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Brain-computer interface (BCI) systems translate the human neurophysiological activities into commands through EEG analysis.
Improving the BCI performances leads to faster and easier use and less fatigue. In this study, we proposed a new prepossessing
approach to increase the robustness of a steady-state visual evoked potential (SSVEP) based BCI. Inspiring from the known
properties of the SSVEP frequency components, the goal was to enhance the signal quality by making it more convenient to be
interpreted by the decision-making step. We first investigated the potential to detect the deteriorating periods based on the
physiological properties of the SSVEP. &e proposed system localizes the intervals which can obscure the SSVEP frequencies by a
new algorithm founded on the processing and the analysis of the instantaneous phase. &e piecewise linear regression allows a
sampler comprehension of the phase signal. &en, these intervals are filtered by the moving average filter to enhance the SSVEP
quality. Finally, the decision making is made by the canonical correlation analysis (CCA) algorithm. &e results of experiments,
using real EEG signals from five subjects, show that the proposed approach significantly increases the performances in terms of
accuracy and information transfer rate by about 7.3% and 3.85 bits/min, respectively, in case of 2 s segment length. On the other
hand, the spatial filtering methods of the literature weaken the system performances.

1. Introduction

&e brain-computer interfaces (BCIs) are one of the last
means to regain the touch with the surrounding when no
neuromuscular pathway is available, such as in the case of
people suffering from locked-in syndrome. &ey offer a new
neurophysiological link between a person (generally severely
handicapped) and a computer or any other machine and
provide new options for communication and control [1, 2].
BCI has a variety of paradigms including P300, motor
imagery, and steady-state visual evoked potential (SSVEP).

&e SSVEP-based BCI is one of the most successful
interfaces. In fact, it provides a high information transfer
rate (ITR) compared to other BCIs with no need for training
and less required electrodes [3, 4]. &e SSVEP signal is
generated in the occipital area of the brain when a subject
gazes at a visual target flickering at a constant frequency

beyond 1Hz [5]. It is composed of near sinusoidal com-
ponents at the stimulation frequency and its multiples also
called harmonics. &us, it has a closely constant spectral
distribution centered on the fundamental frequency.

For an easy, natural, and convenient use of the BCI, we
need to provide a system with the highest possible accuracy
and ITR. Hence, the question arises of how to improve the
performances of an SSVEP-based BCI. &e answer to the
question is quite straightforward. We need to ameliorate the
quality of the SSVEP signal. In fact, the quality of the EEG is
the key to the communication speed of BCI. An accurate
target identification using data with lower signal-to-noise
ratio (SNR) requires longer signal epochs leading to the
decrease of the ITR. &us, we need efficient and effective
algorithms for preprocessing.

Several approaches and methods have been used in the
preprocessing step of the SSVEP-based BCI to enhance the
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EEG quality in order to improve the decision making by
ensuring that the system is not controlled by artifactual and
noncerebral signals. One of the first adopted approaches is
the time domain filtering used to eliminate frequency bands
that may include noise and artifacts. For instance, in [6], a
band-pass infinite impulse response (IIR) filter from 22Hz
to 48Hz is used to retain the pertinent parts of the EEG
signal. Moreover, a filter bank combining a set of band-pass
filters was used to select the frequency bands of interest in
order to estimate their spectral powers in the following
processing steps [7]. Despite the simplicity and ease of
implementation of the time domain filtering approach, its
success requires that relevant and irrelevant signals be lo-
cated in different frequency bands [8, 9]. In the case of
overlapping, this filtering will not be able to reduce the noise
level without attenuating the SSVEP frequencies. &e spatial
filtering approach has also gained a lot of attention. More
specifically, the common averaging rereferencing (CAR)
method has been used to reduce the levels of noise and
artifacts injected by the reference electrode [7]. It is based on
the fact that each event-related potential’s (ERP) component
is positive over some areas of the head and negative over
some other areas. &us, if the head model is assumed to be
spherical, the sum of all ERP’s components is zero (neutral)
over the entirety of the head. Consequently, averaging all the
EEG channels leads to the creation of a zero potential ref-
erence [10]. More popular methods are based on the blind
source separation (BSS) paradigm. For example, the AMUSE
method allows to estimate the independent components
(ICs) with automatic ranking. &e harmful components
related to the noise and the artifacts will be removed, and
then, a projection back to the scalp level creates the artifact-
free signal [11]. In fact, the first and the last components will
be removed. &e first component containing the slowest
brain activity is supposed to be related to electrooculogram
(EOG) artifacts and other slow artifacts while the last
component containing the fastest activity is supposed to be
related to muscle artifacts and other high-frequency noise
[12].&e independent component analysis (ICA) also allows
to decompose the EEG signal into different ICs. To differ-
entiate between the relevant and the irrelevant components,
Wang et al. [13] calculated the normalized amplitude at the
stimulus frequency. &e ICs with the highest normalized
amplitude are considered to be SSVEP activities. &e cor-
relation analysis was also used to separate the ICs. For
example, the ICs which have the highest correlation with the
signal from AF3 electrode are considered as related to
the EOG artifacts. On the other hand, the ICs which have the
highest correlation with the signal from Oz electrode are
considered as related to the SSVEP activities [14]. Multi-
variate data analysis (MVA) algorithms were also used in the
SSVEP preprocessing step. For example, the minimum
energy combination (MEC) is a spatial filtering method
dedicated only to enhancing the SSVEP quality. It uses the
principal component analysis (PCA) and the orthogonal
projection to accentuate the SSVEP frequencies and atten-
uate the remaining frequencies [15]. Moreover, the partial
least square (PLS) regression is another MVA method used
to maximize the covariance between the EEG and SSVEP

