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Selective serotonin reuptake inhibitors (SSRIs) are currently widely used in the field of

the neuromodulation not only because of their anti-depressive effects but also due to

their ability to promote plasticity and enhance motor recovery in patients with stroke.

Recent studies showed that fluoxetine promotes motor recovery after stroke through

its effects on the serotonergic system enhancing motor outputs and facilitating long

term potentiation, key factors in motor neural plasticity. However, little is known in

regards of the exact mechanisms underlying these effects and several aspects of it

remain poorly understood. In this manuscript, we discuss evidence supporting the

hypothesis that SSRIs, and in particular fluoxetine, modulate inhibitory pathways, and

that this modulation enhances reorganization and reestablishment of excitatory-inhibitory

control; these effects play a key role in learning induced plasticity in neural circuits

involved in the promotion of motor recovery after stroke. This discussion aims to provide

important insights and rationale for the development of novel strategies for stroke motor

rehabilitation.
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INTRODUCTION

Stroke is the second cause of death worldwide and the leading cause of death in upper-middle
income countries; about 6.7 million people died from stroke in 2013 in the US (Mozaffarian et al.,
2016). Among stroke survivors, recovery of motor function is frequently incomplete, with the
majority of stroke patients unable to perform professional duties or activities of daily living 6
months after the event (Hummel and Cohen, 2005, 2006).

Current conventional therapies rely on behavioral treatments such as physiotherapy and
occupational therapy (Winstein et al., 2016); however, these treatments only induce limited plastic
and cortical reorganization changes (Veerbeek et al., 2014). Thus, considerable research efforts have
been devoted to developing methods for enhancing neuroplasticity in stroke and increasing the
efficacy of rehabilitation techniques.
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To this end, the use of pharmacological agents such as selective
serotonin reuptake inhibitors (SSRIs), in particular fluoxetine,
is increasingly being explored by several research groups. It has
been shown that SSRIs can modulate neural excitability, promote
plastic changes and improve motor rehabilitation after stroke
(Chollet et al., 2011; Siepmann et al., 2015). Chollet et al. reported
positive results of the Flame (fluoxetine for motor recovery after
acute ischemic stroke) trial. They hypothesized that fluoxetine
enhances motor recovery after stroke through a coupling of its
neuroprotective effect with the serotonergic system capability
to enhance motor outputs and facilitate long term potentiation
(LTP) (Chollet et al., 2011). The encouraging results of the Flame
trial were further supported by the positive results of a Cochrane
review of SSRIs for stroke recovery including 52 trials and 4,059
patients (Mead et al., 2013).

The similarity between the processes of stroke recovery and
learning has also recently gained increasing attention, and it
is being explored by several research groups with the goal of
improving the therapeutic efficacy of technologies for stroke
rehabilitation (Hogan et al., 2006; Krakauer, 2006). Neural
repair and recovery after stroke involve mechanisms of neuronal
excitability modulation that are very similar to those involved in
memory and learning processes (Krakauer, 2006).

Although their exact function during these processes is still
unclear (Clarkson et al., 2010), the important role of inhibitory
networks has begun to be acknowledged. These networks are
thought to play a key role in both early and late stages of learning-
induced plastic circuits. In fact, a strong neural system to promote
learning is a system that can rapidly shift between inhibition and
excitation (Trevelyan, 2016).

While the exact mechanisms of action of SSRIs on the neural
system after stroke are far from being understood, this review
aims to discuss the potential role of SSRIs on inhibitory neural
circuits as a possible mechanism underlying motor rehabilitation
after stroke through cortical reorganization and enhancement
of motor learning. We critically analyze evidence regarding: (i)
The relationship between inhibitory neural activity and motor
learning; (ii) Disruption of inhibitory activity after stroke; (iii)
Evidence of SSRIs-induced enhancement of inhibitory tone; and
(iv) Evidence of SSRIs-induced enhancement of motor learning
through an increase of inhibitory tone in stroke.

Relationship between Inhibitory Neural
Activity and Motor Learning
Motor learning leads to alteration in the cortical motor
mapping, promoting changes in the motor and somatosensory
representations. Motor learning involves neuronal excitability
and inhibitory modulatory mechanisms that are very similar to
the mechanisms involved in memory and non-motor learning
processes (Krakauer, 2006).

