
SSLShader: Cheap SSL Acceleration with 

Commodity Processors 

Keon Jang+, Sangjin Han+, Seungyeop Han*,  

Sue Moon+, and KyoungSoo Park+ 

 

KAIST+ and University of Washington* 

 



Security of Paper Submission Websites 

2 



Security Threats in the Internet 

 Public WiFi without encryption 

• Easy target that requires almost no effort 

 

 Deep packet inspection by governments 

• Used for censorship  

• In the name of national security 

 

 NebuAd’s targeted advertisement 

• Modify user’s Web traffic in the middle 
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Secure Sockets Layer (SSL) 

 A de-facto standard for secure communication 

• Authentication, Confidentiality, Content integrity 
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Client Server 
TCP handshake 

Encrypted data 

Key exchange using 
public key algorithm  

(e.g., RSA) Server 
identification 



SSL Deployment Status 

 Most of Web-sites are not SSL-protected 

• Less than 0.5%  

• [NETCRAFT Survey Jan ‘09] 
 

 Why is SSL not ubiquitous? 

• Small sites: lack of recognition, manageability, etc. 

• Large sites: cost 

• SSL requires lots of computation power 
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SSL Computation Overhead 

 Performance overhead (HTTPS vs. HTTP) 

• Connection setup 

 

• Data transfer 

 

 Good privacy is expensive 

• More servers  

• H/W SSL accelerators 

 

 Our suggestion:  

• Offload SSL computation to GPU 
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22x 

50x 



 SSL-accelerator leveraging GPU 

• High-performance 

• Cost-effective 

 

 SSL reverse proxy 

• No modification on existing servers 

SSLShader 
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SSLShader 

Web Server 

SMTP Server 

POP3 Server 

Plain TCP SSL-encrypted session 



Our Contributions 

 GPU cryptography optimization 

• The fastest RSA on GPU 

• Superior to high-end hardware accelerators 

• Low latency 

 

 SSLShader 

• Complete system exploiting GPU for SSL processing 

• Batch processing 

• Pipelining 

• Opportunistic offloading 

• Scaling with multiple cores and NUMA nodes 
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CRYPTOGRAPHIC PROCESSING 

WITH GPU 
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How GPU Differs From CPU? 

Intel Xeon 5650 CPU:   

6 cores 

NVIDIA GTX580 GPU:   

512 cores 

Control 

ALU 

ALU 

ALU 

ALU 

ALU ALU 

Cache 

ALU 
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62×109      870×109 < 
Instructions / sec 

http://i.haymarket.net.au/News/NVIDIA_Fermi_GTX480_Die_Shot.jpg


void VecAdd( 
int *A, int *B, int *C, int N) 
{ 
    //iterate over N elements 
    for(int i = 0; i < N; i++) 
        C[i] = A[i] + B[i] 
} 
 
VecAdd(A, B, C, N); 
 

__global__ void VecAdd( 
int *A, int *B, int *C) 
{ 
    int i = threadIdx.x; 
    C[i] = A[i] + B[i] 
} 
 
//Launch N threads 
VecAdd<<<1, N>>>(A, B, C); 
 

Single Instruction Multiple Threads (SIMT) 
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GPU code CPU code 

Example code: vector addition (C = A + B) 

지점 분 초



Parallelism in SSL Processing 
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Client 1 

Client 2 

Client N 1. Independent Sessions 

SSL Record SSL Record SSL Record 2. Independent SSL Record 

3. Parallelism in Cryptographic Operations 

SSLShader 



Our GPU Implementation 

 Choices of cipher-suite 

 

 

 

 

 

 Optimization of GPU algorithms 
• Exploiting massive parallel processing 

• Parallelization of algorithms 

• Batch processing 

• Data copy overhead is significant 

• Concurrent copy and execution 
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앞에랑 매핑이 되게
그림을 가져와서 매핑이 되게 하는게 좋을듯 

Client Server 

Encryption: AES  
Message Authentication: SHA1 

Key exchange: RSA 



Basic RSA Operations 

 M: plain-text,  C: cipher-text 

 (e, n): public key, (d, n): private key 

 

 Encryption: 

C = Me mod n 

 

 Decryption: 

M = Cd mod n 
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1024/2048 bits integer (300 ~ 600 digits)  

Small number: 3, 17, 65537 

Exponentiation  many multiplications 

Server 

Client 



Breakdown of Large Integer Multiplication 
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Schoolbook  
multiplication 
 

649 

X    627 

--------- 

63 

280 

4200 

180 

800 

12000 

5400 

32000 

+ 360000 

--------- 

406923 

Accumulation is difficult to parallelize due to 
 

 “overlapping digits” 
 

“carry propagation” 

3 x 3 = 9 multiplications 
9 addition of 6-digits integers 



O(s) Parallel Multiplications 
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Example of  
649 x 627 = 406,923 

2s steps 

1 or 2 steps 
(s – 1 worst case) 

s = # of words in a large integer 
(E.g., 1024-bits = 16 x 64 bits word) 



More Optimizations on RSA 

 Common optimizations for RSA 
• Chinese Remainder Theorem (CRT) 
• Montgomery Multiplication 
• Constant Length Non-zero Window (CLNW) 

 Parallelization of serial algorithms 
• Faster Calculation of M×n 
• Interleaving of T + M×n 
• Mixed-Radix Conversion Offloading 

