
SSS: An Implementation of Key-value Store based

MapReduce Framework

Hirotaka Ogawa, Hidemoto Nakada, Ryousei Takano, and Tomohiro Kudoh

Information Technology Research Institute

National Institute of Advanced Industrial Science and Technology (AIST)

Akihabara Dai Bldg 11th Floor, 1-18-13 Sotokanda,

Chiyoda-ku, Tokyo 101–0021, Japan

Email: h-ogawa@aist.go.jp

Abstract—MapReduce has been very successful in implement-
ing large-scale data-intensive applications. Because of its simple
programming model, MapReduce has also begun being utilized
as a programming tool for more general distributed and parallel
applications, e.g., HPC applications. However, its applicability
is limited due to relatively inefficient runtime performance and
hence insufficient support for flexible workflow. In particular, the
performance problem is not negligible in iterative MapReduce
applications. On the other hand, today, HPC community is going
to be able to utilize very fast and energy-efficient Solid State
Drives (SSDs) with 10 Gbit/sec-class read/write performance.
This fact leads us to the possibility to develop “High-Performance
MapReduce”, so called. From this perspective, we have been
developing a new MapReduce framework called “SSS” based
on distributed key-value store (KVS). In this paper, we first
discuss the limitations of existing MapReduce implementations
and present the design and implementation of SSS. Although our
implementation of SSS is still in a prototype stage, we conduct
two benchmarks for comparing the performance of SSS and
Hadoop. The results indicate that SSS performs 1-10 times faster
than Hadoop.

Keywords: MapReduce, Cloud Technologies, Key-value Store

I. INTRODUCTION

The practical needs of efficient execution of large-scale

data-intensive applications propel the research and develop-

ment of Data-Intensive Scalable Computing (DISC) systems,

which manage, process, and store massive datasets in a

distributed manner. MapReduce[1], Hadoop MapReduce[2],

Dryad[3], and Sphere[4] are well-known as such DISC sys-

tems.

While MapReduce programming model essentially realizes

global and integrated data-parallel operations to very large

amount of key-value data, existing implementations mainly

focus on performing single-step MapReduce with better fault-

tolerance. Thereby, all input/output data are stored as a set

of text files or serialized structured data in the shared and

distributed file systems, such as Google File System (GFS)[5],

Hadoop Distributed File System (HDFS)[6], and Sector[4].

There are two issues in these existing implementations.

First, while each map and reduce program handles key-value

data, the distributed file systems essentially handle large data

files, which are eventually divided into chunks. In other words,

there is a semantic gap between the MapReduce data model

and the input/output data stored in the data store. Second,

iterative MapReduce applications, which create new map and

reduce tasks in each iteration, have to read and write any data

in the data store repetitively. Furthermore, the intermediate

data that one map task creates cannot be reused from other

map/reduce tasks. These two issues are not so problematic for

single-step MapReduce run, however, they incur a consider-

able overhead especially for iterative applications of MapRe-

duce. Therefore, we can say that existing implementations

limit the range of applications that MapReduce can be utilized.

There have been several work in realizing faster iterative

MapReduce computations, e.g., Twister[7] provides a dis-

tributed in-memory MapReduce runtime, and Spark[8] re-

designs MapReduce framework by using simple abstractions,

such as resilient distributed datasets (RDDs), broadcast vari-

ables, and accumulators.

On the other hand, today, HPC community is going to

be able to utilize very fast and energy-efficient Solid State

Drives (SSDs). Especially, high-end SSDs connected with

PCI-Express interface, such as Fusion-io’s ioDriveTM[9] duo,

have 10 Gbit/sec-class read/write performance, equivalent to

10x of high-end HDDs and 1/10 of the main memory. This

fact leads us to the possibility to develop more straightforward

but efficient implementation of MapReduce, which can bridge

the gap between MapReduce data model and input/output data

model, and can sustain not only single-step workloads but

also more flexible workloads, including iterative ones. From

this perspective, we have been developing a new MapReduce

prototype system called “SSS”, which is based on distributed

key-value store (KVS).

SSS completely substitutes distributed KVS for the dis-

tributed file systems such as GFS/HDFS. Furthermore, SSS

utilizes distributed KVS for storing the intermediate key-value

data, as well as the inputs of map tasks and the outputs

of reduce tasks. SSS offers several advantages over existing

MapReduce implementations:

1) As mentioned earlier, we can bridge the gap between

MapReduce data model and storage systems and handle

key-value data more intuitively.