Learning a new motor skill shares similar physiological traits
with motor recovery from stroke. The similarities between these
processes provide us with a model that can be applied to certain
processes of functional recovery after stroke (Krakauer, 2006;
Rossi et al., 2009; Krakauer and Mazzoni, 2011; Kitago and
Krakauer, 2013; Costanzo, 2017). For instance, the modifications

of motor behavior after exposure to stimuli or experiences
(learning) are similar to those occurring during physical
therapy; however, in the latter case the modifications underlie
a process of re-learning of behaviors lost due to the structural
alteration caused by the cerebrovascular accident (Krakauer,
2006; Krakauer and Mazzoni, 2011).

Additionally, memory plays an important role in the
consolidation of newly learned behaviors, therefore the
enhancement of mechanisms underlying both learning and
memory is crucial for therapies aimed at promoting stroke motor
recovery (Krakauer, 2006).

The neurophysiological mechanism underlying learning and
memory is synaptic plasticity. Enhanced and more effective
synaptic functions largely depend on facilitating the likelihood
of neuronal inputs to happen; repeated stimuli generate a
pattern of repeated activation on a determined pathway leading
to an enhanced responsiveness of the post synaptic neuron
(potentiation) (Feldman, 2009; Costanzo, 2017). On a cellular
level these processes depend on changes in network excitability
as regulated by long-term potentiation (LTP) and long-term
depression (LTD) (Hagemann et al., 1998). LTP and LTD
can induce changes in synaptic strengthening, thereby shaping
learning and memory processing (Bliss and Collingridge, 1993;
Lynch, 2004).

Although little is known about the spatiotemporal aspects of
motor learning (Berger et al., 2017), the modulation of inhibitory
activity is an important mechanism underlying motor cortex
plasticity. In fact, inhibitory activity can change during early and
late stages of the learning process (See Figure 1; Engel et al., 2001;
Hensch and Stryker, 2004; Stagg et al., 2011).

The early stage of learning is characterized by reduction in
inhibition, facilitating LTP process in the motor cortex (Nudo
et al., 1996; Floyer-Lea et al., 2006). Local changes in inhibitory
circuits (GABA concentrations) can unmask existent neural
pathways within the cortex leading to rapid changes in the
sensory and motor representations (Castro-Alamancos et al.,
1995; Castro-Alamancos and Connors et al., 1996). It has been
shown that during early learning a transient GABA decrease in
the motor cortex correlates with the degree of motor learning
(Floyer-Lea et al., 2006; Stagg, 2013). Despite the transient
impact of lower inhibitory activity in acute phases of learning,
this correlation may be inverted in late phases of learning
consolidation.

In later stages of motor learning, a partial recovery in
inhibitory tonus (restoration of the inhibitory tonus) can be
associated with longer-term consolidation of learning (Shadmehr
and Holcomb, 1997; Floyer-Lea et al., 2006).

An interesting study using TMS, tDCS and neuroimaging
showed that the degree of learning is associated with a decrease
in GABA activity induced by tDCS (Johnstone et al., 2016),
thus supporting the notion that during early learning stages a
decreased and transient inhibitory tone is desirable. However,
subsequent inhibition seems necessary for consolidation of
learning (Brosh and Barkai, 2009).

Taken all together, these studies suggest that understanding
the balance between excitation and inhibition activity during
motor learning is key to better understanding the process
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FIGURE 1 | Neurobiology of learning phases.

of motor learning. Assuming that stroke recovery and motor
learning are somewhat similar processes (Hogan et al., 2006;
Krakauer, 2006), this knowledge may help understand how to
improve rehabilitation in stroke patients.

Disruption of Inhibitory Activity after Stroke
Following stroke, several structural and biological changes take
place and the interactions between excitatory and inhibitory
activity in learning-related circuits are crucial to drive motor
cortex plasticity and recovery (Jones, 2017). In the very
acute phase of stroke (hours after the event), inhibition of
activity of cortical areas surrounding the injured site is a
neuroprotective mechanism since increased excitability can
result in glutamatergic toxicity and increase apoptosis (Schiene
et al., 1996; Floyer-Lea et al., 2006).

