
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

S S M A I L : O P P O R T U N I S T I C
E N C R Y P T I O N I N S E N D M A I L

Damian Bentley, Greg Rose, and Tara Whalen

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

ssmail: Opportunistic
Encryption in sendmail

Damian Bentley – Australian National University†
Greg Rose – QUALCOMM Australia

Tara Whalen – Communications Research Centre Canada

ABSTRACT

Much electronic mail is sent unencrypted, making it vulnerable to passive eavesdropping.
We propose to protect email privacy by building encryption functionality into ESMTP mailers.
Our solution, ssmail, provides fast, simple encryption for sendmail that does not require user
intervention or reliance on public key infrastructure. We added a small number of steps to an
ESMTP session, thereby allowing a client and server to create a secret, one-time session key
used to encrypt the mail transfer session. ssmail relies on caching to reduce key generation
overhead. The overhead imposed by our encryption scheme is minimal, allowing even busy
mail servers to support privacy.

We placed our encryption mechanism within the mail transfer agent itself, allowing people
to use privacy protection software without having to know how to run an encryption program
explicitly. Furthermore, we are able to encrypt the email transmission session, protecting such
information as sender and recipient identities. The speed and simplicity of ssmail make it a very
useful addition to widely deployed ESMTP mailers. Our solution can also be adopted easily by
other mailers, and can be extended to use other encryption algorithms.

Introduction

A great deal of email travelling over the Internet
is vulnerable to eavesdropping. Eavesdropping opera-
tions can be done in bulk by well-funded adversaries
such as organized crime or government agencies.
While email is in transit from sender to receiver, it
usually travels over a number of paths, any of which
might be tapped by a passive listener. Encrypting
email is the obvious solution to this threat. A properly
used encryption algorithm is the most effective way to
ensure privacy against the casual interceptor.

However, there are a number of factors that can
make encryption an impractical solution. Some users
are unaware of encryption technology, or how to use it
properly. Furthermore, encryption algorithms can be
computationally intensive, rendering them unfit for
overburdened mail servers. Lastly, end to end encryp-
tion of email requires a pervasive key management
infrastructure and, despite some progress, no such
infrastructure exists today.

For these reasons, almost all email is currently
sent unencrypted over the Internet. Our goal for this
work is to significantly increase the proportion of
electronic mail that is encrypted and protected from
bulk eavesdropping. It is not our goal to make email
transmission totally secure – this is better done at the
application layer using, for example, PGP [19].

To address these issues, we implemented ssmail,
a patch for sendmail[1] that allows for the encryption

†The author worked on this project while employed with
QUALCOMM Australia.

of mail sent using the Extended Simple Mail Transfer
Protocol (ESMTP) [8]. By adding a few extra steps to
an ESMTP session, we allow a client and server to
exchange enough information to create a secret, one-
time session key that is used to encrypt the mail trans-
fer session. Our solution includes careful use of
caching to reduce key generation overhead. By plac-
ing encryption within the mail transfer agent itself, we
allow users to take advantage of privacy protection
without having to run an encryption program explic-
itly. An added benefit is that all of the transmission
session, including such things as sender and recipient
identities, is encrypted.

The speed and simplicity of this solution make it
a very useful addition to widely deployed ESMTP
mailers.

Design goals

Our central goal when developing ssmail was to
provide a fast, easy to use method to protect email
from eavesdroppers. Note that a single network tap at
a hub location could yield an enormous amount of
information. Owing to the great deal of email that is
transmitted and processed every day, any encryption
method used must be fast. A complex encryption
scheme, or one that requires a trusted third-party
machine to distribute keys, will slow communication.
In order to make encryption easy for users, we did not
want to rely on public-key infrastructure or require
that users know how to use encryption software prop-
erly. Rather, we wanted the encryption to be effec-
tively transparent to users. They can determine that it

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 1

ssmail: Opportunistic Encryption in sendmail Bentley, Rose, and Whalen

was used if they examine the mail headers; they will
not, however, have to make it work themselves.

