Pns(θ, d) = |
K
∑

i=1

F
∑

l=1

Yile
j
2πiusinθf0

c e
j
2πlfld

c | (2)

where j =
√
−1 and u, f0, fl, c stand for the spacing between mi-

crophones, median frequency, the frequency corresponding for the

lth frequency bin, the speed of sound, respectively. Pns(θ, d) is

beam power. Yil represents the STFT output for the ith microphone

and lth frequency bin. When the sound source is from angle θ and

distance d, then Pns(θ, d) have a high value. If we have U and V

grid points for θ and d, then we will obtain a likelihood surface with

dimension U × V which can indicate the likelihood of the signal in

the given θ and d. Fig. 1 (a) is one of the examples.

For reverberation and noise free data, the localization is sim-

ply identifying the θ and d that correspond to the maximum like-

lihood [21]. Due to the reverberation, much of the sound received

by the microphones is a result of multipath, which is a complicated

function of the different microphone locations relative to the source.

Therefore, peaks in the likelihood surface may no longer indicate

the correct result in terms of their predicted distance d as depicted in

Fig. 1 (a).

2.2. Range compensation

To help overcome challenges of source localization in reverberant

environments, we design a second decoder to explicitly correct for

variation in multipath artifacts due to differences in microphone lo-

cation. Details on the decoder and the loss function are further de-

scribed in Section 2.4.

To enable this decoder to learn to alleviate range offsets cause

by multipath artefacts, we will artificially generate likelihood sur-

faces with range compensation as labels. To do so, we first identify

the direct path as the path with the least range measurement, d̂ in

the incorrect range image as shown in Fig. 1 (a). We then use the

actual range measurement expected range measurement, d, from the

given ground truth location for that specific measurement. We then

compensate this offset in the given RIR measurement to get the ex-

pected likelihood profile as seen in Fig. 1 (b). More formally, for the

STFT output in the sth frame and kth microphone of the nth array

Y ns
k ∈ C

F×1, the range is compensated by

Ȳ
ns
k = Y

ns
k ◦ ej2πϑ d̂n−dn

c (3)

where ϑ = [f1, ..., fF ]
T ∈ R

F×1 is a collection of all frequencies.

Scalar dn and d̂n are the estimated ranges for the direct path and

true ranges of the nth array, and ◦ represents the Hadamard product.

Fig. 1(b) shows the likelihood surface after range compensation.

Our results show that the range compensation will make DNN easier

to identify the correct location of the sound source.

We have generated two categories of likelihood surfaces with di-

mension U × V . While we can perform single point identification

based object detection tasks on these images, each of these images

are with respect to their own microphones and lack the context of

the global coordinates. To overcome that problem, we convert these

range-angle images into 2D Cartesian images which show the coor-

dinate with respect to one of the arrays. We perform a coordinate

Fig. 1. Likelihood surfaces (a) before and (b) after range compen-

sation, and (c) after range compensation and coordinate transforma-

tion, (d) Output likelihood surface from localization decoder. The

correct source position (+), and maximum value (for (a) - (c)) / pre-

dicted location (for (d)) (◦) are indicated. All plots are based on the

same testing data.

transform on these images to convert to a 2-D Cartesian plane with

dimension Y × X as shown in Fig 1(c) to encode the locations of

these multiple arrays.

2.3. Target processing

Now that we have defined the images for us to perform the single

point identification, we need to define the targets for the network to

learn the SSL task. One naive way to generate the target images is

to only mark the target position as one and the rest positions as ze-

ros. Unfortunately, this method will make the loss extremely small,

which will bring about the gradient underflows. The network can-

not learn how to predict the locations due to the almost vanishing

gradients.