After this initial phase, and similarly to early stages of learning,
the excitation/inhibition ratio increases (Schiene et al., 1996).
Two main neurophysiological changes have been associated with
brain remodeling and recovery after stroke: (i) an initial increase
in excitability in cortical regions and perilesional areas not
affected by the stroke, and (ii) increased activity/excitability in
the contralesional hemisphere. In this context, several studies
showed that in stroke patients the inhibitory function is globally
reduced in both hemispheres suggesting that the modulation

of inhibitory circuits might result from a strategy that aims
at compensating for motor impairment (Talelli et al., 2006; Di
Lazzaro et al., 2012; Takeuchi and Izumi, 2012). Even though this
enhanced excitability pattern is related to the enhanced plasticity
and functional reorganization, both changes are required to be
time dependent.

In the peri-lesional and distant cortical regions the down-
regulation of the inhibitory tonus is important for altering
cortical maps and promoting neuronal connectivity (re-
hardwiring) (Schiene et al., 1996). Moreover, manipulation of
the inhibitory tone promotes axonal and dendritic growth and
guidance, cytoskeletal organization and the expression of genes
related with adult brain remodeling (Urban et al., 2012; Nudo,
2013).

Widespread areas of enhanced cortical excitability appear after
stroke, and are important for some of the compensatory re-
organization (Collins, 2016). For example, Frost et al. (2003)
showed that in adult squirrel monkeys an increased hand
representation in ventral pre-motor areas (PMv) is observed after
an experimental ischemic lesion of 50% of the M1 hand area.
Additionally, the amount of reorganization was correlated with
the size of the hand area lesion, suggesting that bigger lesions
induce greater compensatory reorganization (Frost et al., 2003).
Although the development of compensatory reorganization
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results in initial gain of function, it may inhibit further gain of
function in later phases of stroke rehabilitation (Meintzschel and
Ziemann, 2006; Carmichael, 2012).

In this regard, increased disinhibition of the widespread
cortical areas increases the risk of competitive interaction
between the areas (premotor cortex andM1), thereby resulting in
incomplete motor recovery (Takeuchi et al., 2007). On the other
hand, the localized and transient disinhibition of the affected M1
in stroke patients may promote the motor recovery of normal
patterns by facilitating M1 plasticity (Takeuchi and Izumi, 2012).

One example is the surrounding inhibitory theory that
highlights the importance of inhibitory networks during
the initiation of active voluntary tasks. During movement
preparation, there is a local decrease of inhibition (decrease in
GABAa) and a concomitant increase of inhibition in the brain
neighboring areas; these processes avoid competition between
local and neighboring areas and allow specific activation of the
motor area in charge of generating the desired motor behavior
(Pfurtscheller et al., 2005; Klimesch, 2012; Pfurtscheller and
Lopes da Silva, 2017). In stroke patients, the local decrease of
inhibitory activity prior to movement is reduced and there is a
widespread disinhibition in the neighboring areas of the lesion
(Reynolds and Ashby, 1999; Zaaroor et al., 2003; Hummel et al.,
2009).

Therefore, stronger functional recovery is associated with a
time-dependent increase of inhibition. In fact, an important
aspect that has not been fully explored in human studies is the
modulation of the inhibitory states; varying from disinhibition to
inhibition in cortico-subcortical circuits according to the phase
of learning. A shift in one direction only (i.e., disinhibitory state)
has a low learning efficiency. In fact, that shift may be an index of
cortical disorganization.

A Network Example of Disrupted
Excitation-Inhibition Balance: Transcallosal
Imbalance and Motor Recovery in Stroke
An example of imbalance in the excitation-inhibition ratio can
be seen in the transcallosal interaction between motor cortices
in stroke (Julkunen et al., 2016). Functional imaging and non-
invasive brain stimulation have indicated that ipsilateral motor
projections are enhanced early after stroke and that a pattern
of hyper-excitation is commonly observed in the unaffected
hemisphere (Turton et al., 1996; Netz et al., 1997; Werhahn
et al., 2003; Murase et al., 2004; Oh et al., 2010). Although
the underlying mechanism remains unclear, it is believed that
latent ipsilateral motor projections are activated by disruption
of the contralateral corticospinal projections in stroke patients
(Feydy et al., 2002; Johansen-Berg et al., 2002). This results in
the reconfiguration of motor networks through the establishment
of alternative inputs for the cortico-spinal tracts. Then, parallel
motor circuits are activated and begin to transfer the impaired
functions to unaffected areas of the brain (Feydy et al., 2002;
Lindenberg et al., 2010).