The Threat Model

Before describing ssmail in detail, it is necessary
to clarify the threat model against which it defends.
Email messages typically make their way from the
sender to the recipient in a number of hops. The first
hop is often inside an organization, such as a large
company or an Internet service provider, and might be
presumed to be secure. Similarly, the last hop might be
made from an organization’s firewall to the receiving
machine. However, the hop(s) in the middle are usu-
ally across the Internet: they are insecure and thus per-
fect targets for mass interception.

Current implementations of ESMTP transmit all
commands and email messages in the clear, making
email vulnerable as it crosses many machines across a
network. Our goal was to provide efficient protection
of email privacy in the face of passive attacks. Our
solution defends against passive attacks: anyone inter-
cepting an ESMTP session that uses ssmail will be
unable to discover the sender, receiver, or email con-
tents.

However, ssmail cannot (and does not try to)
defend against active attacks. The Diffie-Hellman key
exchange used in ssmail does not authenticate the par-
ticipants. An interceptor could substitute her public
key for the real recipient’s key, allowing her to read
and possibly modify email before re-encrypting it with
the real key and sending the email on its way. The
sender and receiver will have no idea that their sup-
posedly safe transmission was intercepted.

Defeating such an active attack is not an easy
task. Solutions involve the use of a public key infras-
tructure (PKI), preferably one that uses certificates
that ensure that public keys cannot be tampered with.
The Station-to-Station protocol [10], for example, uses
a PKI to allow the participants to verify that they
received the correct keys during the Diffie-Hellman
exchange. As mentioned above, there does not yet
exist a pervasive key management infrastructure.
When a PKI is in place, ssmail could be modified to
perform the Station-to-Station protocol if authentica-
tion were deemed necessary. (Of course, when such a
PKI is in place, interim solutions such as ssmail should
not be necessary at all.) In this protocol, it is assumed
that each party has access to the other party’s public
key; the ‘‘man in the middle’’ attack is foiled through
the use of digital signatures. Such a protocol could
offer stronger security with minimal added overhead,
depending on how the PKI operates and how expen-
sive it would be to obtain public keys securely or to
send public-key certificates.

What ssmail does provide right now is a solution
that is not risk-free, but is fast and simple, and can be
deployed immediately to thwart the problem of pas-
sive listening.

Possible Solutions

There are a number of encryption methods avail-
able to email users that could guard against eavesdrop-
ping. People can use secondary programs such as PGP
or S/MIME [4] to encrypt and decrypt their mail mes-
sages. The advantage of this approach is that users
can select the encryption application that best serves
their needs (such as speed or level of security). How-
ever, it requires that users be capable of using these
applications correctly, which may be a problem for
inexperienced users. A recent study indicates that this
is more problematic than might be expected [17]. Fur-
thermore, such methods do nothing to disguise the
source or destination of the email, or any of the infor-
mation in mail headers.

Another solution would be to rely on infrastruc-
ture that encrypts all traffic (including email) travel-
ling over the network. IPSec and IPv6 [2] provide
such a solution by supporting encryption of all IP
packets. The advantages are obvious: all IP traffic is
protected without the user having to use an encryption
package directly. The major disadvantage is that such
infrastructure is not yet widely deployed.

Our solution was to add an encryption command
to ESMTP. This command provides mail agents with
shared secret keys through a Diffie-Hellman exchange;
these keys can then be used in encrypting email. We
added an encryption scheme to sendmail that makes
use of these shared keys. As described below, speedy
key agreement is supported through the use of a spe-
cial cache. ssmail users do not have to make any spe-
cial effort to ensure that encryption works. Thus we
provide fast and simple encryption support for
ESMTP mailers.

Our Solution: ssmail

Communication between an ESMTP client and
server consists of a series of commands and responses
that are sent along with the email message. We added
a new command to this protocol: the XCRYPT com-
mand. This command has a number of parameters that
allow a client and server to create secret keys.

The input and output functions of sendmail are
modified to encrypt and decrypt protocol messages
sent. Below, we describe in detail how the XCRYPT
command is used, how the keys are created, and how
efficiency is addressed using caching.

