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Microsatellites or SSRs (simple sequence repeats) are ubiquitous short tandem duplications occurring in eukaryotic organisms.
These sequences are among the best marker technologies applied in plant genetics and breeding. The abundant genomic, BAC,
and EST sequences available in databases allow the survey regarding presence and location of SSR loci. Additional information
concerning primer sequences is also the target of plant geneticists and breeders. In this paper, we describe a utility that integrates
SSR searches, frequency of occurrence of motifs and arrangements, primer design, and PCR simulation against other databases.
This simulation allows the performance of global alignments and identity and homology searches between different amplified
sequences, that is, amplicons. In order to validate the tool functions, SSR discovery searches were performed in a database
containing 28 469 nonredundant rice cDNA sequences.
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1. INTRODUCTION

Microsatellites or SSRs (simple sequence repeats) are sequen-
ces in which one or few bases are tandemly repeated for
varying numbers of times [1]. Variations in SSR regions
originate mostly from errors during the replication process,
frequently DNA polymerase slippage, generating insertion
or deletion of base pairs, resulting, respectively, in larger or
smaller regions [2, 3]. SSR assessments in the human genome
have shown that many diseases are caused by mutation in
these sequences [4].

SSRs can be found in different regions of genes, that
is, coding sequences, untranslated sequences (5'-UTR and
3’-UTR), and introns, where the expansions and/or con-
tractions can lead to gene gain or loss of function [5].
Also, there are evidences that genomic distribution of
SSRs is related to chromatin organization, recombination,
and DNA repair. SSRs are found throughout the genome,
in both protein-coding and noncoding regions. Genome
fractions as low as 0.85% (Arabidopsis thaliana), 0.37% (Zea

mays), 0.21% (Caenorhabtis elegans), 0.30% (Sacharomyces
cerevisae) and as high as 3.0% (Homo sapiens) and 3.21%
(Fugu rubripes) have been found. Some bias for defined
genomic locations has also been reported [6, 7]. This class
of markers is broadly applied in genetics and plant breeding,
due to its reproducibility, multiallelic, codominant nature,
and genomic abundance. Its use for integrating genetic
maps, physical mapping, and anchoring gives geneticists and
plant breeders a pathway to link genotype and phenotype
variations [8].

The protocols for isolating SSR loci for a new species
were always very labor-intensive. Currently, with the accu-
mulation of biological data originating from whole genome
sequence initiatives, the use of bioinformatics tools helps
to maximize the identification of these sequences and
consequently, the efficiency in the number of generated
markers [9].

The first in silico studies of SSRs were developed using
FASTA [10] and BLAST [11] packages. Later, more specific
algorithms, such as SPUTINICK [12], REPEATMASKER
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[13], TRE-Tandem Repeat Find [14], TROLL [15], MISA [16]
and SSRIT (Simple Sequence Repeat Tool) [17], were obtained
[9].

SSR detection is generally followed by the use of another
program for primer design, to be anchored on flanking
sequences. Also, in some applications, a third step using
e-PCR [18] is added, with the goal of verifying primer
redundancy. The sequential use of a number of software
is often called a pipeline. Building such a pipeline can be
a very difficult task for research groups not familiar with
programming tools.

In the present work, a computing tool with an interface
for Windowsusers was developed, called SSR Locator. The
application integrates the following functions: (i) detec-
tion and characterization of SSRs and minisatellite motifs
between 1 and 10 base pairs; (ii) primer design for each
locus found; (iii) simulation of PCR (polymerase chain
reaction), amplifying fragments with different primer pairs
from a given set of fasta files; (iv) global alignment between
amplicons generated by the same primer pair; and (v)
estimation of global alignment scores and identities between
amplicons, generating information on primer specificity and
redundancy. The described tool is publicly available at the
site http://www.ufpel.edu.br/ ~lmaia.faem.

2. MATERIAL AND METHODS
2.1. Algorithms

The algorithms used for the searches, alignment, and homol-
ogy estimates are described separately.

2.2. SSRsearch

The algorithm used for perfect and imperfect micro-
/minisatellite searches was written in Perl and consists of the
generation of a matrix that mixes A(adenine), T(thymine),
C(cytosine), and G(guanine) in all possible composite
arrangements between 1 and 10 nucleotides. The script
instructions perform readings on fasta files, searching all
possible arrangements in each database sequence.