Thus, we use a negative exponential label to represent the target

position. The target of the network will also be a likelihood surface

with dimension Y × X . The distance between a random position

(x′, y′) in the likelihood surface and ground-truth position (x, y) is

d(x′
, y

′) =
√

(x′ − x)2 + (y′ − y)2; (4)

Then its value in the likelihood surface l(x′, y′) will be marked as

l(x′
, y

′) = e
−d(x′,y′)2/σ2

(5)

where σ is a hyperparameter controlling the rate of decay. For

d(x′, y′) = 0, then l(x′, y′) = 1 its maximum value. Far from

the target position, the value will decay significantly. For most of

the points in the heatmap, the values is close to 0. These output

representations is helpful for a smoother gradient flow.

2.4. SSLIDE architecture

Now that we have the inputs and targets for performing single point

identification, we utilize the network architecture as shown in Fig.

2 and based on encoder-decoder architecture with one encoder and

two parallel decoders inspired from [21]. The input to the encoder is

the likelihood surface without range compensation indicated as (2).



Likelihood

Surface w/o
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C×N×X×Y

Encoder

Multipath Alleviation 

Decoder

6 Resnet Blocks

ConvTrans 3×3, s =2, p=1, ReLu

ConvTrans 3×3, s=2, p=1, ReLu

Conv 7×7, s = 1, p = 3, Sigmoid

Localization Decoder

3 Resnet Blocks

ConvTrans 3×3, s=2, p=1, ReLu

ConvTrans 3×3, s=2, p=1, ReLu

Conv 7×7, s = 1, p=3, Sigmoid

Conv 7×7, s=1, p=3, tanh

Conv 7×7, s=1, p=3, ReLu
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Conv 3×3, s=2, p=1, ReLu

6 Reset Blocks

Likelihood 

Surface w

Range Comp

C×N×X×Y

Output

Likelihood

C×X×Y

Fig. 2. SSLIDE architecture. C, N , X and Y are followed by the

definitions in Sec 2.1–2.4. s and p stand for stride and padding,

respectively

The encoder compresses this representation and then feeds to both

of the decoders. The two decoders will focus on two different tasks

simultaneously. The multipath alleviation decoder will use the like-

lihood surface with range compensation mentioned in Sec. 2.2 as

targets to train the network to generate the likelihood surface with-

out range offsets. With the help of this decoder, the neural network

will learn the multipath profile and how to alleviate such an artifact

with respect to the range estimation, which will facilitate the local-

ization decoder to identify the source locations. The localization

decoder aims to predict the location of the sound source by using the

target likelihood surface mentioned in 2.3 as labels. The output for

the localization decoder is also a likelihood surface with dimension

Y ×X . The location with the highest value in this output image will

be marked as the predicted location. Note that since we have used the

ground-truth position to generate the target images with range com-

pensation, the multipath alleviation decoder will only appear during

the training phase, and it will be turned off during the testing phase.

The loss function for the multipath alleviation decoder is l2-loss

Lmultipath =
1

N

N
∑

i=1

‖Iiout − I
i
target‖2 (6)

where Iiout and Iitarget are the decoder outputs and the targets (like-

lihood surfaces with range compensation) of the ith array, separately.

All of the outputs and targets are likelihood surfaces with the same

dimension. N is the number of arrays. The advantage of averaging

across multiple receiver arrays is that we can enforce consistency

of peaks across all the target images, and the network will learn the

consistency across these multiple receiver arrays.

For the localization decoder, we use l2-norm loss with l1 reg-

ularization to enforce the sparsity as there only exists one global

maxima in the output likelihood surface. The loss function of that

decoder can be expressed as

Llocalization = ‖Tout − Ttarget‖2 + λ‖Tout‖1 (7)

where Tout and Ttarget are the decoder outputs and targets (target

images with negative exponential labels), respectively. λ is the reg-

ularization term. The loss functions from these two decoders are

summed and back-propagated to the input. Fig. 1 (d) shows the out-

put likelihood surfaces from the localization decoder based on the

same data as Fig. 1 (a).
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Fig. 3. CDF for (a) simulated data, (b) MIRD data, and generaliza-

tion experiments for (c) Base Case I and (d) Base Case II.

3. EXPERIMENTS

The localization performance of SSLIDE and other baseline meth-

ods is evaluated with different levels of reverberation by using both

simulated and real RIRs. The real RIRs are from Multi-Channel

Impulse Responses Database (MIRD) [24]. For each case, the net-

works for the learning-based methods are trained and evaluated on

both datasets.