The XCRYPT Command

We added the XCRYPT command to ESMTP to
allow for the exchange of keys for email encryption. It
has a number of parameters:

• version strings: the client and server exchange
strings, which indicate the version and name of
the preferred encryption algorithm(s) to be used
(for example, t32_1.0)

• public keys: the client and server exchange
public keys to be used in the Diffie-Hellman
key agreement scheme

2 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Bentley, Rose, and Whalen ssmail: Opportunistic Encryption in sendmail

• nonces: both the client and server generate ran-
dom integers that are hashed with the shared
secret key to produce a new session key for
each exchange (details below).

An ESMTP session that supports XCRYPT is
shown in Table 1. As the table shows, the XCRYPT
exchange requires five extra messages to be added to a
normal ESMTP session. When a connection is made
between two machines that have the ssmail patch
installed, the exchange takes place as follows:

Client(a) Server(b) Notes

← 220 (address) 1. Server introduction

EHLO (address) → 2. Client introduction

← 250 XCRYPT Vb 3. Server sends services it sup-
ports. Includes XCRYPT with
version string.

XCRYPT Va Ka Na → 4. Client sends version string,
public key, nonce

← 250 XCRYPT Kb Nb 5. Server sends public key, nonce

XCRYPT OK → 6. Client XCRYPT verification

← 250 XCRYPT OK 7. Server XCRYPT verification

Encryption starts now

Table 1: An ESMTP session using XCRYPT.

Variable/Key Public/Private Notes

strong prime (p) public 768-bit integer (static, shared)

generator (g) public value = 2 (static, shared)

private key (r) private randomly-chosen 768-bit integer

public key (K) public K = gr (mod p)

shared secret private secret = Kr (mod p)

nonces (n) public randomly-chosen 80-bit integers

Table 2: Parameters used to generate secret session keys.

1. The server sends the initial introduction, which
contains such information as the machine name
and the version of sendmail being used.

2. The client sends an EHLO (extended hello)
command along with its address. Sending
EHLO (rather than SMTP’s HELO) indicates
that the client sendmail uses ESMTP.

3. The server responds to EHLO by providing a
list of the ESMTP services that it supports,
using XCRYPT to indicate encryption. It also
sends the version string (Vb), which reports its
available encryption algorithms.

4. The client then provides its version string (Va),
which includes the chosen encryption algo-
rithm, along with its public key (Ka) and nonce
(Na). This provides the server with enough
information to create the shared secret key used
for encryption (detailed below).

5. The server sends its public key (Kb) and nonce

(Nb), which the client uses to create the shared
secret key.

6. If there are no problems with the exchange, the
client sends XCRYPT OK. Failure is indicated
by XCRYPT FAIL. Should a FAIL be sent in
either direction, the session will continue, but
the mail will be sent unencrypted.

7. If there are no problems on the server side, the
server sends XCRYPT OK (else XCRYPT
FAIL).

If the server is not capable of using the XCRYPT
command, it is not mentioned in the list of supported
services. Thus, the client will not respond with its
XCRYPT command. Should the client be unable to
support the XCRYPT command, this service (as sent
by the server) is ignored, and the session continues
normally, without encryption.

Creating Shared Secret Keys

Once the necessary information has been
exchanged via the XCRYPT commands in ESMTP,
the client and server use it to calculate shared secret
keys used in encrypting the mail transfer. There are a
number of components used in the calculation of the
encryption keys, shown in Table 2.

The shared secret is generated using the Diffie-
Hellman key agreement [3]. The client a and the
server b share a strong prime p and a generator g. The
prime and generator are hard-coded into ssmail – they

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 3

ssmail: Opportunistic Encryption in sendmail Bentley, Rose, and Whalen

are the values generated for IPSec [13]. For the private
keys (ra, rb) both parties select a randomly-generated
768-bit integer that must remain secret. To minimize
the risks of an attacker discovering the private keys
while they are useful, the keys are regenerated every
two hours (this default value can be configured as
required).

The client and server generate their public keys
using their private key values. The client’s public
key is Ka = gra(mod p), while the server’s is
Kb = grb(mod p). These public keys are exchanged in
the XCRYPT transfer described above. To generate
the shared secret, the client computes Kb

ra(mod p), and
the server computes Ka

rb(mod p). These two compu-
tations yield the same value, a number that must be
kept private from other parties. Computing this shared
secret is relatively expensive.