Several instructions in the algorithm used in SSRLocator
resemble those from MISA [16] and SSRIT [17]. However,
additional instructions have been inserted in SSRLocator’s
code. Instead of allowing the overlap of a few nucleotides
when two SSRs are adjacent to each other and one of them
is shorter than the minimum size for a given class as found
in MISA and SSRIT, a module written in Delphi language
records the data and eliminates such overlaps.

The SSR Locator software contains windows focused on
the selection and configuration of SSR and minisatellite types
(mono- to 10-mers) and a minimum number of repeats for
each one of the selected types. The algorithm calls a perfect
repeat when one locus is present with adjacent loci at an up
or downstream distance higher than 100 bp.

The algorithm calls an imperfect repeat when the same
motif is present on both sides of a fragment containing up to
5 base pairs.

The algorithm identifies a composite locus when two or
more adjacent loci were found at distances between 6 and
100 bp [16].

In this study, only “Class I” (=20 bp) repeats are shown.
These repeats have been described as the most efficient loci
for use as molecular markers [17]. The software SSRLoca-
tor was configured to locate a minimum of 20bp SSRs:
monomers(x20), 2-mers(x10), 3-mers(x7), 4-mers(x5), 5-
mers(x4), 6-mers(x4), and minissatellites: 7-mers(x3), 8-
mers(x3), 9-mers(x3), and 10-mers(x3).

In order to validate the efficiency of SSRLocator in
finding SSRs and minisatellites, the same database was
analyzed withMISA and SSRIT, using the same parameters
for minimum number of repeats.

2.3. Primer design

An algorithm written in Delphi language performs calls
to Primer3 [19], which execute primer designs. These
results are fed to a module that performs Virtual-PCRs
and allocates individual identification, forward and reverse
primer sequences, and a sequence fragment corresponding
to the region flanked by the primers (original amplicon) to
each SSR locus. A window allows the selection of Primer3
parameters, such as range of primer and amplicon sizes,
as well as optimum primer size, ranges of melting tem-
perature (TM) (minimum, maximum, and optimum) and
GC content (minimum and optimum). For primer searches,
the software automatically looks for five base pair distances
from both SSR (5" and 3") flanking sites. In this study, the
following parameters were used: amplicon size between 100
and 280 bp; minimum, optimum, and maximum annealing
temperature (TM) of 45, 50, and 55, respectively, minimum,
optimum, and maximum primer size of 15, 20, and 25 bp,
respectively.

2.4. Virtual-PCR

The module used to simulate a PCR reaction was written in
Delphi. The algorithm consists in reading the file generated
by the previous module (SSR locus, forward and reverse
primers, and original amplicon), followed by a search of
sequences containing primer annealing sites. When anneal-
ing sites are found for the two primers, the flanked region
and the primer sequences are copied to a new variable called
“paralog amplicon.”

2.5. Global alignment

For the global alignment between paralog and original
amplicon sequences and score calculations (match, mis-
match, gaps), a routine was written in Delphi language using
the algorithms of Needleman and Wunsch (1970) [20] and
Smith and Waterman (1981) [21]. Also, in the same module,
amplicon identities were calculated according to Waterman
(1994) [22] and Vingron and Waterman (1994) [23].

2.6. Implementation

The strategy of creating a two-language hybrid program was
established as a function of: (i) the higher speed achieved by
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FiGure 1: Flow-chart showing the functional structure of SSR Locator. (A) Perl script to search SSRs; (B) text file where information
from detected SSRs is stored; (C) module for the statistical calculations for SSR motif occurrence; (D) module that formats text files into
standard Primer3 input files; (E) running of Primer3; (F) module for running Virtual-PCR (using a second sequence file as a template); (G)
module performing global alignment between homologous amplicons; (H) identity and alignment score calculations between homologous
amplicons; and (I) file containing SSR, primer, homologous amplicons, identity, and score information.

handling large text files with Perl as compared to Delphi,and
(ii) the better fitness of Perl for generating combinatory
strings to be located. The Perl module was transformed
into an executable file, making unnecessary to install Perl
libraries during program installing. The graphic interface
built, integrating input and output windows to the Windows
operational system, was obtained using the Suite Turbo
Delphi, where a menu system executes calls for each of the
previously described modules.