In later stages of stroke recovery, better motor recovery and
outcome of functional rehabilitation are associated with a shift of
activation back to the affected hemisphere by the reestablishment

of the inhibitory tonus in the unaffected hemisphere as well as
with recovery of connectivity and cessation of imbalance between
the two hemispheres (Jaillard et al., 2005; Carter et al., 2010; Park
et al., 2011).

A persistent increased activity of the unaffected hemisphere
can result in alterations of transcallosal structure and function
and it is associated with upper limb motor impairment and
greater levels of arm motor dysfunction (Sato et al., 2015) in
chronic stroke patients. In this context, several studies showed
the importance of inhibition after stroke and the association
between increased inhibition of the unaffected hemisphere with
better functional outcomes (Conforto et al., 2008; Swayne et al.,
2008). Additionally, patients with severe upper limb impairment
display higher disinhibition of the unaffected hemisphere
compared to patients with mild-moderate impairment (Liepert
et al., 2000).

Therefore, it is hypothesized that the balance between
excitatory and inhibitory inputs after stroke is crucial for
long term stroke recovery and motor re-learning. These time
dependent changes in balance between excitatory and inhibitory
networks are also seen in healthy subjects (Guerra et al.,
2016). However, after a stroke this process can be altered and
jeopardize motor recovery. Consequently, longitudinal changes
in the regulation of inhibitory functions seem to play a major role
in this balance, since the lack of inhibition in later phases of stroke
recovery is associated with worse motor function outcomes (see
Figure 2; Crichton et al., 2016).

Can SSRIs Enhance Inhibitory Tone?
SSRIs are the most common treatment for major depressive
disorder (MDD). Clinical and preclinical data of MDD patients
indicate imbalanced activity in the right dorsolateral prefrontal
cortex (DLPC) compared to the left cortex/counterpart (Grimm
et al., 2008). It has been shown that impaired inhibition of
the right hemisphere, as indexed by TMS measures such as
intracortical inhibition (ICI), intracortical facilitation (ICF) and
cortical silent period, is correlated with treatment responsiveness
and recovery after depression (Mantovani et al., 2012). Several
authors have also demonstrated that adults with MDD present
deficits in GABAergic mediated transmission related with the
severity of MDD (Robinson et al., 2003; Ye et al., 2008; Croarkin
et al., 2014). Moreover, it has been shown that acute (intravenous
infusion) (Bhagwagar, 2004) or chronic (2 months) (Sanacora
et al., 2002) administration of SSRIs can increase cortical levels of
GABA in depressed adults, leading to the normalization of GABA
levels and possibly contributing to an antidepressant mechanism.

Besides that, in mouse models of social isolation, fluoxetine
treatment can induce stress recovery independently of its
serotonergic pathways. In these models, fluoxetine acts by
increasing the neurosteroids levels in the brain allowing a normal
allosteric increase of GABA-A synapses and therefore restoring
inhibition (Matsumoto et al., 2007).

Several neurological conditions seem to depend on a balance
between excitatory and inhibitory activity in the brain, and
the inhibitory control of excitation may have a key role
in this balance. Dysfunction in GABA-controlled inhibition
is pathophysiologically correlated with several diseases and
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FIGURE 2 | Disruption of balance between excitation (E) and inhibition (I) of the affected and non-lesioned hemispheres throughout the time post stroke.

restoration of functional inhibition leads to better treatment
outcomes. In particular, fluoxetine was shown to have positive
effects on motor rehabilitation after stroke and preclinical data
demonstrated that fluoxetine can directly up regulate GABA,
increasing inhibitory activity (Tunnicliff et al., 1999; Robinson
et al., 2003). In fact it is possible that one of the mechanisms of
SSRIs in improving depression is through a reestablishment of
normal learning patterns of prefrontal circuits.