 GPU specific optimizations 
• Warp Utilization 
• Loop Unrolling 
• Elimination of Divergence 
• Avoiding Bank Conflicts 
• Instruction-Level Optimization 
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4054 6620 13281 9891 10146 6627 21041 

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

Throughput (operations/s) 

Initial (1) 

(2) 

(3) Warp 

Utilization 

(4) 

(5) (6) 64-bit words 
(7) Avoiding bank  

conflicts 

(8) Instruction-level 

Optimization CLNW (9) Post-exponentiation offloading 

Read our paper for details  



Parallelism in SSL Processing 
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Client 1 

Client 2 

Client N 1. Independent Sessions 

SSL Record SSL Record SSL Record 2. Independent SSL Record 

3. Parallelism in Cryptographic Operations 

SSLShader 

Batch Processing 



GTX580 Throughput w/o Batching 
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Difference: ratio of computation to copy 

Batch size: 32~4096 depending on the algorithm 



Copy Overhead in GPU Cryptography 

 GPU processing works by 

• Data copy: CPU  GPU 

• Execution in GPU  

• Data copy: GPU -> CPU 
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Hiding Copy Overhead 
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Synchronous Execution 

Pipelining 

Processing time : 3t 

t 

Amortized processing time : t 

… 

… 

… 

Data copy: CPU -> GPU 

Execution in GPU 

Data copy: GPU -> CPU 

Data copy: CPU -> GPU 

Execution in GPU 

Data copy: GPU -> CPU 
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↑ 36% 
↑ 36% 

↑ 51% w/o copy 

synchronous 

pipelining 

9x 9x 

14x 



Summary of GPU Cryptography 

 Performance gain from GTX580 

• GPU performs as fast as 9 ~ 28 CPU cores  

• Superior to high-end hardware accelerators 

 

 

 

 

 Lessons 
• Batch processing is essential to fully utilize a GPU 

• AES and SHA1 are bottlenecked by data copy 
• PCIe 3.0 

• Integrated GPU and CPU 
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RSA-1024 
(ops/sec) 

AES-ENC 
(Gbps) 

AES-DEC 
(Gbps) 

SHA1 
(Gbps) 

GTX580 91.9K 11.5 12.5 47.1 

CPU core 3.3K 1.3 1.3 3.3 

분 초



BUILDING SSL-PROXY THAT  

LEVERAGES GPU 
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SSLShader Design Goals 

 Use existing application without modification 

• SSL reverse proxy 

 

 Effectively leverage GPU 

• Batching cryptographic operations 

• Load balancing between CPU and GPU 

 

 Scale performance with architecture evolution 

• Multi-core CPUs 

• Multiple NUMA nodes 
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Batching Crypto Operations 

 Network workloads vary over time 
• Waiting for fixed batch size doesn’t work 
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Output 
queue 

GPU 

Input 
queue 

CPU 

GPU 

SSL 
Stack 

 Batch size is dynamically adjusted to queue length 

 



Balancing Load Between CPU and GPU 

 For small batch, CPU is faster than GPU 
• Opportunistic offloading  
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Output 
queue 

GPU 

Input 
queue 

CPU processing 

GPU processing 
when input queue length > threshold 

GPU 
queue 

CPU 



Scaling with Multiple Cores 
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 Per-core worker threads 
• Network I/O, cryptographic operation 

 Sharing a GPU with multiple cores 
• More parallelism with larger batch size 

Output 
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Input 
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GPU 
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Scaling with NUMA systems 

 A process = worker threads + a GPU thread 

• Separate process per NUMA node 

• Minimizes data sharing across NUMA nodes 
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Evaluation 

 Experimental configurations 
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Model Spec Qty 

CPU Intel X5650 2.66Ghz x 6 croes 2 

GPU NVIDIA GTX580 1.5Ghz x 512 cores 2 

NIC Intel X520-DA2 10GbE x 2 2 

…

Server                Server 

Lighttpd 

SSLShader 

Lighttpd 

OpenSSL 

HTTP 

Clients 

GPU 

Clients 

HTTPS HTTPS 

Server  
Specification 



Evaluation Metrics 

 HTTPS connection handling performance 

• Use small content size 

• Stress on RSA computation 

 

 Latency distribution at different loads 

• Test opportunistic offloading 

 

 Data transfer rate at various content size 
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HTTPS Connection Rate 
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CPU Usage Breakdown (RSA 1024) 
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Latency at Light Load 
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Latency at Heavy Load 
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Lower latency and higher throughput at heavy load 

0

20

40

60

80

100

1 10 100 1000

C
D

F
 (

%
) 

Latency (ms) 

Lighttpd at 11k 
connections / sec 

SSLShader at 29k 
connections / sec 



Data Transfer Performance 
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Typical web content size is under 100KB 

SSLShader: 13 Gbps  



CONCLUSIONS 
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Summary 

 Cryptographic algorithms in GPU 

• Fast RSA, AES, and SHA1 

• Superior to high-end hardware accelerators 

 

 SSLShader 

• Transparent integration 

• Effective utilization of GPU for SSL processing 

• Up to 6x connections / sec 

• 13 Gbps throughput 
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Linux network stack performance 

Copy overhead 



QUESTIONS? 

 

THANK YOU! 

 

For more details 

https://shader.kaist.edu/sslshader 
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http://shader.kaist.edu/sslshader