model signals [16]. &e common spatial pattern (CSP) al-
gorithm was also used to find a linear combination of the
EEG data to increase the power of the stimulation frequency
[17, 18]. It creates a divergence between the distributions of
dataset from two different classes.&e first class, called target
subset, is obtained by filtering the epochs with band-pass
filter centered on the stimulation frequency. &e second
class, called nontarget subset, is obtained by filtering the
epochs with band-pass filter centered on each nontarget
SSVEP frequency.

All these presented preprocessing methods use the time,
frequency, and statistical properties of the noise and arti-
facts. Another promoting paradigm is the deployment of the
physiological property. In fact, in case an artifact is identified
by its shape, its removal becomes easier with a higher
probability to conserve the useful components. Within this
context, Zhang et al. [19] proposed an approach to eye blink
artifacts removal. &ey start by modeling a generic skeleton
of the artifacts with straight lines based on the ballistic
properties of the eye blink generation, and then signals from
the channel Fp1 are examined in order to fit the skeleton to
each individual blink. Next, the detected artifacts are re-
moved from all channels. Reducing the levels of noise and
artifacts is essential for better performances; however,
preserving the original signal shape with minimal distortion
is fundamental in several applications. To this end, several
works have been interested in the moving average filter
(MA) [20, 21]. Besides its simplicity, its ability to maintain
the characteristics of the curve allows to keep the significant
information which leads to a better interpretation.

All the presented preprocessing methods filter the signal
regardless of its quality level which can deteriorate it when
no enhancement is needed. Also, most of them require a
large number of channels. In this paper, we would like to
propose a new method that segments the signal into two
groups according to the quality level and then filters only the
periods that require an enhancement. &e proposed method
should be able to work even with a small number of channels
(one channel).&e idea behind our method is to improve the
performances by benefiting from the sought signal prop-
erties. Our proposed paradigm is motivated by the fact that
the stimulation frequencies which reflect the shape of the
sought signal are preknown. &us, it is possible to use the
physiological information about the SSVEP signal to control
the preprocessing stage. We proposed a new preprocessing
method based on the piecewise linear regression of the
instantaneous phase to detect the deteriorating periods.
Moreover, the moving average filter was integrated for the
improvement of these periods. For decision making, we use
the canonical correlation analysis (CCA) to detect the target
stimulus. &e proposed algorithm was evaluated using an
open database for SSVEP-based BCI. &is database was
collected with a 4-target BCI from 5 subjects. For com-
parison, we use all the spatial filtering methods previously
presented. Results show that the ability of our method to
choose when to apply the filtering allows it to reach better
performances.