2) We can eliminate shuffle & sort phase which may

occupy most of the execution time of MapReduce de-

pending on workloads. Once all map tasks have finished

storing intermediate key-value data to the distributed

2nd IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-4302-4/10 $26.00 © 2010 IEEE

DOI 10.1109/CloudCom.2010.89

754



KVS, all intermediate key-value data have already been

grouped by intermediate keys.

3) Map and reduce tasks can be almost equivalent op-

erations on distributed KVS as we will describe in

Section II. This makes the implementation itself simple

and enables any combination of multiple maps and

reduces in a single workload.

SSS prototype is implemented in Java and provides a

programming interface almost same as Hadoop MapReduce.

And, at this moment, SSS uses an existing key-value store

implementation, called Tokyo Tyrant[10], in order to realize

a distributed key-value store. Tokyo Tyrant is known as one

of the fastest key-value database implementations for single

node.

Although our implementation of SSS is still in a prototype

stage, we show that SSS can outperform Hadoop MapReduce

by 1-10 times in Word Count and an iterative composite

benchmark.

This paper is organized as follows: Section II brief intro-

duces MapReduce, and Section III describes the conceptual

overview of our key-value based MapReduce. Section IV

describes detailed implementation of SSS and discussions, and

Section V presents early results.

II. MAPREDUCE

MapReduce is a distributed computing model which takes

a list of input key-value pairs, and produces a list of output

key-value pairs. MapReduce computation consists of two user

defined functions: map and reduce. Map function takes an

input key-value pair and produces zero or more intermedi-

ate key-value pairs. MapReduce runtime groups together all

intermediate values associated with the same intermediate key

and hands them over to the reduce function. Reduce function

takes an intermediate key and a list of values associated with

the key and produces zero or more results.

Conceptually, the map and reduce functions have associated

types:

• map: (k1, v1) → (k2, list(v2))

• reduce: (k2, list(v2)) → list(v3)

This can be easily generalized as below:

• map: (k1, singleton-list(v1)) → (k2, list(v2))

• reduce: (k2, list(v2)) → (k2, list(v3))

Therefore, map and reduce functions have almost same

associated types.

Google and Hadoop MapReduce implementations[1][2] fo-

cus on utilizing distributed file systems, namely Google

File System (GFS)[5] and Hadoop Distributed File System

(HDFS)[6].

Figure 1 shows the overview of MapReduce execution

on these systems. Map tasks are distributed across multiple

servers by automatically partitioning the input data info a set of

M splits. Map tasks processes each input splits in parallel and

generates the intermediate key-value pairs. The intermediate

key-value pairs are sorted by the key and partitioned into R

regions by the partitioning function (e.g., hash(key) mod R).

Fig. 1. MapReduce Execution

Reduce tasks are also distributed across multiple servers and

process each partitioned region and generate R output files.

Both of these runtimes consist of a single master and

multiple workers. While the master manages job requests from

clients and dynamically schedules map/reduce tasks into idle

workers, each workers handles an assinged map/reduce task.

In addition, both implementations utilize the distributed file

systems in their runtimes. These file systems employ the local

disks of the worker nodes, which can be used to coallocate

data and computation. Therefore, their approach provides the

automatic load-balancing based on dynamic scheduling of

map/reduce tasks, as well as the assignment of the initial map

tasks based on the data locality.

However, there are two common issues in these implemen-

tations. First, there is a semantic gap between the MapReduce

data model and the input/output data stored in the distributed

file systems. Each map and reduce tasks handles key-value

data, on the other hand, the distributed file systems only

provide the feature to access large data files. Second, iterative

MapReduce applications, which create new map and reduce

tasks in each iteration, have to read and write any data

in the distributed file systems repetitively. In addition, the

intermediate data that a map task creates cannot be reused

from any other map/reduce tasks.

These two issues are not so problematic for single-step

MapReduce run, where existing implementations target to,

but are serious for more flexible MapReduce applications,

in particular iterative applications. Because they incur a con-

siderable overhead for reading and writing large amount of

data in the distributed file systems repetitively. Therefore,

existing implementations may limit the range of applications

that MapReduce can be utilized. But, potentially, MapReduce

can be utilized as a programming tool for broader range of

HPC applications including iterative numerical algorithms, if

these defects are resolved.