2.7. Sequences for analysis

A total of 28469 rice (Oryza sativa ssp. japonica- cv.
Nipponbare) nonredundant full length nonredundant cDNA
sequences, sequenced by The Rice Full-Length cDNA Consor-
tium, mapped on the databases derived from the sequencing
of japonica (japonica draft genome, BAC/PAC clones—
IRGSP) and indica (indica draft genome) subspecies [24]
were used for the analyses. These sequences are deposited
in NCBI as two groups, the first comprising accesses from
AK058203 to AK074028, and the second comprising accesses
from AK98843 to AK111488. All these sequences can be
also found in KOME (Knowledge-based Oryza Molecular
Biological Encyclopedia).

A flow chart representing the different steps performed
by the software is shown in Figure 1.

3. RESULTS
3.1. Program validation

A total of 3907 micro- and minisatellites were detected by
SSRLocator in the 28469 analyzed cDNA sequences. The
same database searched with MISA and SSRIT presented
3913 and 3917 loci, respectively. The mono-, 4-mer, 6-mer,
7-mer, 8-mer, 9-mer, and 10-mer repeats were identical
for the three programs. In the case of 2-mer repeats, 594
elements were detected by SSRLocator and 596 elements
were detected by MISA and SSRIT. 3-mer repeats were

differently scored by SSRLocator (1990) and the other two
(1994) algorithms. For 5-mer repeats, SSRLocator and MISA
found the same number of repeats (426), while SSRIT (430)
found a different value.

3.2. Overall distribution of SSR types

The results obtained with SSRLocator indicate that out of
28469 cDNA sequences, 3765 (13.22%) presented one or
more micro-/minisatellite loci. In other studies, microsatel-
lites were found in the following proportions in ESTs: 3% in
arabidopsis [25], 4% in rosaceae [26], 8.11% in barley [16],
2.9% in sugarcane [27], and values ranging between 6-11%
[28] and 1.5-4.7% [29] for cereals in general (maize, barley,
rye, sorghum, rice, and wheat).

Considering the 3765 fl-cDNA sequences, in 3632
(92.96%) only a single micro-/minisatellitelocus was
detected. In 125 sequences, two loci were detected, in seven
sequences three lociandonly one sequence had four loci,
adding up to 3907 occurrences. Among the types analyzed,
SSRs (mono to 6-mer repeats) and minisatellites (7- to
10-mer repeats) comprised 96.98% and 4.12% of detected
loci, respectively.

The distribution of occurrences detected by SSRLocator
was consisted of 138 monomers, 594 2-mers, 1990 3-mers,
251 4-mers, 426 5-mers, 390 6-mers, 82 7-mers, 6 8-mers,
25 9-mers, and 5 10-mers, corresponding to rates of 3.53%,
15.20%, 50.93%, 6.42%, 10.90%, 9.98%, 2.10%, 0.15%,
0.64%, and 0.13%, respectively (see Table 1).

For the remaining SSRs, average percentage values have
been reported as between 17 and 40% for 2-mer, 54-78%
for 3-mer, 2.6-6.6% for 4-mer, 0.4-1.3% for 5-mer, and
less than 1% for 6-mer repeats [28] and 26.5% for 2-mer,
65.4% 3-mer, 6.8% 4-mer, 0.77% 5-mer, and 0.45% for 6-
mer repeats [30] for barley, maize, wheat, sorghum, rye,
and rice, respectively. In nonredundant transcripts from the
TIGR database, 15.6% 2-mer, 61.6% 3-mer, 8.5% 4-mer, and
14.4% 5-mer repeats were found in rice [31].
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TasLE 2: Distribution of SSR/minisatellite repeats in the rice cDNA collection.