&e rest of this paper is organized as follows. Section 2
presents the used database. &e proposed method and its

2 Computational Intelligence and Neuroscience



blocks are detailed in Section 3.&e experimental results and
the discussion are given in Section 4, and then the work is
concluded in Section 5.

2. SSVEP Database

In the present study, the system performance analysis is
assessed using a freely available online database [22]. Five
subjects, aged 23, 25, 31, 42, and 46, respectively, participated
in the experiment. EEG signals were acquired from 16
channels (O2, AF3, AF4, P4, P3, F4, Fz, F3, FCz, Pz, C4, C3,
CPz, Cz, Oz, and O1 according to the 10/20 international
system) by means of the g. USBAmp EEG signal acquisition
system at a sampling rate of 256Hz. Each subject was asked
to sit 1m far from 4 green LEDs of a 1 cm diameter and to
gaze once at each LED for 30 s. Each LED flickers with a
constant frequency different from the other. &e four fre-
quencies are 5, 6, 7, and 8Hz, respectively.

3. Proposed Method for SSVEP
Quality Enhancement

&e SSVEP signal is composed of different frequency
components proportional to the stimulation (fundamental
frequency) and its harmonics. Each component represents
one scale of oscillation. &e noise, the artifacts, and the

background activities inject some additive deteriorating
quantities to the time series samples. &ese alterations in the
amplitude over a time period can cause some changes in the
frequency components and lead to the appearance of new
ones with non-SSVEP sources which can distort the final
decision. &e objective of our proposed method is to en-
hance the SSVEP signal by selecting the periods responsible
for the decline of the results (e.g., decisions of the system)
and then by applying a filtering on them to restore the
maximum amount of the SSVEP components. &e filtering
will not be applied on the advantageous periods.&erefore, a
higher probability to conserve the useful information will be
ensured.

Figure 1 illustrates the proposed SSVEP enhancement
method and its integration in the whole BCI system.

After acquiring the required amount of the EEG data
from the scalp, the multichannel EEG signal is preprocessed
by the new prepossessing method. &e enhanced signals are
then sent to the CCA method to find the frequency at which
the subject gazes. &e proposed enhancement method is
composed of two blocks. &e first block allows to detect the
segments which can obscure the SSVEP frequencies by
creating non-SSVEP components. &e second block is the
filtering used to reduce the level of these components.

Figure 2 details the different steps of the proposed SSVEP
enhancement method.

&e multichannel EEG signal is treated channel by
channel. Each single channel is preprocessed separately by
the proposed method, and then the enhanced multichannel
EEG signal is compared with the reference signals by the
CCA method.

&e noise, the artifacts, and the background activities are
totally or mostly random, and thus, they can weaken the
SSVEP components or create new components only for
short periods of time. Consequently, we can characterize the
non-SSVEP component as an abrupt change in frequency
which can last for a short time period. Conversely, an SSVEP
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Figure 1: BCI system using the proposed SSEVP enhancement
method.
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Figure 2: Block diagram of the proposed prepossessing approach.
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component has a constant frequency lasting for a longer
period. Obviously, more abrupt changes should be found if
the levels of noise and artifacts are higher. Based on these
assumptions, we can distinguish the useful periods from the
harmful ones by the sharpness of the frequency changes and
the lengths of the intervals during which the change is
maintained. To simplify the estimation of these two criteria,
we proposed to analyze the signal in the instantaneous phase
domain. In fact, the frequency components are transformed
into sawtooth signals in the phase representation. &is
technique allows to represent the problematic linearly.

Several methods have been proposed in the literature to
estimate the instantaneous phase of a time signal. In this
work, we used the Hilbert transformwhich is one of themost
robust and most useful methods. Figure 3 shows an example
of the instantaneous phase found using the Hilbert trans-
form applied to an EEG signal acquired when the subject was
gazing at a visual stimulation flickering at 5Hz.

&e abrupt changes in the frequency lead to sudden
changes in the phase signal. &us, the abrupt changes in the
slopes of the instantaneous phase, as shown in Figure 3, are
caused by the noise and artifacts injected in the EEG signal.
&e rapidity of these changes is due to the random nature of
the noise and artifacts, which means that the occurrence of
these changes is proportional to the SNR of the SSVEP.