755



III. PROPOSED KEY-VALUE STORE BASED MAPREDUCE

In order to resolve the above mentioned issues and ef-

fectively exploit the I/O performance of 10 Gbit/sec-class

local SSDs, we have been designing and implementing a new

MapReduce prototype system called “SSS”, which is based on

distributed key-value store (KVS).

SSS completely substitutes distributed KVS for the dis-

tributed file systems such as GFS/HDFS. SSS utilizes dis-

tributed KVS for not only storing the inputs of map tasks and

the output of reduce tasks, but also storing the intermediate

key-value data.

In this section, we will outline the conceptual design of

SSS.

A. Key-value Store

Key-value store is known as a kind of database that holds

data as a pair of key and value. Traditional database systems,

such as RDBMS, can have multiple values for a piece of

data as columns, but they lack the scalability to handle a

very large number of data. On the other hand, key-value pairs

can be divided by the ranges of the keys or the hash values

of the keys, and distributed across multiple key-value store

servers easily. Thereby, key-value store can accomplish ”scale-

out” and contribute significantly to read/write performance,

capacity, and fault-tolerance.

While several implementations of distributed KVS already

have been proposed, we have built our own distributed KVS

based on an existing single node implementation, which can

store key-value data to disks persistently. At this moment, we

employ an existing implementation, but in future, we will to

specialize our key-value store to data-intensive computation

and exploit read/write performance of flash memory storage.

There are two key design requirements for our KVS:

dynamic partitioning and supporting duplicated keys.

• Dynamic partitioning

Our KVS requires a mechanism to dynamically partition

the key-value data across the set of storage nodes. We

partition the keys based on consistent hashing[11].

• Supporting duplicated keys

Our KVS requires a mechanism to handle multiple key-

value pairs with the same key. Because, map tasks usually

emit multiple key-value pairs with the same key, e.g.,

counting the occurrence for the same word in multiple

documents. We introduce the local key just for identifying

each key-value pair with a key.

To satisfy these requirements, our key-value store handles

triples (namely, key, local-key, and value) as key-value data,

and distributes them across multiple storage nodes by using

consistent hashing on keys of the triples, as Figure 2 shows.

Clients make put/get requests to the target storage node which

is decided from the hash value of the key, and each storage

node handles requests and loads/stores triples.

B. SSS MapReduce

Building on top the distributed KVS mentioned above, we

can greatly simplify the architecture of MapReduce frame-

Fig. 2. Our Distributed Key-value Store

work. That is, map/reduce tasks can store their input/output

data, including the intermediate key-value data, in the dis-

tributed KVS. And, they input and output only the list of the

keys of the key-value data.

As we show in Figure 3, the outlined process of SSS

MapReduce is as follows:

• Map

Map tasks take each input key and load the key-value

data from the key-value store in parallel, and generates

the intermediate key-value data. Generated intermediate

data are also stored in the key-value store, and only their

keys are passed to reduce tasks.

• Shuffle & Sort

Shuffle & Sort phase is not required. Key-value store

provides the feature to look up key-value data from a

given key, that means, it can automatically and internally

sort and group the intermediate key-value data by their

own keys.

• Reduce

As well as Map tasks, reduce tasks take each intermediate

key and load the key-value data in parallel, and generates

the output key-value data. Generated output data are also

stored in the key-value store, and only their keys are

passed to clients.

IV. IMPLEMENTATION

SSS implementation consists of mainly two parts: key-value

store, and MapReduce runtime.

A. SSS Key-Value Store

For key-value store, SSS employs an existing key-value

store implementation, called Tokyo Tyrant[10]. Tokyo Tyrant

is known as one of the fastest key-value database imple-

mentations for a single node. Prior to the implementation,

we performed precise benchmarks for comparing the perfor-

mance of 3 different key-value store implementations, namely

Tokyo Tyrant which uses a database specialized to key-value

data[12], MemcacheDB[13] which uses BerkeleyDB[14], and

756



Fig. 3. KVS-centric MapReduce

chunkd[15] which uses local file system. For the sake of

brevity, we cannot cover the detailed results in this paper, but

Tokyo Tyrant has better scalability for multiple threads and

lower latency for reading/writing key-value data than other

two.