At this stage, email could be encrypted using the
shared secret. However, for two reasons, there is
another step in the process. As detailed below, ssmail
is designed to avoid recalculating the shared secret
unless absolutely necessary, which ensures that the
encryption process is as fast as possible. We wish to
be able to reuse the shared secret if the same
client/server pair communicate again before either
party’s public key has changed. This is not a valid
solution on its own. Re-using a key is an insecure
practice: it increases the likelihood than an attacker
could decrypt mail, particularly if a stream cipher is
used in the encryption.

To avoid this problem, ssmail uses nonces (num-
bers used only once in the protocol) to ensure that a
fresh private session key is generated for every
exchange. The client and server exchange 80-bit ran-
domly-selected integers. The shared secret and both
nonces are passed through the Secure Hash Algorithm
(SHA-1) [12] to make a 160-bit key. Messages sent
from client to server use the first 80 bits as the key,
and the last 80 bits are used as the key for the server to
client messages.

The Encryption Algorithm
The 80-bit secret keys maintained by the client

and server can be used in conjunction with any num-
ber of cryptographic algorithms. Originally, ssmail
supported SOBER, a stream cipher developed by Greg
Rose [15]. SOBER was specifically designed to sup-
port fast software encryption. This version of ssmail
was never widely deployed, and so SOBER has been
replaced. Instead, there are two algorithms supported:

• arrsyfor (compatible with RC4) [16]
• t32 (a faster and stronger derivative of the

SOBER cipher) [14]
Other algorithms can be easily added, with the server
suggesting the algorithm that best supports its needs.

Increasing Efficiency
Speed was a major concern when designing

ssmail. Because encryption is taking place on mail
servers that typically handle a large volume of mail, a

slow cryptographic system could paralyse a server.
The slowest part of our implementation is the Diffie-
Hellman computation of the shared secret (that is,
computing Kr mod p). To avoid recalculating this
value for every ESMTP session, we use a cache.
Every time a connection is made, each party stores the
other party’s public key and the shared secret in a
cache. If this same machine is contacted later, the
costly Diffie-Hellman calculation may not have to be
performed again.

The format of the cache is as follows:

Header
Server ’s public and private keys
Time at which keys were generated

Body
machine 1: public key, shared secret
machine 2: public key, shared secret

. . .
machine n: public key, shared secret

Each time a connection is made, this cache is
checked. First, the timestamp on this machine’s own
key pair is checked, and if it is too old (two hours by
default), a new key pair is created and the cache is
purged. Otherwise, if the other party’s public key is
found, then the shared secret is reused, saving an
expensive recalculation. The shared secret is then
passed through a secure hash computation with the
nonces, but this calculation is fast. This makes com-
puting a session key feasible for every connection.

If the public key is not found in the cache, then
the shared secret is calculated with this new public
key, then hashed to produce a session key. The public
key and corresponding shared secret are stored in the
cache for possible future use.

When a machine updates its private key, the
shared secrets in the cache become invalid, as they
were based on calculations performed with an out-
dated (different) key. The cache is simply cleared of
all entries.

This caching method vastly increases the speed
of encryption for a small network of machines that
send mail mostly to each other (such as large corpo-
rate mail servers communicating with each other).

Performance

We performed two sets of tests on ssmail. Both
tests evaluated sendmail 8.8.8 with ssmail extensions.
The SSLeay library [18] version 0.9.0 generated ran-
dom numbers to perform the Diffie-Hellman calcula-
tions and to perform the SHA-1 secure hash function.

The first tests were performed on ssmail with
SOBER as the encryption algorithm. The test machine
had a Pentium 100 MHz microprocessor and ran
Linux 2.0.0. These results are based on sendmail
receiving a plain text email of around 64 kilobytes

4 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Bentley, Rose, and Whalen ssmail: Opportunistic Encryption in sendmail

with the key cache already primed (that is, no Diffie-
Hellman computation).

Tests on normal sendmail (without ssmail) showed
that 63.9% of program time was spent in the col-
lect() function, which reads command input from
the network socket. With ssmail installed, this
increased to 66%, with total running time increasing
by less than 5%. The collect() function per-
formed almost half of the 128,000 calls to
crypto_fgetc(), the function that delivers
decrypted text using the SOBER algorithm. Similar
results were found for sending email as well.