To analyze the slopes of the instantaneous phase, we have
used the piecewise linear regression (PLR) [23, 24]. In fact,
using the PLR, the signal is split into several portions that have
linear trends and a straight line is fitted to each interval. &e

difference between the line and the actual signal in each period
should be below an accepted tolerance which depends on a
threshold value that must be set according to the application.
&is threshold has an impact on the breakpoint positions and
on the lengths of lines. &e idea behind our method is to
automatically specify the threshold value in such a way the
length of each straight line indicates whether this part of the
signal is relevant (e.g., reflects the SSVEP signal) or irrelevant
(e.g., obscures the SSVEP signal). In order to guarantee the
finest separation between the periods and since the noise and
artifacts are abrupt and quick, the proposed algorithm sets the
threshold value in a way that the irrelevant intervals are in-
dicated by straight lines composed of only two samples. &e
adjacent irrelevant intervals form one irrelevant segment that
will be filtered separately. For this task, we choose to use the
MA filter. In fact, the MA filter is applicable even with a small
number of samples. Moreover, it is optimal for reducing
random noise while retaining a sharp step response. &us, it
can improve the trends of a noisy signal to make more sig-
nificant correlation coefficients with the CCA method.

&e following section explains in more detail the main
steps of the proposed method.

3.1. .reshold Value Determination Algorithm. Figure 4
presents the different steps of the threshold value deter-
mination algorithm.

&e threshold value determination algorithm is com-
posed of three steps beginning by estimating the SNR of the
SSVEP. In fact, as mentioned above, the level of noise and
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artifacts directly influences the occurrence of the abrupt
changes and so the occurrence of breakpoints. Breakpoints
are unknown points where two successive lines joined. &ey
represent positions where slopes of functions with linear
trends start changing more sharply than a predefined
threshold. Our goal is to deduce the appropriate amount of
breakpoints based on the SNR. &e SNR estimation tech-
nique used in our proposed method is the one presented in
the work of Kus et al. [25]. &is technique measures the
activity level at a given stimulation frequency with respect to
the level of activity in adjacent frequencies according to the
following equation:

SNRf �
n.P(f)∑n/2i�1 P f + iΔf( ) + P f − iΔf( )( ), (1)

where n � 6, Δf � 0.5 Hz, and P(f) is obtained by
evaluating the spectral power at frequency f by means
of periodogram with Tukey window with parameter equal
to 0.1.

&e power of the fundamental frequencies is the highest
in the SSVEP signal followed by the first harmonics then the
next harmonics. &us, it is easier to analyze the fundamental
frequencies than the harmonics. For this end, we chose to
express the SNR of the SSVEP signal as the average of SNR
values at fundamental frequencies:

SNRSSVEP �
∑i∈kSNRfi

M
, (2)

where k is the set of used stimulation frequencies andM is
the number of stimuli.

After estimating the SNR of the SSVEP, this quantity
is used by the second step to specify the adequate per-
centage of breakpoints (BP) according to the following
equation:

BP � A + B · SNRSSVEP, (3)

where A and B are two system parameters estimated using
the genetic algorithm (GA).

&e GA is one of the most performant optimization
methods. It takes its advantages from the Darwinian
evolution theory and genetics. &e goal of the GA, in the
present work, was to specify the optimal values of A and B
that maximize the accuracy of the whole BCI system
(calculated after the decision made by the CCA block).&e
GA starts with a random initial population of individuals
and then analyzes in each generation the founded fitness
values (accuracy values), and thereby, it evolves to the
optimal solution through an iterative computation pro-
cess [26, 27]. As a consequence, a system parameters
optimization phase is required before the normal use of
the BCI system. Once, the offline preparatory phase de-
termines the values of A and B, the BCI system became
ready to start the normal real-time use phase. It is im-
portant to notice that the value of SNRSSVEP differs from
one segment to the other one which makes the system
adaptive. During the system evaluation experiments, each
time we picked trials from one subject as the test set and

combined trials from all remaining subjects as the set
needed to execute the GA.

In the next step (specify the appropriate threshold value),
the proposed method explores all possible percentages of
breakpoints and picks the closest one to the value fixed
earlier by the GA and then specifies the threshold that will be
used for the remaining analysis.