3.1. Datasets

3.1.1. Simulated Data

Simulated RIRs are synthesized by the RIR generator [25], which

models the reverberation using the image method [26]. The room is

8×5×4 m with reverberation times (RT60) from 0.2–0.8 s and speed

of sound c = 340 m/s. There are N = 3 identical ULA with array

centers (0, 2.5, 2), (4, 0, 2), and (8, 2.5, 2) m and K = 4 sensors in

each array with identical space 2.6 cm. To train the generalization

across space, the sources have random (x, y) on the boundary of the

room in the array plane (z = 2 m). We generate T = 600 RIRs with

random source positions. The sampling frequency is 16 kHz. The

input speech signal is a 1 s clean segment randomly chosen from

LibriSpeech corpus [27]. The microphone signals are obtained by

convolving the RIRs with the speech signal. White noise from the

Audio Set [28] is added to give a 35 dB signal-to-noise ratio (SNR).

3.1.2. MIRD Data

These methods are also evaluated on MIRD [24] which provides

recorded RIRs for 8-microphone ULA with spacing 8 cm for 3
RT60s. We downsample to the audio frequency from 48 kHz to 16
kHz. All reverberation times (0.16, 0.36, and 0.61 s) are applied

to assess the localization performance. There are 2 ranges (1 and

2 m) and 13 candidate DOAs, [−90, 90◦] in 15◦ steps. The sound

source is located in one of the 26 candidate positions. We use 20
recordings with 2 s duration and half female/male voices, resulting

in T = 520 RIRs (datapoints). The noise is generated in the same

way as simulation.



Simulated MIRD

RT60/s .20 .40 .60 .80 .16 .36 .61

Testing .24 .56 .77 .90 .23 .29 .39

Ablation .54 1.1 1.8 1.5 .35 .43 .59

Table 1. MAE (m) of localization for testing data (first row) and

ablation study (second row).

3.2. Parameters and implementation details

SSLIDE is compared with MUSIC [8], SRP-PHAT [9–11], SBL [22]

and CNN [14]. The MUSIC and SRP-PHAT are implemented by

Pyroomacoustics [29]. The spectrogram is used as input to train

the CNN for classification. We use 1◦ resolution for MUSIC, SRP-

PHAT and SBL in simulations and 15◦ for MIRD.

For CNN, based on the architecture suggested by [14], we have

M − 1 convolutional layers with kernel size 2 (M = 12 for simula-

tion and 8 for MIRD), and 64 filters per layer. Then, two fully con-

nected layers (512 units for both MIRD and simulation) are added

following the convolutional layers. To reduce overfitting, we apply

dropout (0.50 dropout rate) in output layer [14].

For both simulated and MIRD data, we use NFFT = 256 with

no overlap for the STFT implementation, the number of snapshots

Ssim = 63 and SMIRD = 125. We only consider positive fre-

quency bins, thus F = 128. The size for the simulation and MIRD

dataset are Csim = T×Ssim = 600×63 = 37, 800 and CMIRD =
T × SMIRD = 520 × 125 = 65, 000, separately. σ = 0.25 (See

(5)) is chosen for generating the target likelihoods. Fig. 1 (d) is one

of the targets likelihood examples with σ = 0.25, and we can see

that it provides a sparse likelihood surface and only a small region

of points that are near the target have significant values. For the sim-

ulations, the likelihood surface dimension is 101(Y )×161(X), and

for MIRD 121× 121.

The model of SSLIDE is implemented by Pytorch [30] with

learning rate 10−5, batch size 32, and weight decay regularization

λ = 5× 10−4, and Adam is the optimizer with weight decay 10−5.

The data is split based on 70% for training, 15% for validation and

15% for testing. The model is trained for 50 epochs.