Motif Ocur® (%)™ Ocur® (%)@ Total (%) Group (%) Overall
Mono- A/T 111 88.80 14 11.20 125 90.58 3.20
C/G 10 76.92 3 23.08 13 9.42 0.33
AG/CT 97 36.06 172 63.94 269 45.29 6.89
GA/TC 143 61.37 920 38.63 233 39.23 5.96
CA/TG 10 35.71 18 64.29 28 4.71 0.72
2-mer AT 24 100.00 — — 24 4.04 0.61
AC/GT 6 31.58 13 68.42 19 3.20 0.49
TA 19 100.00 — — 19 3.20 0.49
CG 2 100.00 — — 2 0.34 0.05
CCG/CGG 197 53.68 170 46.32 367 18.44 9.39
CGC/GCG 218 61.24 138 38.76 356 17.89 9.11
GCC/GGC 112 53.08 99 46.92 211 10.60 5.40
CTC/GAG 73 42.69 98 57.31 171 8.59 4.38
AGG/CCT 34 30.91 76 69.09 110 5.53 2.82
GGA/TCC 60 62.50 36 37.50 96 4.82 2.46
CAG/CTG 58 76.32 18 23.68 76 3.82 1.95
AAG/CTT 34 50.75 33 49.25 67 3.37 1.71
CGA/TCG 33 54.10 28 45.90 61 3.07 1.56
AGC/GCT 36 62.07 22 37.93 58 291 1.48
GCA/TGC 47 83.93 9 16.07 56 2.81 1.43
AGA/TCT 33 62.26 20 37.74 53 2.66 1.36
CCA/TGG 39 75.00 13 25.00 52 2.61 1.33
3-mer ACC/GGT 22 48.89 23 51.11 45 2.26 1.15
GAA/TTC 28 63.64 16 36.36 44 2.21 1.13
CAC/GTG 28 65.12 15 34.88 43 2.16 1.10
GAC/GTC 18 54.55 15 45.45 33 1.66 0.84
ACG/CGT 11 42.31 15 57.69 26 1.31 0.67
ATC/GAT 5 45.45 6 54.55 11 0.55 0.28
TCA/TGA 5 50.00 5 50.00 10 0.50 0.26
CAA/TTG 4 50.00 4 50.00 8 0.40 0.20
ACT/AGT 3 42.86 4 57.14 7 0.35 0.18
TAA/TTA 1 14.29 6 85.71 7 0.35 0.18
CTA/TAG 4 66.67 2 33.33 6 0.30 0.15
AAT/ATT 1 20.00 4 80.00 5 0.25 0.13
CAT/ATG 4 100.00 0 0 4 0.20 0.10
AAC/GTT 3 75.00 1 25.00 4 0.20 0.10
ATA/TAT 1 50.00 1 50.00 2 0.10 0.05
GTA/TAC 1 100.00 0 1 0.05 0.03
GATC 18 100.00 0 18 7.17 0.46
ATTA/TAAT 9 52.94 8 47.06 17 6.77 0.44
ATCG/CGAT 3 20.00 12 80.00 15 5.98 0.38
CATC/GATG 4 40.00 6 60.00 10 3.98 0.26
demer AGAA/TTCT 2 25.00 6 75.00 8 3.19 0.20
GCTA/TAGC 6 75.00 2 25.00 8 3.19 0.20
GATA/TATC 1 14.29 6 85.71 7 2.79 0.18
GCGA/TCGC 3 42.86 4 57.14 7 2.79 0.18
GCAC/GTGC 2 33.33 4 66.67 6 2.39 0.15
AGGG/CCCT 2 33.33 4 66.67 6 2.39 0.15
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TasLE 2: Continued.