These results may vary for mailers other than
sendmail 8.8.8, as sendmail makes extensive use of sin-
gle character input and output. Other mailers with dif-
ferent methods of text processing, such as line-based
methods, may have different overheads.

It must be noted that the Diffie-Hellman compu-
tation will slow down mail processing. This computa-
tion is performed every two hours (depending on the
configuration), and whenever a new machine is con-
tacted. On the Linux machine, this computation took
approximately 0.5 seconds of CPU time.

Another set of performance measurements were
undertaken after implementing the two new cipher
methods (arrsyfor and t32). In the following discus-
sion, all measurements were done on a COMPAQ
DeskPro (Pentium Pro) at 233 MHz, compiled with
gcc -O3 on Linux 2.0.33.

One of the authors’ mail traffic for just over two
weeks was analyzed to try to estimate the effect of
caching on the Diffie-Hellman computation. Over a
period of 372.6 hours, 1,322 email messages were
received with a mean size of 14,671 bytes (median
2,950 bytes). Of these, 994 were delivered by the cor-
porate mail hub machine. In the following analysis,
we assume the worst possible case. For example, we
assume that a new Diffie-Hellman key would have to
be computed every two hours. (This could occur if
messages arrived steadily.) Furthermore, we assume
that none of the communications with other machines
(other than the corporate mail hub) were able to use
the cached information. This is unlikely, but possible
if all other machines sent at most one message each
per two-hour cache period.

Let us consider the effect of caching on the
Diffie-Hellman calculations. In the case of the corpo-
rate mail hub, one calculation is done every two hours,
giving 187 key calculations over the test period. This
leaves 807 messages sent efficiently using the cache.
We must also consider the messages from other
machines (assumed to miss the cache), a total of 328.
Out of 1322 messages, 515 required the Diffie-Hell-
man computation, while 808 did not. Thus, the cache
saved over 60% of these computations. This is a con-
servative estimate, and the benefit to the mail hub
machine itself could be expected to be much greater.

Each Diffie-Hellman computation took 0.3387 s.
Amortized over all email messages, this was an aver-
age of 0.1317 s per email message. This is a similar
order of magnitude to the total processing time for an
average message. Using lightweight Diffie-Hellman
key agreement and an aggressive caching strategy
adds little overhead to mail processing.

Once the shared secret has been calculated or
retrieved from the cache, the session keys must be
derived, the encryption algorithm must be keyed inde-
pendently for each direction, and the traffic must be
encrypted. Ignoring the command dialog, the bulk of
the encryption applies to the email message contents.
Table 3 shows the CPU time in µs taken for the vari-
ous steps of each of the currently supported encryption
algorithms. (Note that t32 is still undergoing changes
to make it more secure, and thus its performance is
likely to change slightly in the near future.)

SOBER, as used in the earlier round of testing,
was somewhat less efficient than arrsyfor, so the total
running time of sendmail with the new version of
ssmail is expected to increase by less than 3% (not
counting the Diffie-Hellman computation).

Operation arrsyfor t32

key generation (SHA1) 22.12 22.12
two key setups 127.6 6.06
message encryption
arrsyfor speed: 8.947 MB/s 1640
t32 speed: 12.09 MB/s 1213
total 1790 1241

Table 3: CPU time taken.

Related work

There have been a number of projects developed
to protect email from eavesdroppers. Our own work
was inspired by John Gilmore’s Secure Wide Area
Network (S/WAN) project [5]. S/WAN is designed to
protect IP traffic by adding IPSec protocol support to
personal computers. This differs from our work by
providing network-layer encryption that can protect
more kinds of traffic than just email transmissions.
However, ssmail offers a simple and fast solution for
email protection that can be easily installed. This is an
alternative for systems that cannot handle the over-
head of IPSec protocols.

Paul Hoffman has proposed an SMTP extension
for privacy and authentication using SSL [7]. If
authentication is not used, then his solution is very
similar to ssmail. However, Hoffman’s scheme has no
support for the caching of the shared secret value,
which leads to greater overhead from increased pub-
lic-key calculations.