Algorithm 1 details the different instructions followed
to get the appropriate threshold value. &e highest
breakpoints percentage (100%) is found when the number
of breakpoints is equal to the half number of the EEG
samples (when the threshold is minimal, 0.000001 in our
case). &is algorithm starts by verifying if the threshold is
equal to the minimal or the maximal value; otherwise, it
splits the threshold range into 20 intervals and then ana-
lyzes them one by one. &is technique reduces the com-
putational time.

3.2. Piecewise Linear Regression. &e piecewise linear ap-
proximation aims to segment a time series of n samples into
k straight line with the highest possible quality of ap-
proximation. One possible way to form this problem is to
consider a threshold value specified by the user and rep-
resenting the tolerated amount of error, where the goal is to
produce the new representation in such a way the maxi-
mum error for any segment does not exceed the threshold.
As k is smaller than n, this representation can be used to
facilitate the analysis and the interpretation of the data.
Several techniques have been proposed to create the
breakpoints between the lines. &e sliding windows algo-
rithm is the most popular one due to its simplicity, its
intuitiveness, and its compatibility with online applica-
tions. Using the sliding windows, each segment length
increases from one sample to the next one while the error
boundary was not reached. Once the error exceeds the
threshold, a new breakpoint is created and the process will
be repeated with the next segment.

&e objective of the simple linear regression is to analyze
the relation between two quantitative variables: one ex-
planatory also called independent variable and one response
also called dependent variable (conventionally, the x and y
coordinates in a Cartesian coordinate system). &e sought
relation is expressed by a straight line that should fit as
accurately as possible the points in the Cartesian coordinate
to form a prediction of the new dependent variable ŷ as a
function of the independent variables [23]. &is linear
function is given by

ŷ � β0 + β1x, (4)

where β0 and β1 are the parameters (coefficients) of the
model indicating, respectively, the intercept term with the y-
axis and the slope of the regression line. &ese parameters
are found by minimizing the sum of squared deviations
between the dependent variables and the corresponding
values from the regression line (also called the sum of
squares error).
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β̂0, β̂1( ) � argmin∑m
i�0

yi − β0 − β1xi( )2. (5)

&e resolution of this optimization problem is given by

z

zβ0
∑m
i�0

yi − β0 − β1xi( )2 � 0,
z

zβ1
∑m
i�0

yi − β0 − β1xi( )2 � 0.


(6)

&e solution of this problem is as follows:

β̂0 � y − β̂1x,

β̂1 �
cov(x, y)

S2x
,

 (7)

where x and y are the average of x and y, respectively, Sx is
the variance of x, and cov(x, y) is the covariance of x and y.

In piecewise linear regression, the simple linear re-
gression is used to create the straight lines and the sum of
squares error is used as threshold to create the breakpoints
[24].

3.3.MovingAverage Filter. &eMA filter is a variety of finite
impulse response (FIR) filter which smooths the signal to
remove the random variations. It is useful to improve the
time domain signal information. &e current output sample
is calculated by averaging the previousM samples whereM
is the length or the order of the filter. A temporal moving
window is applied to the signal to calculate the successive
local averages. &e output of the MA filter with order M is
expressed as follows:

y[n] �
1

M
(x[n]+ x[n − 1]+ x[n − 2]+ · · · + x[n −M + 1]),

y[n] �
1

M
∑M−1
k�0

x[n − k],

(8)
where x is the input original signal.

3.4. Standard Canonical Correlation Analysis-Based Method.
After the signal preprocessing step, a decision-making step is
needed to provide the system output command. One of the
most efficient methods to recognize the frequency of the
target at which the subject gazes is the CCA-based method.
&is method has been used in many works due to its
simplicity, its reliability, and its high accuracy. Firstly in-
troduced by Lin et al. [6, 28], this method integrates the CCA
to quantify the similarity between the multichannel EEG and
models of optimal SSVEP signals. &erefore, n correlation
coefficients are estimated between the multichannel EEG
signals and reference signals (n is the number of stimuli).
Each reference Rfi is formed from several time series cor-
responding to one stimulation frequency and its harmonics.