Motif Ocur® (%)W Ocur® (%)@ Total (%) Group (%) Overall
AGGAG/CTCCT 3 15.00 17 85.00 20 4.69 0.51
CTCTC/GAGAG 17 89.47 2 10.53 19 4.46 0.49
GAGGA/TCCTC 9 56.25 7 43.75 16 3.76 0.41
CCTCC/GGAGG 12 80.00 3 20.00 15 3.52 0.38
5-mer AGAGG/CCTCT 4 26.67 11 73.33 15 3.52 0.38
GGAGA/TCTCC 2 18.18 9 81.82 11 2.58 0.28
CTCGC/GCGAG 7 77.78 2 22.22 9 2.11 0.23
AGCTA/TAGCT 4 44.44 5 55.56 9 2.11 0.23
GAAAA/TTTTC 2 25.00 6 75.00 8 1.88 0.20
AGGCG/CGCCT 2 25.00 6 75.00 8 1.88 0.20
CGCCTC/GAGGCG 12 85.71 2 14.29 14 3.59 0.36
CGGCGA/TCGCCG 4 28.57 10 71.43 14 3.59 0.36
CCTCCG/CGGAGG 9 81.82 2 18.18 11 2.82 0.28
AGGCGG/CCGCCT 1 10.00 9 90.00 10 2.56 0.26
6-mer CCGTCG/CGACGG 4 44.44 5 55.56 9 231 0.23
CGTCGC/GCGACG 7 77.78 2 22.22 9 2.31 0.23
ACCGCC/GGCGGT 1 12.50 7 87.50 8 2.05 0.20
CCACCG/CGGTGG 6 85.71 1 14.29 7 1.79 0.18
GGCGGA/TCCGCC 5 71.43 2 28.57 7 1.79 0.18
CTCCAT/ATGGAG 6 100.00 0 0 6 1.54 0.15
CCGCCGC/GCGGCGG 4 66.67 2 33.33 6 7.32 0.15
CTCTCTC/GAGAGAG 4 80.00 1 20.00 5 6.10 0.13
CCTCTCT/AGAGAGG 4 100.00 0 0 4 4.88 0.10
CTCTCTT/AAGAGAG 4 100.00 0 0 4 4.88 0.10
7-mer CCCAAAT/ATTTGGG 3 100.00 0 0 3 3.66 0.08
GCCGCCG/CGGCGGC 3 100.00 0 0 3 3.66 0.08
GCGGCGC/GCGCCGC 2 100.00 0 0 2 2.44 0.05
AATAAAA/TTTTATT 2 100.00 0 0 2 2.44 0.05
GTGTGCG/CGCACAC 2 100.00 0 0 2 2.44 0.05
CGCCGTC/GACGGCG 2 100.00 0 0 2 2.44 0.05
TTGGTTTC/GAAACCAA 2 100.00 0 0 2 33.33 0.05
TGGGCTTG/CAAGCCCA 1 100.00 0 0 1 16.67 0.03
8-mer GCTTCTTG/CAAGAAGC 1 100.00 0 0 1 16.67 0.03
ACGGGCGA/TCGCCCGT 1 100.00 0 0 1 16.67 0.03
ATGATGTA/TACATCAT 1 100.00 0 0 1 16.67 0.03
TCGGCGGCG/CGCCGCCGA 2 100.00 0 0 2 8.00 0.05
AGGTGGTGG/CCACCACCT 2 100.00 0 0 2 8.00 0.05
CCGGTGCGA/TCGCACCGG 1 100.00 0 0 1 4.00 0.03
ACGAGGAGG/CCTCCTCGT 1 100.00 0 0 1 4.00 0.03
9-mer TCCCTTTTC/GAAAAGGGA 1 100.00 0 0 1 4.00 0.03
CGGCATGAA/TTCATGCCG 1 100.00 0 0 1 4.00 0.03
CGGCAGCGA/TCGCTGCCG 1 100.00 0 0 1 4.00 0.03
ACCATCCCG/CGGGATGGT 1 100.00 0 0 1 4.00 0.03
ATGGGCGGC/GCCGCCCAT 1 100.00 0 0 1 4.00 0.03
ATGCAGGGT/ACCCTGCAT 1 100.00 0 0 1 4.00 0.03
AGCCCCAACG/CGTTGGGGCT 1 50.00 1 50.00 2 40.00 0.05
10-mer TTTTTTTCTT/AAGAAAAAAA 1 100.00 0 0 1 20.00 0.03
CCTGCTTTGC/GCAAAGCAGG 1 100 0 0 1 20 0.03
ATCTCCGCCG/CGGCGGAGAT 1 100 0 0 1 20 0.03
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The frequency of micro/minisatellite locus occurrence
for each million nucleotides (loci/Mb) [6] in this study was
2.94, 12.64, 42.34, 5.34, 9.06, 8.30, 1.74, 0.13, 0.53, and
0.11 for mono to 10-mer repeats/Mb, respectively. Overall
occurrences of 83.13loci/Mb were found (see Table 1). In
other studies, different taxa were described in analyses of EST
databases, such as 133 loci/Mb (barley), 161 loci/Mb (wheat,
sorghum and rye), and 256 loci/Mb for rice [28]. Also, for
nonredundant ESTs in rice, sorghum, barley, wheat, and
Arabidopsis, frequencies of 277, 169, 112, 94 and 133 loci/Mb
were found, respectively [30]. Frequencies closer to those
found in this study were described for CDS regions of
Rosaceaespecies, with an average of 40.9-78loci/Mb for
Rose, Almond and Peach, while 39 loci/Mb were found for
Arabidopsis [26].

3.3. Occurrence patterns for different SSR and
minisatellite types and motifs Monomers,
2-mers, 3-mers, and 4-mers

On Table 2, the contents and percentage values for different
micro-/minisatellite motifs are shown. For monomer, 2-mer
and 3-mer repeats, all possible arrangements are shown,
while for 4-mer to 10-mer repeats, only the ten most frequent
motifs are shown.