There have been a number of projects that pro-
posed to embed encryption programs in mail user
agents. For example, Paul Leyland and Piete Brooks

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 5

ssmail: Opportunistic Encryption in sendmail Bentley, Rose, and Whalen

proposed a secure email project for the JANET net-
work that would imbed PGP into mail user agents [9].
Putting encryption into the user agent rather than the
transport agent requires more applications to be modi-
fied. Furthermore, they found that the PGP key servers
would be unable to keep up with demand.

It is worth mentioning that there have been pro-
posed extensions to SMTP for authentication. John
Myers has put forth a system in which the client and
server perform an authentication protocol exchange at
the start of an SMTP session [11]. As ssmail is not
intended to perform authentication, Myers’ extension
deals with a completely separate issue. It is possible
that both SMTP extensions could be used by those
systems that demand authentication and privacy and
are prepared to handle the protocol overhead.

Limitations

While ssmail provides an effective solution for
email privacy, it is has some limitations. Due to the
multi-process nature of sendmail, the cache used to
speed up key generation is stored on disk. The shared
secret stored here is vulnerable to being retrieved and
used to decrypt future email transmissions. Should this
risk be considered too great, a trade-off in efficiency
could be made. The disk cache can be turned off,
resulting in a new shared secret for every exchange
(but with the cost of the Diffie-Hellman computation).
Note, however, that the email itself would also be
exposed while stored on the compromised machine.
We class this as an active attack, and hence outside the
scope of our work.

Because SMTP transfers usually follow similar
patterns, certain bytes generated by the encryption
algorithm can be determined. For example, a ‘‘MAIL
From:’’ command is followed by a ‘‘RCPT To:’’ com-
mand. Knowing this plaintext could provide enough
information to allow an eavesdropper to determine
such facts as the length of the recipient’s email
address. Any good encryption algorithm should mini-
mize the information leaked from an encrypted ses-
sion. However, this weakness is worth attention to
ensure that the algorithm chosen does not fall prey to
this threat.

Another limitation comes from the nature of
store-and-forward transfer of email. Mail messages
may pass through many servers en route to their desti-
nation. ssmail decrypts mail at each server before re-
encrypting it for forwarding, so the mail remains
unencrypted in the queue. As mail could be stored for
an arbitrarily long time, this is a point of vulnerability.
One way to reduce this threat is to use another pro-
gram to encrypt mail during storage in the queue.

Future work

At the time of writing, ssmail is in a beta test ver-
sion. There are a number of features that we intend to
add or improve. We would like to replace the SSLeay

random number generator with Peter Gutmann’s pack-
age [6], which appears to be stronger. ssmail has
already been extended to support t32 and RC4, an
experience that indicates that porting other stream
cipher algorithms should prove straightforward.
Lastly, further analysis of traffic characteristics from a
major mail hub would prove valuable for better esti-
mating the saving from key caching.

Conclusions

We designed and implemented a fast, non-intru-
sive method for protecting large quantities of email
against passive eavesdropping. We have supplied
ESMTP with a key exchange command and added
encryption algorithms to sendmail.

Our method has three main advantages:
• ssmail gives users privacy without requiring

them to know how to use encryption packages
correctly

• ssmail does not add excessive delay to email
transmissions

• ssmail does not require widespread deployment
of public key infrastructure

We believe that ssmail is a valuable tool for providing
email privacy to a great number of users.

Availability

Contact Greg Rose <ggr@qualcomm.com> for
information on availability of ssmail. We have imple-
mented it as a patch to sendmail in order to prevent
sendmail itself from being restricted by export regula-
tions. At the time of writing, export licenses have been
granted for recipients in five countries including the
Czech Republic.

References

[1] B. Costales and E. Allman. sendmail (Second
Edition). O’Reilly & Associates (Sebastopol,
CA), 1997.

[2] S. Deering and R. Minden. Internet Protocol,
Version 6 (IPv6) Specification. RFC 2460, Inter-
net Engineering Task Force, December 1998.

[3] W. Diffie and M. Hellman, ‘‘New Directions in
Cryptography,’’ IEEE Transactions on Informa-
tion Theory, 22 (1976), pp. 644-654.