Rfi �

sin 2πfit( )
cos 2πfit( )
⋮

sin 2πNhfit( )
cos 2πNhfit( )




. (9)

As shown in the previous equation,Rfi consists of a set of
sine and cosine signals where fi and Nh are two constants
representing the i-th stimulation frequency and the number
of harmonics taken into account, respectively, and t is the
count up timer. Hence, Rfi ∈R

2Nh×Q where Q is the number
of time points.

&e stimulation frequency that produces the maximum
coefficient value is selected and identified as the target
frequency.

4. Results

SSVEP-based BCIs have gained a research interest due to
their advantages: portability and ease of use, higher SNR as
well as faster ITR. To respect these pros, we chose to limit the
number of channels to 6 and use only the nearest channels to
the occipital area (O2, Oz, O1, P3, Pz, and P4). Also, the
length of the EEG segments is reduced to 2 s. Each 30 s of
multichannel EEG signal is split into nonoverlapped 2 s
segments and then each segment is analyzed apart.

4.1. Detection of Irrelevant Intervals. As presented in the
previous section, the first block of our proposed method
allows to detect the irrelevant intervals which deteriorate the
system performances. Figure 5 shows an example of the
results of this block.

Before this experiment, the system has already executed
the GA in a preparation phase in order to determine the best
values of the parameters A and B.

Figure 5(a) shows the results of the PLR applied on an
instantaneous phase signal estimated from an original EEG
segment. Circles on the curve indicate the beginnings of
straight lines, while crosses indicate the endings. &ese
beginnings and endings can be considered as features
extracted from the phase signal as they create a new rep-
resentation easier to be interpreted. In fact, just calculating
the difference between the two points allows to know if the
interval they bound is relevant or irrelevant.

Figure 5(b) illustrates, for the same data, the results of
the irrelevant period recognition step. Results show that the
short lengths of the PLR lines allow to distinguish between
the relevant and the irrelevant intervals without latency
regardless of their lengths. &e type of the interval depends
only on the instants of the changes in the slope.

Figure 5(c) illustrates the instantaneous phase estimated
from the preprocessed signal found with our proposed al-
gorithm. From the trend of the curve, it is clear that the
phase signal is more stable and the slopes are steadier with
fewer changes. &is result proves that there are fewer
changes in the frequency components of the SSVEP signal.
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4.2. System Performance Evaluation. Two metrics have been
proposed in the literature to evaluate the BCI systems which
are the accuracy and the ITR. &e accuracy rate is calculated
by dividing the number of correct decisions by the number
of trials. &e ITR reflects the speed of the system and takes
into account the values of accuracy and execution time.
Wolpaw et al. [29] proposed a way to express the ITR as
given in the following equation:

B � log2N + Plog2P +(1 − P)log2
(1 − P)

(N − 1)
[ ], (10)

where B is given in bits/symbol, N is the number of targets,
and P is the classification accuracy. A more common ITR
derived from the first one is given as follows [30]:

Bt � B∗
60

CTI
( ), (11)

where Bt is given in bits/min and CTI is the command
transfer interval representing the average time needed to
convert a brain feature activity into a command.

&e proposed method was compared with the spatial
filtering methods presented in the Introduction. Experi-
ments were conducted using a PC computer with 8 Go RAM
and an Intel Core i7, 4.6GHz processor. &e software codes
were implemented using MATLAB R2016a with the
EEGLAB plugin for ICA methods. All methods of EEG
signal preprocessing with the description of the obtained

signals are presented in Table 1. &ese signals were used in
the CCA step for decision making.

Methods that belong to the BSS family use all the 16
channels to create the ICs, and then, only the 6 previously
mentioned channels are used in the CCA step.

Table 2 shows the system accuracy rate found for the five
subjects using all preprocessing methods. Segments of 2 s
length were used in this experiment.