The A/T monomer repeats were found in 125 loci, with
111 (88.80%) and 14 (11.20%) loci formed by A and
T nucleotides, respectively. The C/G motifs were found
in 13loci, with ten (76.92%) and three (23.08%) loci
formed by C and G, respectively. A/T containing SSRs were
predominant and comprised 90.58% of monomer loci. In
the overall distribution, the monomers represent 3.53% of
3907 detected loci. Motifs AG/CT and GA/TC were the most
frequent and added up to 8.52% of 2-mer SSRs, and 6.89%
and 5.96% of all 3907 detected occurrences. The motifs CT,
GA, and TC were the most abundant adding up to 172,
143, and 90 loci, respectively. In maize, barley, rice, sorghum,
and wheat ESTs, the motif AG was described as the most
frequent [6, 16, 28, 29, 31, 32]. However, in some studies,
the most frequent motif was GA [30, 33]. Repeats composed
by guanine and cytosine were the most abundant among
trimers, with occurrences of 18.44%, 17.89%, and 10.60%,
respectively, for the motifs CCG/CGG, CGC/GCG, and
GCC/GGC, adding up to 23.9% of the overall frequencies of
micro-/minisatellites in the analysis. The motifs CGC, CCG,
and CGG were the most frequent comprising 218, 197, and
170 loci, respectively. Many reports indicate the 3-mer CCG
as the most frequent in maize, barley, wheat, sorghum and
rye [6, 16, 28, 32], sugarcane [27] and rice [29, 31].

Among 4-mers, 100 different arrangements were found,
where the motifs GATC (7.17%), ATTA/AAT (6.77%), and
ATCG/CGAT (5.98%) were the most frequent. These motifs
add up to 19.92% of 4-mer repeats found and represent
1.28% of the overall content of micro-/minisatellites. In
barley ESTs, ACGT was reported as the most abundant motif
[16, 28]. For other species, AAAG/CTTT and AAGG/CCTT
in Lolium perene [34], AAAG/CTTT and AAAC/GTTT in
arabidopsis UTRs [6, 35], and AAAT and AAAG in citrus
[36, 37] were described as most abundant.

3.4. Remaining repeats

Among 5-mers, 188 different arrangements were detected
and the most frequent were CTCCT, CTCTC, and CCTCC
with 17, 17, and 12 occurrences, respectively. In the analysis
of CDS regions, the ACCCG motif was the most frequent
in Arabidopsis, AAAAG in S. cerevisae, C. elegans, and
AAAAC in different primates [38]. Also, the motifs AAAAT,
AAAAC, and AAAAG were described as the most frequent
in eukaryotes [39]. In rice, the motifs AGAGG and AGGGG
were the most abundant [31]. Repeats of type 6-mer were
detected in 230 different arrangements, where CGCCTC
and TCGCCG were the most frequent, occurring in 12
and 10 loci, respectively. Other studies have shown higher
frequencies for the motifs AAGATG, AAAAAT in arabidopsis
[35], AAAAAG in citrus [36], AACACG in S. cerevisae,
ACCAGG in C. elegans and CCCCGG in primates [38].
For all remaining repeats (minisatellites), the occurrences
are widely distributed with low-percentage values for each
arrangement. For 7-mer, 8-mer, 9-mer, and 10-mer repeats,
the totals of occurrences were 57, 5, 23, and 5, respectively.

3.5. Primer design and PCR simulation

The design of primers for the 3907 detected micro-
/minisatellites resulted in 3329 primer pairs, covering 85.20%
of loci. The running of “Virtual PCR” generated a total of
4610 amplicons. A module in SSRLocator checks for primer
redundancy. A total of 2397 primer pairs amplified only the
fragment from its original locus (specific amplicons) and
932 pairs amplified one or more regions besides the original
locus. From these, 692 pairs amplified two fragments, one
from the original site and a second from another region
(paralogous). In this case, 692 specific amplicons plus 692
redundant amplicons, were detected. A total of 143, 90, 2,
and 5 primer pairs generated three (two redundancies), four
(three redundancies), five (four redundancies), and six (five
redundancies) fragments, respectively. The final product of
932 primers with more than one anchoring region resulted
in 932 specific amplicons and 1281 redundant amplicons,
adding up to 2213 fragments.