[4] J. Galvin, S. Murphy, S. Crocker, and N. Freed.
Secure Multiparts for MIME. RFC 1847, Internet
Engineering Task Force, October 1995.

[5] J. Gilmore. S/WAN: Securing the Internet against
wiretapping. http:/www.toad.com/gnu/swan.html .

[6] P. Gutmann. Software generation of practically
strong random numbers. In Proceedings of the
Seventh USENIX Security Symposium, San Anto-
nio, TX, January 1998, pp. 243-257.

[7] P. Hoffman. SMTP Service Extension for Secure
SMTP over TLS. RFC 2487, Internet Engineering
Task Force, January 1999.

[8] J. Klensin, N. Freed, M. Rose, E. Stefferud and
D. Crocker. SMTP Service Extensions. RFC

6 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Bentley, Rose, and Whalen ssmail: Opportunistic Encryption in sendmail

1869, Internet Engineering Task Force, Novem-
ber 1995.

[9] P. Leyland and P. Brooks. Report of the
UKERNA Secure Email Project. http://www.
cam.ac.uk.pgp.net/pgpnet/secemail/q4

[10] A. J. Menezes, P. C. van Oorschot and S. A.
Vanstone. Handbook of Applied Cryptography.
CRC Press (Boca Raton, FL), 1997.

[11] J. Myers. SMTP Service Extension for Authenti-
cation. Internet Draft draft-myers-smtp-auth-12.
txt, work in progress, Internet Engineering Task
Force, November 1998.

[12] National Institute of Standards and Technology,
NIST FIPS PUB 180-1, ‘‘Secure Hash Stan-
dard,’’ U.S. Department of Commerce, April
1997.

[13] H. Orman. The OAKLEY key determination pro-
tocol. RFC 2412, Internet Engineering Task
Force, November 1998.

[14] G. Rose, P. Hawkes. The T-class of SOBER
Stream Ciphers. Unpublished manuscript.
http://www.home.aone.net.au/ qualcomm

[15] G. Rose. A stream cipher based on linear feed-
back over GF(28). In C. Boyd and E. Dawson,
eds., ACISP’98 (Lecture Notes in Computer Sci-
ence 1438), Springer Verlag, 1998.

[16] B. Schneier. Applied Cryptography: Protocols,
Algorithms, and Source Code in C (Second Edi-
tion). John Wiley and Sons (New York, NY),
1996.

[17] A. Whitten and J. D. Tyger. Why Johnny Can’t
Encrypt: A Usability Evaluation of PGP 5.0. In
Proceedings of the Eighth USENIX Security
Symposium, Washington, D.C., August 1999,
pp. 169-183.

[18] E. Young. SSLeay Libraries Version 0.9.0.
http://www.cryptsoft.com/ssleay/faq.html .

[19] P. Zimmerman. The Official PGP User’s Guide.
MIT Press (Cambridge, MA), 1995.

Author Information

Damian Bentley is currently studying self-modi-
fying computer viruses for honours at the Australian
National University. Previously Damian has worked
for CSIRO and DSTO (Australian Scientific/Defence
research organizations), and for QUALCOMM Aus-
tralia on cryptography. More details about Damian and
his work can be found at http://mehta.anu.edu.
au/˜bendchon , or he can be emailed at <bendchon@
mehta.anu.edu.au> .

Greg Rose joined QUALCOMM in July 1996 as
a senior staff engineer and manager, working on cryp-
tography and authentication for the GlobalStar satel-
lite communication project and the CDMA cellular
phone system, and to set up the office of QUAL-
COMM Australia. He is enjoying work immensely.
Greg is also Vice President of USENIX. He can be
contacted by email at <ggr@qualcomm.com>, and his

personal web page is http://people.qualcomm.com/
ggr .

Tara Whalen is a researcher investigating net-
work security at the Communications Research Centre
Canada. Other research interests include wireless and
mobile computing, human-computer interfaces, and
social implications of computing. Tara holds an
MMath in Computer Science from the University of
Waterloo. She can be contacted at <tara.whalen@
crc.ca> .

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 7

8 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