To realize our distributed key-value store, we configure

Tokyo Tyrant on each storage node, distribute key-value data

across them by using consistent hashing on the key. Every

client can make put/get/put list/get list requests to the target

Tokyo Tyrant node which is determined by the hash value of

the key. And, as we described at III-A, we need to handle

triples as key-value data. Therefore, we extend the key format

of Tokyo Tyrant to be able to include the key itself with

additional information as below:

• session-id indicates the application and the phase of

computation, by which this key-value is used.

• local-key: indicates the local-key to handle duplicated

keys.

• hash(key): indicates the hash value of the key. It is

useful to partition key-value sets in a single node into

several chunks based on this hash value. For example, to

process the key-value data by multiple threads, we can

partition them by the MSB of the hash value and perform

map/reduce tasks for each partition in each thread.

For client-side library, we employ a Java binding of Tokyo

Tyrant called jtokyotyrant[16]. Each client takes a list of

storage nodes from the master node, and locally calculates the

hash values of the keys and decides the target storage node

based on consistent-hashing.

B. SSS MapReduce Runtime

SSS MapReduce runtime is built on top of distributed key-

value store above mentioned. Each worker node serves both

as a storage node of KVS and a worker server of MapReduce

runtime. That is, each worker node is responsible for handling

and executing map/reduce tasks for the key-value data owned

by itself. While all input/output data of map/reduce tasks are

provided by distributed KVS, other commands and control

Fig. 4. SSS MapReduce Runtime

data transfers to the worker servers are performed by SSS

MapReduce runtime.

As Figure 4 shows, SSS MapReduce runtime comprises of

two main entities, (1) master server that manages the entire

MapReduce computations, and (2) worker server running on

every worker node.

Initializing MapReduce runtime, master server invokes a

worker server on each worker node, which establishes a con-

nection with master server to receive commands and control

data. Each worker server, on its own responsibility, handles

map/reduce tasks assigned to the target worker node, maintains

worker thread pool to execute map/reduce tasks properly, and

notifies the status to master server. Master server provides a

programming interface to the clients, which is almost com-

patible with Hadoop MapReduce, and sends commands and

control data to the worker servers running on each worker

nodes.

To execute a map task, each worker server consumes a URI

list, a mapper class name, a partitioner class name, and a

combiner class name, provided by the master server. A URI

list specifies a set of key-value data which is stored in the local

KVS and processed in the map task, and each URI includes

information, e.g., a host name, session-id, and hash(key).

Worker server allocates a worker thread from the worker

thread pool to process an assigned URI, and each worker

thread reads key-value data from the local KVS based on

the information included in the URI. Then, the worker thread

performs map operation (specified by the mapper class name)

on the target key-value data and generates the intermediate

key-value data. The intermediate key-value data are divided

into partitions by using the partitioner class, where the number

of partitions is equal to the number of worker nodes. And,

if the combiner class name is given, combine operation is

performed on the key-value data in each partition. After that,

the worker thread stores the partitioned intermediate key-value

data to the distributed KVS.

Internally, these processes are performed using pipelining

technique so as to limit the memory usage and hide the

757



Fig. 5. Pipeline of a worker thread for a map operation

Fig. 6. Pipeline of a worker thread for a map operation (packed)

latency of KVS. Figure 5 shows the internal architecture of

the worker thread. Each worker comprises of one or more

reader, mapper, partitioner, combiner, and writer threads. All

these threads cooperate with each other through queues from

left to right, and in right end, writer threads store partitions of

the intermediate key-value data successively.

After storing the intermediate key-value data, the worker

server returns a state and a URI list which specifies the key-

value data.

To execute a reduce task, each worker server consumes a

URI list and a reducer class name, and processes them almost

same as a map task.

Worker servers are also responsible for handling utility

command requests, such as inspecting the state of the server

and threads, profiling the key-value store usage, and so on.

C. Packed-SSS Runtime

We also realize a variant of SSS MapReduce runtime, called

Packed-SSS (Figure 6). In this runtime, each writer stores the

intermediate key-value data that the preceding combiner gen-

erates, into a memory buffer. After that, each writer converts

them into a single large key-value data and stores it to the

target key-value store.

Packed-SSS makes the number of the intermediate key-

value data considerably small, which is actually equal to the

product of the number of map worker threads by that of reduce

worker nodes, and minimizes the overhead of accessing key-

value stores. However, it almost requires twice as much as

memory for packing all of the intermediate key-value data.