To investigate the ability of these primers in amplifying
genomic sequences, an extra experiment was performed
against the whole rice genomic sequence available at NCBI.
The different groups of redundant and nonredundant primer
sets, that is, amplifying one, two, three, or more times
in the cDNA database, were tested against the genomic
sequence. From the 2397 nonredundant primers, only 924
amplified a locus in the genomic sequence. This difference
was already expected because of difficulties in amplifying
genomic regions, that is, if some primers anneal to a
boundary region between two exons in the cDNA, the
presence of introns would make this annealing site no more
available. It is interesting to note that from the 924 amplicons
detected, 914 (99%) did amplify only one locus in the
genomic region, agreeing with the cDNA results. When the
primer sets that amplified two different cDNAs were run
against the genomic sequence, only 294/692 (42.5%) did
amplify, having 14.5% been able to amplify two different loci.
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TasLE 3: Distribution of amplicon alignments for specific and redundant amplicons with varying identity levels.

Identity 100 99 98 97 96 95-90 89-80 79-70 69-60 <59 Total

Amplicons 787 261 151 29 11 8 8 6 5 15 1281

% 61.44 20.37 11.79 2.26 0.86 0.62 0.62 0.47 0.39 1.17 —

Only one primer set did amplify more than two loci. These
results indicate that SSR locator performance was consistent
between the two databases regarding the nonredundant loci,
that is, from those loci that were able to be amplified in both
databases, their status of nonredundant was maintained. The
changes observed for the redundant loci can be attributable
to many causes, including redundancy in the cDNA database,
but also to biological reasons due to primer positioning.

3.6. Identity between specific and
redundant amplicons

Results of a global alignment between amplicons from
original and redundant sites are shown in Table 3. Among
the 1281 redundant amplifications, 787 (61.44%) resulted
in a perfect alignment between both loci (identity equal
to 100). For redundant amplicons with identity levels of
96-99%, and 90-95%, 452 (35.28%) and 8 (0.62%) loci
were found, respectively. Alignments with identity levels
bellow 90% were found in only 2.65% of cases. The fact
that such a high percentage of redundant loci show high
identity is probably a consequence of the genome fraction
chosen, that is, expressed sequences. This fraction is under
tight selection pressure and should not accumulate variations
such as substitutions or indels at a high rate. As expected,
comparisons to whole genome, generated a great deal of
polymorphism, due to the inclusion of intronic regions in
the alignments (data not shown).

4. CONCLUSIONS

The software SSRLocator was successfully implemented,
adding steps for (1) SSR discovery, (2) primer design, and
(3) PCR simulation between the primers obtained from
original sequences and other fasta files. Also, the software
produces reports for frequency of occurrence, nucleotide
arrangement, primer lists with all standard information
needed for PCR and global alignments. From the PCR
simulation, it was possible to point out which primer pairs
were nonredundant, suggesting that these primers are more
appropriate for mapping purposes. In this case, however,
wet lab experiments should be performed to confirm the
advantage of nonredundant over redundant primers for
mapping.

It is possible that the results for micro-/minisatellite
frequencies (loci/Mb) obtained in this study diverge from
the results found in the literature. This can be explained
by the different databases used (redundant ESTs, nonredun-
dant ESTs and/or fl-cDNA), different algorithm configura-
tions and minimum requirements set for counting motifs.
Another explanation for some contrasting results is the fact
that only “Class I” repeats were analyzed in our study.

The results showed that 932 (27.99%) primers presented
amplifications in more than one gene sequence. This could
be mostly due to the fact that primer pairs derived from
a specific gene (cDNA) anchored in similar sites in other
duplicated genes, since 5,607/28,469 (19.70%) genes were
described as paralogs in the annotation of the database
used [24]. Gene duplication along with polyploidy and
transposon amplification are the major driving forces in
genome evolution [40]. It is therefore not surprising that
so many loci have redundancy. Also, a second possibility
is that some primers were generated from protein domain
regions within the analyzed cDNAs. These domains could
be found in protein families with many genome copies,
resulting in the observed redundancies. A validation of
the redundancies of cDNA results was obtained through a
virtual-PCR against the whole rice genome sequence. From
the nonredundant primers that generated an amplicon, ca.
99% were nonredundant.

Finally, this tool can be used successfully for data mining
strategies to find SSR primers in genomic or expressed
sequences (ESTs/cDNAs). Also, this software can be a tool
for microsatellite discovery in databanks of related species,
anchoring primers in ortholog or paralog regions contained
between databases from two different species.
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