3.3. Results and discussions

Testing Performance The cumulative distribution function (CDF)

of the localization is shown for 4 RT60s for the simulated data and

3 RT60s for MIRD data. Fig. 3 (a) and (b) show the localization

error distribution for simulation and MIRD in the testing phase. The

localization error for ground-truth (x, y) and predicted (x̂, ŷ) loca-

tion can be expressed as e =
√

(x̂− x)2 + (ŷ − y)2 . The mean

absolute error (MAE) of our approach for testing data is listed in the

first row of Table 1.

Comparison with Other Baseline Methods Since we can ob-

tain the estimated coordinates of the sound sources, the DOA can

also be accessed by simple computations. The comparison of MAE

for DOA estimation with other baseline methods is in Table 2. From

Table 2, we can see that our approach outperforms all baseline meth-

ods for both the simulated and MIRD data in all levels of reverber-

ation. For the simulated data, due to the randomness of the source

positions, the localization performance of the baseline methods de-

grades significantly, especially when the sources are far from the

sensors. In contrast, our approach can still have satisfactory perfor-

mance and thus generalize across space well. For MIRD evaluation,

all of the other baseline methods leverage the prior information of

the candidate DOAs. In specific, for SRP-PHAT, MUSIC, and SBL,

Method
RT60/s (simulation) RT60/s (MIRD)

.20 .40 .60 .80 .16 .36 .61

SRP-PHAT 14 21 25 25 13 16 19

MUSIC 12 22 27 29 12 17 18

SBL 7.6 13 17 16 11 16 18

CNN 10 14 16 20 4.6 8.0 9.8

SSLIDE 3.0 5.0 6.7 7.9 4.3 5.7 8.1

Table 2. MAE (◦) of DOA estimation for SSLIDE and other baseline

methods

Training Test Setup MAE/m
MAE/◦

SSLIDE CNN

Base Case I Base Case I 0.77 6.66 15.6

Base Case I (i) 0.93 7.85 17.6

Base Case I (ii) 0.78 6.67 16.9

Base Case II Base Case II 0.39 8.06 9.81

Base Case II (iii) 0.45 12.0 23.9

Table 3. Generalization performance of SSLIDE and CNN

when generating the steering vectors, the distribution of DOA (−90◦

to 90◦ in 15◦ steps) is used. For CNN, it also “knows” that there are

13 potential classes. Only our method does not rely on the prior

information about candidate DOAs and achieves a competitive lo-

calization performance.

Ablation Study To validate the function of multipath alleviation

decoder, we conduct ablation study which removes that decoder dur-

ing the training phase. The MAEs for the testing data are listed in the

second row of Table 1. Compared with the first row, we can see that

The localization error increases when that decoder is removed for all

of the cases, which verifies the role of that decoder in resolving the

multipath artifacts.

Generalization Performance First, we evaluate the generaliza-

tion under perturbations of RT60 and microphone locations (see Fig.

3(c)). The model is trained with 0.6 s RT60 (Base Case I) but tested

with the following two cases: (i)RT60 increases to 0.7 s (ii) the same

RT60, but microphone spacing increases from 2.6 to 2.7 cm.

Besides, we evaluate generalization performance across differ-

ent speech for the MIRD data (See Fig. 3(d)). The model is trained

with RT60 = 0.61 s and 20 speech signals (Base Case II) but tested

with (iii) 3 new recordings that are not used in training. We also com-

pare the generalization performance with CNN and list the MAEs in

Table 3. From that table, we can see that our method has a more

robust performance under the perturbations of RT60, microphone

positions, and speech signal than CNN.

4. CONCLUSIONS

We developed SSLIDE, a SSL method based on a DNN with an

encoder and two decoders which can localize the sources in a con-

tinous space. This enables the DNN to simultaneously predict the

locations of sound sources and mitigate multipath artifacts. Experi-

ments indicate our method outperforms MUSIC, SRP-PHAT, SBL,

and CNN in environments with different reverberation levels in a

continuous space. The ablation study shows the importance of mul-

tipath alleviation decoder to reduce multipath and the generalization

experiments show strong generalization abilities across space, per-

turbations of reverberation time and microphone locations, and un-

seen input recordings.
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