Results show that the preprocessing methods of the
literature ameliorate the SSVEP quality in some cases.
However, the majority of the results were declined. In fact,
in case of CAR methods, errors can be due to a limited
electrode density, incomplete electrodes cover, as only the
top of the head can be covered by electrodes, and the
inaccurate modeling of the head by a simple sphere.
Moreover, the BSS methods are not able to distinguish the
EEG segments that are contaminated by artifacts from the
artifact-free segments. &us, removing ICs from every
decomposition result can lead to the removal of important
ICs. Also, an IC can include a mixture of components
related to artifacts and other components related to
SSVEP. &us, the rejection of entire ICs in a systematic
way can lead to the loss of important information in-
cluded in these ICs. CSP and PLS methods allow to in-
crease the average accuracy; however, their performances
are not stable for all subjects. Both of them largely decline
the accuracy using EEG of subject 2.
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Figure 5: Example of results of the irrelevant interval detection process: (a) instantaneous phase estimated from the original signal with the
lines found by the PLR, (b) distinction between relevant and irrelevant segments, and (c) instantaneous phase estimated from the pre-
processed signal.
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Input: PhaseSig, ▷ instantaneous phase signal
BestBreakpointsAmount, ▷appropriate percentage of breakpoints
Errormin, Errormax, ▷minimum and maximum error values tolerated between lines and the signal
EEG_Length ▷number of samples in the input EEG signal

Output: Best&reshold ▷ appropriate threshold value
If BestBreakpointsAmount≥ 100 then:

Best&reshold⟵ Errormin
return Best&reshold

Else
(VectErrors, NbBreakpoints, . . .) ⟵ PLS(PhaseSig, Errormin)

▷PLS(signal, threshold): segment the signal using PLR with respect to the
threshold value
▷VectErrors: vector of error values sorted in increasing order
▷NbBreakpoints: number of breakpoints

ThStep⟵ThStep + VectErrors [1] + (VectErrors [2] − VectErrors [1])/2
(Errormax ⟵ closest value to Errormax from VectErrors
((VectErrors, NbBreakpoints, . . .) ⟵ PLS(PhaseSig, Errormax)
(ActualBreakpointsAmount ⟵ 100 × (NbBreakpoints/(1/2)EEG Length)
(If BestBreakpointsAmount≤ActualBreakpointsAmount then:

(Best&reshold⟵ Errormax
return Best&reshold

Else
Step⟵ (Errormax/20)
StepError � Errormin
While Best&reshold has not been assigned a value do:
StepError � StepError + Step
(VectErrors, NbBreakpoints, . . .) ⟵ PLS(PhaseSig, StepError)
Recalculate ActualBreakpointsAmount

If BestBreakpointsAmount>ActualBreakpointsAmount then:
While Best&reshold has not been assigned a value do:

(VectErrors, NbBreakpoints, . . .) ⟵ PLS(PhaseSig, &Step)
Recalculate ActualBreakpointsAmount
If BestBreakpointsAmount>ActualBreakpointsAmount then:

Best&reshold⟵ threshold that gives the closet ActualBreakpointsAmount to
BestBreakpointsAmount

return Best&reshold
End if
Recalculate THStep

End while
End if

End while
End if

End if

ALGORITHM 1: Specify the appropriate threshold value.

Table 1: EEG preprocessing steps and the description of obtained signals.

Symbolic name of the
method

&e signal for further analysis

CSP Signal after applying the CSP linear combination
PLS Signal after applying the PLS projection
MEC Signal after applying the MEC projection
CAR Signal after CAR filtration
AMUSE Signal after applying the AMUSE and removing the first and the last components

SOBI-AF3
Signal after applying the SOBI ICA algorithm and removing the component which has highest correlation with

the signal from AF3 electrode

SOBI-OZ
Signal after applying the SOBI ICA algorithm and removing the component which has lowest correlation with

the signal from AF3 electrode

SOBI-FFT
Signal after applying the SOBI ICA algorithm and removing the component which has lowest value of the

normalized amplitude
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It is obvious from the obtained results that the proposed
method performs better than the standard CCA and the
spatial filtering ones. Indeed, it increases the average system
accuracy rate by about 7.3% and the average ITR by about
3.85 bits/min. &is proves the effectiveness of the proposed
method in the enhancement of the SSVEP frequency
component and the reduction of the level of noise and
artifacts. Moreover, the accuracy rises for all subjects
without exception even when the precision is low, as in case
of the subject 3 where the accuracy is below 65%; hence, we
can see that our method remains stable even facing a high
level of noise and artifact.

Table 3 shows a comparison of the average time needed
for the processing of segments of 2 seconds length.