Therefore, it may limit the size of target applications.

D. Discussions

We know of several advantages and disadvantages in im-

plementing MapReduce relying on the key-value store.

1) Advantages:

• Map/reduce tasks are assigned to the storage node based

on the data locality. When a key is given, consistent

hashing allows us to determine uniquely the storage node

where a set of key-value data with the key are stored.

On the other hand, Google and Hadoop implementations

take into account only the distribution of the input data

for map tasks.

• Shuffle & sort phase is omitted, because the intermediate

data are already sorted and grouped in the key-value store.

Unlike SSS, existing implementations require sorting the

intermediate keys in each worker server for map, passing

them to worker servers for reduce, and then grouping

them by the intermediate keys.

• Map and reduce tasks can be almost equivalent operations

on distributed KVS. This makes the implementation itself

simple, and enables any combination of multiple maps

and reduces in a single workload. Especially, iterative

algorithms such as data clustering, machine learning, and

computer vision, are expected to be easily supported.

• Tokyo Tyrant, the key-value store we employed, pro-

vides aggressive caching mechanism. Thereby, we can

reuse memory-cached key-value data across multiple

map/reduce operations. At this moment, the cache in-

terference problem still exists because of the lack of

the mechanism to control which data should be cached.

However, we plan to extend our framework to provide a

user-directed method to specify key-value data cacheable

or non-cacheable. This approach is more straightforward

and transparent to users, compared to facilitating a kind

of hierarchical data store which Twister[7] and Spark[8]

provide.

2) Disadvantages:

• The key-value store requires random accesses to local

disks, while the distributed file system only requires

sequential accesses to the file chunks. In general, random

accesses are much slower than sequential accesses. Using

flash memory storage, however, random read is fast

enough. Random write is also fast enough in high-end

products, such as ioDriveTM.

• The granularity of dynamic partitioning based on key

is relatively small, therefore the degradation of the run-

time performance will become an issue. However, when

processing very large number of small files in existing

implementations, the overhead of the task management

may become huge, similar to ours.

As we described at IV-C, we have also implemented a

variant of SSS (called packed-SSS), which packs multiple

key-value data into a single key-value data before storing

key-value store. This makes the number of the intermedi-

ate key-value data small considerably. In Section V, we

will show benchmark results including this version.

• There is no file system interface to our key-value

store, unlike existing distributed file systems. However,

we think that it is relatively easy to realize FUSE

758



interface to our key-value store, in the same way

as CouchDB-FUSE[17] provides a FUSE interface to

Apache CouchDB.

On the other hand, SSS cannot utilize key-value data

stored in existing distributed file systems. This problem

can also be resolved by providing KVS interface adaptors

to file systems, however, we put higher priorities on the

performance of the underlying storage systems than their

availability.

• SSS doesn’t have enough considerations to fault-

tolerance. As for the underlying storage systems, HDFS

and existing cluster file systems provide fault-tolerance

to block losses with node failure, while SSS doesn’t

provide such features at this moment. We will realize

fault-tolerance features referred to highly-available KVS

implementations, e.g., Dynamo[18] and Cassandra[19].

As for the runtime, in Hadoop, when one of mappers and

reducers fails, it can re-execute independently of other

workers. In SSS, however, when one of map tasks fails,

the intermediate key-value data in distributed KVS will be

inconsistent. We plan to support rollback and re-execution

mechanisms based on session-id in the near future.

V. EVALUATION

Although our implementation of SSS is still in a prototype

stage, we performed two benchmarks, Word Count and an

iterative composite benchmark, and presents early results.

These benchmarks are not real-life iterative and/or multiple-

step applications and not sufficient to prove the effectiveness

of our approach. We plan to conduct more comprehensive ap-

plication benchmarks including iterative K-means clustering,

that have to be left for future investigations.

For these benchmarks, we used an experimental cluster

which consists of a master node and 16 worker nodes with

10Gbit Ethernet and ioDriveTMDuo, as shown in Table I. We

use Apache Hadoop version 0.20.2, SSS, and packed-SSS for

comparison purpose. Packed-SSS is an optimized version of

SSS, which packs multiple key-value data into a single key-

value data before storing key-value store. In packed-SSS, map

tasks can considerably decrease the number of the intermediate

key-value data created, on the other hand, reduce tasks require

more memory to merge keys than original SSS.