SSRIs and Changes in Inhibitory Activity in
Stroke
Inhibitory circuits play an essential role in post-stroke motor
learning. SSRIs seem to exert an effect on excitation/inhibition
pathways, leading to enhancement of motor function after a
stroke. Although this mechanism is still underexplored in stroke,
other disease models are clearer; some insights from these
conditions can be extrapolated to better understand the potential
role of this class of drugs in stroke patients.

Recent studies have shown the effects of drugs that are capable
of modulating excitatory and inhibitory pathways and this may
be how they facilitate functional recovery after brain lesions.
Some of these pharmacological candidates are SSRIs (Pariente
et al., 2001; Chollet et al., 2011), dopamine agonist (Scheidtmann
et al., 2001), amphetamines (Bütefisch et al., 2002; Sawaki et al.,
2002b) and cholinergic substances (ACR) (Sawaki et al., 2002a;
Meintzschel and Ziemann, 2006).

Among these drugs, SSRIs have been shown to be able to
produce different effects (inhibitory or excitatory) on motor
cortex plasticity (Robol et al., 2004). The neuroplastic changes
triggered by SSRIs can be responsible for the compensation of
some of the neurophysiologic damage caused by the stroke.
Several early studies suggested that serotonergic agents such
as fluoxetine and citalopram have a positive effect on motor

function in hemiplegic patients after stroke (Dam et al., 1996;
Pariente et al., 2001; Zittel et al., 2008). The Flame trial, a large
randomized placebo-controlled clinical trial, showed that the
administration of fluoxetine during the acute stroke phase has a
moderate effect size, resulting in improvement of a clinical motor
function scale for upper and lower limbs outcome (Fugl-Meyer)
(Chollet et al., 2011).

To date, the mechanism by which fluoxetine enhances

rehabilitation after stroke remain unclear; however, some insights
from animal-based models suggested that SSRIs may enhance

overall brain excitability. Additionally, it has been shown that

SSRIs can promote neuronal sprouting (Kokoeva et al., 2005;
Hourai and Miyata, 2013; Ohira et al., 2013b) and cortical
reorganization (26), restore blood flow (Rosenstein et al., 1998;

Sun et al., 2003), and enhance neuroprotective mechanism (Lim

et al., 2009); thereby improving neuronal survival and protecting
cerebral tissue from hypoxia since it regulates the expression of

hypoxia-inducible factor-1α (HIF-1α) and of heme oxygense-1
(HO-1) (Shin et al., 2009; Siepmann et al., 2015). Therefore, one
hypothesis for the motor rehabilitation induced by fluoxetine

is that the blockage of serotonin (5-HT) reuptake due to SSRI
administration increases the availability of this neurotransmitter

in the synaptic cleft thus enhancing signal transmission (Ganzer

et al., 2013; Rief et al., 2016; Stahl, 2017) and consequently,
increasing the excitatory input of glutamate and activating

the NMDA receptors leading to a cascade of intracellular
events. These events might generate synaptic modifications
that culminate in a LTP leading synapse reprogramming and
strengthening (Stahl, 2017).

Nevertheless, we also believe that this acute effect on

enhancement of excitatory activity is followed by an increase in
inhibitory activity. Studies exploring the effects exerted by SSRIs
over motor cortex plasticity showed that SSRIs can also enhance
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inhibitory activity (Etherton et al., 2016). Studies have shown
that serotonergic drugs induce changes in inhibitory activity.
Indeed inhibition in the motor cortex was observed in healthy
subjects 2.5 h after citalopram intake. A single dose of citalopram
produced a transient enhanced GABAergic interneuronal control
over corticospinal neurons, resulting in increases in the ICI,
motor threshold and cortico-silent period (CSP) as well as mild
decrease in the ICF (Robol et al., 2004). Therefore, citalopram
was able to acutely decrease motor cortex excitability in healthy
subjects.

In addition, pre-clinical data suggest that citalopram,
fluoxetine and sertraline have anticonvulsive effects in the
hippocampus inhibiting seizure like events. The effects of these
SSRIs were likely due to regulation of pyramidal cell’s excitability
leading to vigorous inhibition of repetitive firing (Igelström and
Heyward, 2012). However, in clinical studies an increase in
seizures after administration of SSRIs was also described (Hill
et al., 2015).