Results show that our proposed method performs better
than the ICA-based methods. In fact, the estimation of the
mixing matrix and its inverse is very time-consuming.
However, CSP, PLS, and CAR methods are far better than
our method in terms of computation time. &e average
calculation time was about 0.28 s for the 2 s segment length.
&is latency between the end of the segment acquisition and
the decision making can weaken the natural use of the BCI.
Nevertheless, to improve the computational costs, a more

performant computer with more powerful resources can be
used. Also, the codes can be optimized with software
solutions.

Table 2: Average accuracy among the five subjects (in %).

Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average

Standard CCA 90 81.66 50 71.66 91.66 77
Proposed method 92.86 83.93 64.29 87.5 92.86 84.29
CSP 96.67 76.67 56.67 66.67 95 78.33
PLS 93.33 56.67 55 86.67 98.33 78
MEC 91.67 81.67 48.33 70 86.67 75.67
CAR 91.67 71.67 50 66.67 90 74
AMUSE 90 78.33 45 61.67 88.33 72.67
SOBI-AF3 91.67 73.33 51.67 65 88.33 74
SOBI-OZ 88.33 70 50 65 86.67 72
SOBI-FFT 88.33 71.67 56.67 68.33 91.67 75.33
Infomax-AF3 90 75 46.67 71.67 90 74.67
Infomax-OZ 90 73.33 48.33 70 90 73.33
Infomax-FFT 93.33 78.33 51.67 71.67 91.67 77.33
JADE-AF3 88.33 76.67 46.67 73.33 91.67 75.33
JADE-OZ 88.33 70 50 65 86.67 72
JADE-FFT 90 73.33 53.33 66.67 90 74.67

Table 1: Continued.

Symbolic name of the
method

&e signal for further analysis

Infomax-AF3
Signal after applying the Infomax ICA algorithm and removing the component which has highest correlation

with the signal from AF3 electrode

Infomax-OZ
Signal after applying the Infomax ICA algorithm and removing the component which has lowest correlation

with the signal from AF3 electrode

Infomax-FFT
Signal after applying the Infomax ICA algorithm and removing the component which has lowest value of the

normalized amplitude

JADE-AF3
Signal after applying the JADE ICA algorithm and removing the component which has highest correlation

with the signal from AF3 electrode

JADE-OZ
Signal after applying the JADE ICA algorithm and removing the component which has lowest correlation with

the signal from AF3 electrode

JADE-FFT
Signal after applying the JADE ICA algorithm and removing the component which has lowest value of the

normalized amplitude

Table 3: Average calculation time among the five subjects for
segment length equal to 2 seconds.

Method Average time (s)

Standard CCA 0.002
Proposed method 0.28
CSP 0.004
PLS 0.003
MEC 0.03
CAR 0.003
AMUSE 0.003
SOBI-AF3 3.5
SOBI-OZ 3.4
SOBI-FFT 3.5
Infomax-AF3 6.9
Infomax-OZ 7
Infomax-FFT 7.22
JADE-AF3 3.5
JADE-OZ 3.44
JADE-FFT 3
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Table 4 shows the system performances for different
segment lengths. Since the user cannot use the BCI during
the calculation time, this period was added to the segment
length to calculate the ITR.

Results show that the proposed method improves the
decision of the CCA method even after reducing the length
of the segments, which proves its stability and robustness.
Indeed, as the system can select irrelevant intervals of re-
duced length and apply filtering on them, it remains
functional with precision regardless of the length of the
segments. Segments with 2 s length allow to reach the best
accuracy and ITR values making the system closer to an
online use outside the laboratory. However, to ensure the
real-time use, the average calculation time needed to make a
decision must be improved.

5. Conclusion

SSVEP-based BCI is one of the most promoting systems to
bring BCIs outside the laboratory for everyday use. &e high
accuracy and ITR make it a good choice for control and
communication applications. In the present study, we
proposed a novel preprocessing method to enhance the
SSVEP quality. &e proposed approach is a real-time signal
processing chain composed of the Hilbert transform, the
piecewise linear regression, the Tukey periodogram esti-
mator, and the moving average filter with the use of the
genetic algorithm for parameter optimization. Results show
that the proposed system boosts the CCA-standard system
and reaches an average accuracy rate of 84.29% and an
average ITR of 29.57 bits/min for a segment length of 2 s.
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