TABLE I
BENCHMARKING ENVIRONMENT

Number of nodes 17 (*)

CPU Intel(R) Xeon(R) W5590 3.33GHz

Number of CPU per node 2

Number of Cores per CPU 4

Memory per node 48GB

Operating System CentOS 5.5 x86 64

Storage Fusion-io ioDrive Duo 320GB

Network Interface Mellanox ConnextX-II 10G Adapter

Network Switch Cisco Nexus 5010
(*) one node is reserved for the master server.

Both Hadoop and SSS use JDK 1.6.0 20 (64bit), and SSS

and packed-SSS use Tokyo Tyrant 1.1.41 and Tokyo Cabinet

1.4.46. To avoid the effect of unintended replications, the

replica count of Hadoop HDFS is configured to be 1.

A. Word Count

This benchmark counts the number of occurrences of each

word appeared in given multiple text files. We prepared 128

text files, and 4 text files are assigned to each worker node

and processed in parallel. Each text file is 100MiB, therefore

the total size of all files is 12.5GiB and each worker node has

800MiB text data. For SSS and packed-SSS, each files are

stored as a key-value data (that is, the key is file name, the

value is file content), and for Hadoop, each files are stored

as an HDFS file. In fairness, we set the block size of HDFS

to 256MB, to store each file in a single HDFS DataNode and

process it by the local Mapper without fail.

Prior to the benchmark, we measured the times to transfer

files from a disk of master node to SSS distributed KVS

and HDFS. The result is that SSS takes 148.4sec (equivalent

to 86.3MB/sec) and Hadoop takes 178.0sec (71.9MB/sec) to

transfer, and hence SSS is 17% faster than Hadoop. In our

environment, the disk of master node is actually provided

from an iSCSI disk array connected via Gigabit Ethernet, and

its read/write bandwidth must be bounded to approx. 1Gbps.

Therefore this result is not so bad compared to the baseline

performance. However, both transferring methods are not well-

optimized and performed sequentially and further optimization

is left for future work.

Figure 7 shows the execution times of Hadoop, SSS, and

packed-SSS (sequentially 5 times executed). As you see, SSS

is almost equivalent to or faster than Hadoop, and packed-SSS

is almost 3.3 times faster than Hadoop.

In fact, this benchmark is quite disadvantageous to SSS,

because the number of the intermediate key-value data is ex-

tremely large. Benchmark data includes 1,586,167,232 words

(uniquely 2,687,884 words included), therefore SSS creates

almost 1.5G intermediate key-value data during running map

tasks. To reduce the number of intermediate key-value data, we

can utilize a combiner for combining multiple occurrences of

each word. But, we need to avoid using a combiner in order to

compare our system with Hadoop in equal conditions, e.g., the

numbers of running combiners should be same, the numbers

of combined key-value data should be equivalent, and so on.

Other than combiners, we made a lot of efforts to employ

dynamic optimization techniques, such as storing multiple key-

value data in a batch, but unfortunately this was the ceiling

performance at the time this camera-ready version was written.

On the other hand, the result of packed-SSS seems to be

very hopeful. For every file, packed-SSS’s map task groups

key-value data by the destination KVS and converts each

grouped key-value data into a single key-value data. Therefore,

only 16 key-value data are created for each target file. That is,

packed-SSS creates only 2,048 key-value data during running

map tasks. However, packed-SSS requires lots of memory to

pack the intermediate key-value data in map tasks, and to

extract and merge the intermediate key-value data in reduce

tasks.

759



Fig. 7. Running Times of Word Count

Fig. 8. Running Times of Iterative Identity Map and Reduce

B. Iterative Identity Map and Reduce

This benchmark applies identity map and identity reduce

iteratively. Both of identity map and identity reduce generate

a set of key-value data same as the input set of key-value.

Therefore, the number and amount of key-value data are never

changed after applying identity map and reduce repetitively.

We prepared 524,288 key-value data for each worker node,

i.e., 8,388,608 key-value data in total. Each data has 6 bytes

key and 8 bytes value, and total size of all data is almost

128MiB, roughly 100 times smaller than that of Word Count.

Figure 8 show the execution times of Hadoop, SSS, and

packed-SSS respectively. In this benchmark, SSS is 2.9 times

faster than Hadoop, and packed-SSS is 10 times faster than

Hadoop. Also, running times are linearly increased according

to the iteration counts in all three implementations.