Recently, authors have been exploring the role of long term
administration of fluoxetine treatment administration (Chen
et al., 2011) inducing structural plasticity by promoting neuron
“dematuration” (Kobayashi et al., 2010; Ohira et al., 2013a,b).
This mechanism consists in a reverse effect on the normal
maturate state of cells that can be induced by changes in
GABAergic transmission; therefore, culminating in a juvenile-
like state of fast-spiking inhibitory interneurons. In several
studies, neuronal “dematuration” induced by fluoxetine was
identified in different brain regions such as adult dentate granule
cells, adult amygdala cells (Karpova et al., 2011), hippocampus,
medial pre-frontal cortex (mPFC) (Guirado et al., 2014) and
a subset of GABAergic interneurons, generated from Layer 1
inhibitory neuron progenitor cells (L1-INP cells) (Ohira et al.,
2013a).

In this context, it is important to acknowledge that the
same antidepressant can exert different regulatory effects in
different brain regions and these effects vary depending on dose,
regimen of use (single dose or prolonged use) and time of
administration (in acute or chronic diseases phase). For example,
a single dose of paroxetine can improve motor performance
and induce hyper activation of the primary sensorimotor cortex
(S1M1) (Loubinoux et al., 2005). However, prolonged paroxetine
treatment (30 days 20mg per day) induced hypo activation of
S1M1 cells, but still resulted in improvement in finger tapping
motor task (Gerdelat-Mas et al., 2005). These results indicate that
SSRIs may have an acute effect on excitatory circuits that is led by
enhancement of inhibitory activity.

Even though the exact mechanism by which this effect
occurs is unknown, prior studies showed that some SSRIs
can potentiate GABA-mediated inhibitory neurotransmission.
Among SSRIs, fluoxetine’s mechanism of action includes
its 5-HT2C antagonism. Furthermore, 5-HT2C receptors are
expressed on GABAergic neurons (Serrats et al., 2005; Invernizzi
et al., 2007).

Furthermore, SSRIs can activate other receptors such as the 5-
HT2B receptor that have been identified in multiple brain cells
such as neurons, astrocytes, and Purkinje cells (Chen et al., 1995;
Peng et al., 2014). However, animal studies have shown that its

expression can be twice as much in astrocytes than in neurons
(Lovatt et al., 2007; Dong et al., 2015). Astrocytes have a main
role in the neuronal metabolic process in the brain and recent
evidence shows that fluoxetine can alter this metabolic process
through 5-HT2B receptor activity (Peng et al., 2014; Hertz et al.,
2015a).

The activation of 5-HT2B leads to a cascade of effects that
have been associated with the enhancement of learning and
memory. Among those processes, animal studies showed that
its activation can lead to raise of intracellular calcium levels
in astrocytes and consequent increase of glycogenolysis and
glycolysis, causing subsequent increase of lactate release that
can either act as extra metabolic fuel for neurons or act in
further signaling pathways (Li et al., 2011; Hertz et al., 2015a;
Steinman et al., 2016). Other processes such as potassium
homeostasis are also enhanced by this activation (Du et al., 2014).
In this regard, it is known that lactate has a neuroprotective
effects during brain ischemia and that glycogen metabolism
have many implications for the brain activities. In addition,
it is suggested that the 5-HT2B receptor plays an important
role in neurogenesis driven by SSRI treatments since studies in
animals lacking this receptor revealed a deficient response to the
enhanced effects of fluoxetine in neurogenesis (Diaz et al., 2012,
2016).

Moreover, the effects exert by fluoxetine differ depending on
its dose as different responses are seen in glycogen concentration
in astrocytes with different doses of fluoxetine. Whereas lower
concentration of fluoxetine causes an increase of glycogen
in astrocytes the opposite effects are seen with an increased
concentration of the drug. It is believe that this dual effect
can be associated with aspects of either the therapeutic effect
or adverse event of the medication (Bai et al., 2017). The
effects of fluoxetine in the 5-HT2B receptor need to be
further explored in human studies since its role in plasticity
can be used to better explain the mechanism underling this
drug effects in neuroplasticity and motor rehabilitation after
stroke.