This result indicates that SSS has a big advantage in

handling large number of very small key-value data over

Hadoop. That means, SSS can outperform Hadoop especially

for fined-grained applications.

VI. RELATED WORK

We know of several related work in implementing itera-

tive MapReduce efficiently, namely Twister[7], MRAP[20],

Spark[8], and DryadLINQ[21], [22].

Twister[7] provides a distributed in-memory MapReduce

runtime. In Twister, map tasks can read input data from both of

the preloaded memory cache and the local disks of the worker

nodes. Therefore, Twister allows users to select pre-loading

relatively smaller static data or reading larger variable data

from the local disks. Coupling very fast SSDs and memory-

caching mechanism provided by key-value stores, we think,

we can relieve users from trouble such as selecting access

methods depending on the data property.

MRAP[20] extends MapReduce to eliminate the multiple

scans and reduce the cost of pre-processing input data from the

distributed file system. Their motivation is similar to ours, as

we described in Section I and II. In MRAP, map tasks can read

input data from both of the original files and the preprocessed

files optimized to efficient access. In our implementation, all

data are preprocessed to a set of key-value data for efficient

data access, and they are stored in the distributed key-value

store beforehand. However, we need to investigate that key-

value format is suitable for HPC analytic applications which

MRAP targets to.

Spark[8] redesigns MapReduce framework by using simple

abstractions, such as resilient distributed datasets (RDDs),

broadcast variables, and accumulators. In Spark, any dis-

tributed datasets are represented by RDDs. And users can

perform global operations on RDDs and reuse RDDs in

iterative applications.

Dryad and DryadLINQ[21], [22] offer a programming

model for distributed computing, which enables to execute

data-intensive applications including SQL and MapReduce in

a data-parallel manner. DryadLINQ provides various static

and dynamic optimization techniques e.g., pipelining and

I/O reduction, but it still employs file-based communication

mechanism to transfer data and cannot avoid incurring large

overhead.

VII. CONCLUSION

MapReduce has been very successful in implementing large-

scale data-intensive applications. Because of its simple pro-

gramming model, MapReduce has also begun being utilized

as a programming tool for more general distributed and

parallel applications, including HPC applications. However,

its applicability is limited due to relatively inefficient runtime

performance and hence insufficient support for flexible work-

flow. In particular, the performance problem is not negligi-

ble in iterative MapReduce applications. On the other hand,

today, HPC community is going to be able to utilize very

fast and energy-efficient Solid State Drives (SSDs) with 10

Gbit/sec-class read/write performance. This fact leads us to

the possibility to develop “High-Performance MapReduce”,

so called. From this perspective, we have been developing a

new MapReduce framework called “SSS” based on distributed

key-value store.

In this paper, we discussed the limitations of existing

MapReduce implementations and presented the design and

detailed implementation of SSS. In SSS, we completely sub-

stitute distributed KVS for the distributed file systems, e.g.,

760



GFS and HDFS. Furthermore, we utilize distributed KVS

for storing the intermediate key-value data, as well as the

inputs of map tasks and the outputs of reduce tasks. Although

our implementation of SSS is still in a prototype stage,

we performed an evaluation using two benchmarks in order

to compare the runtime performance of SSS, packed-SSS,

and Hadoop. The results indicate that SSS and packed-SSS

performs 1-10 times faster than Hadoop. We know that this

evaluation is very limited, but it (at least partially) proves the

effectiveness of our KVS-based design and implementation of

MapReduce framework.

In future work, we will focus on following:

• Enhance the performance and completeness of our proto-

type system. Packed-SSS is enough faster than Hadoop,

but it also requires much more memory than SSS. There-

fore, we need to improve both of the performance and

memory usage of SSS by our continuous effort.

• Provide fault-tolerance to our prototype system. For the

underlying storage systems, HDFS and cluster file sys-

tems provide fault-tolerance to block losses with node

failure, while SSS doesn’t provide such features at this

moment. We will introduce a replication mechanism to

avoid such problems.

For the runtime, in Hadoop, when one of mappers and

reducers fails, it can re-execute independently of other

workers. However, in our system, when one of map tasks

fails, the intermediate key-value data in distributed KVS

will be inconsistent. We will support rollback and re-

execution mechanisms based on session-id.

• Perform more comprehensive benchmarks, in order to

identify the characteristics of SSS and its feasibility to

various classes of HPC and data-intensive applications.