In this context, the astrocytic metabolism could have a
role in regulation excitatory and inhibitory mechanism after
stroke. The activation of GABA-A receptors in astrocytes can
stimulate a similar mechanism enhancing regulation of calcium
concentrations and further enhancement of glycogenolysis, a
process that has already been associated with learning and
memory tasks; therefore relevant in the setting of motor recovery
(Hertz et al., 2015b). Finally, the effects of fluoxetine in the 5-
HT2B receptor need to be further explored in human studies
since its role in plasticity can be used to better explain the
mechanism underlying this drug effects in neuroplasticity and
motor rehabilitation after stroke.

SSRIs and Safety Considerations
Most studies to date have reported little or no side effects in
relation of SSRI use in the stroke population; however, known
potential adverse effects on mood disorders should be discussed.
Due to their selective action, SSRIs present a more tolerable
profile of adverse actions and there are differences between the
main side effects of the different selective serotonin reuptake
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inhibitors. Overall, the most frequently reported adverse events
are nausea, vomiting, abdominal pain, diarrhea, agitation,
anxiety, insomnia, cycling formania, headache, dizziness, fatigue,
tremors, extrapyramidal effects, xerostomia, perspiration, loss or
weight gain, sexual dysfunction, and dermatological reactions.

Moreover, SSRIs effects on patient with pre-existent cardiac
disease or acute coronary syndrome are controversial as they
may improve cardiac disease prognosis by inhibiting platelet
aggregation but could potentially worsen prognosis by increasing
risk of bleeding or of arrhythmias (Rieckmann and Kronish,
2013).

Another important aspect associated with increased
serotonergic activity in the central nervous system is the
Serotonergic syndrome, a potentially fatal condition (Peng et al.,
2014). The most common symptoms include: hyperthermia,
agitation, ocular clone, tremor, akathisia, deep tendon
hyperreflexia, inducible or spontaneous clonus, muscular
rigidity, dilated pupils, dry mucous membranes, increased
intestinal sounds, spotted skin and diaphoresis (Boyer and
Shannon, 2005). Although, serotonergic syndrome is commonly
the result of the combination of SSRIs with drugs or dietary
supplements that have a similar effect of increasing serotonin,
it may occur after the initiation of a higher doses of single
serotonergic drugs or increase of the dose of a serotonergic drug
in particularly sensitive individuals. Selective serotonin reuptake
inhibitors, such as fluoxetine, are perhaps the most implicitly
associated drug group associated with serotonergic syndrome.
They may contribute to the development of serotonin syndrome
up to several weeks after drug discontinuation (Birmes et al.,
2003).

Even though uncommon, the FLAME trial reported that
among the 118 participants two in the active fluoxetine
group have severe adverse events (hyponatremia and partial
seizure). The most frequent adverse events in the active
group were transient digestive disorders. To avoid serotonin
syndrome, treatment was stopped in patients in the active group
who developed depression and required the use of another
antidepressant during the study (Chollet et al., 2011). Therefore,
if this hypothesis that SSRIs improve motor function by
modulating the excitatory-inhibitory balance is confirmed, other
interventions that are safer may be best better first alternatives to
SSRIs in this context.

SUMMARY

The mechanisms underlying the enhancement of motor learning
via SSRIs are still unclear, and the exact effects of fluoxetine in
motor recovery after stroke are yet to be proven. We discussed
how this class of drugs might help reestablish the excitation-
inhibitory balance by initially enhancing excitation that is
followed by a compensatory inhibition. Different techniques
such as functional magnetic resonance, magnetic resonance
spectroscopy, transcranial magnetic stimulation, transcranial
direct current stimulation and EEG have been used to show
the role of neurochemical and neurophysiological markers as
well as to quantify modifications of inhibitory and excitatory
responses to several interventions. However, further work needs
to be done to develop better methods to assess specific alterations
in inhibitory pathways.

Ultimately SSRIs can have a broader action on promoting
reorganization of neural activity following brain lesion. With
the current evidence it is not possible to conclude whether the
increased neural inhibition that follows use of SSRIs is indeed the
result of its usage. However further studies can explore further
this mechanism as to understand better how to use SSRIs and
the potential limitations of this class of drugs that may also be
detrimental in some cases.
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