Especially, both benchmarks we conducted in Section V

are not real-life iterative and/or multiple-step applica-

tions. To prove the effectiveness of our approach, we have

to conduct more extensive benchmarks by employing

realistic applications, such as iterative K-means clustering

and iterative PageRank computation.

• Provide a higher-level programming tool, e.g.,

Sawzall[23], DryadLINQ[21], and R[24], in order

to allow users to facilitate our framework for broader

range of distributed data-intensive applications.

ACKNOWLEDGMENT

We would like to thank the members of the SSS project for

their very substantial contributions to this work.

This work was partly funded by the New Energy and Indus-

trial Technology Development Organization (NEDO) Green-IT

project.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[2] Apache Hadoop Project, “Hadoop,” http://hadoop.apache.org/.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
EuroSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2007. New York, NY, USA: ACM,
2007, pp. 59–72.

[4] Y. Gu and R. L. Grossman, “Sector and Sphere: The Design and
Implementation of a High Performance Data Cloud,” Philosophical

Transactions: A Special Issue associated with the UK e-Science All

Hands Meeting, vol. 367, pp. 2429–2445, 2009.
[5] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”

in SOSP ’03: Proceedings of the nineteenth ACM symposium on Op-

erating systems principles. New York, NY, USA: ACM, 2003, pp.
29–43.

[6] D. Borthakur, “HDFS Architecture,” http://hadoop.apache.org/hdfs/docs/
current/hdfs design.html.

[7] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: A Runtime for Iterative MapReduce,” in Proceedings

of The First International Workshop on MapReduce and its Applications

(MAPREDUCE’10), 2010.
[8] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster Computing with Working Sets,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2010-53,
May 2010. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2010/EECS-2010-53.html

[9] Fusion-io, “Fusion-io :: Products,” http://www.fusionio.com/Products.
aspx.

[10] FAL Labs, “Tokyo Tyrant: network interface of Tokyo Cabinet,” http:
//fallabs.com/tokyotyrant/.

[11] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web,” in
Proceedings of the twenty-ninth annual ACM symposium on Theory of

computing, ser. STOC ’97. New York, NY, USA: ACM, 1997, pp. 654–
663. [Online]. Available: http://doi.acm.org/10.1145/258533.258660

[12] FAL Labs, “Tokyo Cabinet: a modern implementation of DBM,” http:
//fallabs.com/tokyocabinet/index.html.

[13] S. Chu, “MemcacheDB,” http://memcachedb.org/.
[14] Oracle Corporation, “Oracle Berkeley DB,” http://www.oracle.com/

technetwork/database/berkeleydb/overview/index.html.
[15] J. Garzik, “Hail Cloud Computing Wiki,” http://hail.wiki.kernel.org/

index.php/Main Page.
[16] “Java Binding of Tokyo Tyrant,” http://code.google.com/p/jtokyotyrant.
[17] couchdb-fuse: A FUSE interface to CouchDB, http://code.google.com/

p/couchdb-fuse/.
[18] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-Value Store,” in SOSP ’07: Proceed-

ings of Twenty-first ACM SIGOPS Symposium on Operating Systems

Principles. New York, NY, USA: ACM, 2007, pp. 205–220.
[19] A. Lakshman and P. Malik, “Cassandra: A Decentralized Structured

Storage System,” SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[20] S. Sehrish, G. Mackey, J. Wang, and J. Bent, “MRAP: A Novel
MapReduce-based Framework to Support HPC Analytics Applications
with Access Patterns,” in Proceedings of High Performance Distributed

Computing (HPDC 2010), 2010.
[21] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,

and J. Currey, “DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language,” in OSDI’08:

Proceedings of the 8th USENIX conference on Operating Systems Design

and Implementation. Berkeley, CA, USA: USENIX Association, 2008,
pp. 1–14.

[22] M. Isard and Y. Yu, “Distributed Data-Parallel Computing Using a High-
Level Programming Language,” in SIGMOD ’09: Proceedings of the

35th SIGMOD International Conference on Management of Data. New
York, NY, USA: ACM, 2009, pp. 987–994.

[23] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
data: Parallel analysis with Sawzall,” Scientific Programming, vol. 13,
no. 4, pp. 277–298, 2005.

[24] The R Project for Statistical Computing, http://www.r-project.org/.

761


