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Abstract - We present a fast iterative algorithm for identifying 
the Support Vectors of a given set of points. Our algorithm works 
by maintaining a candidate Support Vector set. It uses a greedy 
approach to pick points for inclusion in the candidate set. When 
the addition of a point to the candidate set is blocked because 
of other points already present in the set we use a backtracking 
approach to prune away such points. To speed up convergence 
we initialize our algorithm with the nearest pair of points from 
opposite classes. We then use an optimization based approach 
to increment or prune the candidate Support Vector set. The al- 
gorithm makes repeated passes over the data to satisfy the KKT 
constraints. The memory requirements of our algorithm scale as 
O(lSlz) in the average case, where IS1 is the size of the Support 
Vector set. We show that the algorithm is extremely competitive 
as compared to other conventional iterative algorithms like SMO 
and the NPA. We present results on a variety of real life datasets 
to validate our claims. 

I. Introduction 

Support Vector Machines ( SVM ) have recently gained 
prominence in the field of machine learning and pattern clas- 
sification [8]. Classification is achieved by realizing a linear 
or non-linear separation surface in the input space. 

In Support Vector classification, the separating function can 
be expressed as a linear combination of kernels associated 
with the Support Vectors as 

Xj ES 

where z i  denotes the training patterns, y i  E {+l, -1) de- 
notes the corresponding class labels and S denotes the set of 
Support Vectors [8]. 

The dual formulation yields 

1 
min W = - c a i Q i j a j  - c ai + b c yia i  (1) 

i , j  i i 
o<ai<c 

where a i  are the corresponding coefficients, b is the offset, 

matrix and C is the parameter used to penalize error points in 
Q . .  t3 - - y i y j K ( z i ,  z j )  is a symmetric positive definite kernel 
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the inseparable case [8]. The Karush-Kuhn-Tucker ( KKT ) 
conditions for the dual can be expressed as 

dW 
d a i  ; 

9' I -  - - = C Q i j a j  + yib  - 1 = y i f ( ~ i )  - 1 (2) 

and 

(3) 

This partitions the training set into S the Support Vector set 
( O < a i < C , g i = O ) , E t h e e r r o r s e t ( a i  = C , g i  < 0 )  
and R the well classified set ( ai = 0, gi > 0 ) [2]. 

If the points in error are penalized quadratically with a 
penalty factor C', then, it has been shown that the problem 
reduces to that of a separable case with C = 00 [3]. The 
kernel function is modified as 

where 6 i j  = 1 if i = j and S i j  = 0 otherwise. The advantage 
of this formulation is that the SVM problem reduces to that of 
a linearly separable case [4]. 

It can be seen that training the SVM involves solving a 
quadratic optimization problem which requires the use of op- 
timization routines from numerical libraries. This step is com- 
putationally intensive, can be subject to stability problems and 
is non-trivial to implement [5]. Attractive iterative algorithms 
like the Sequential Minimal Optimization ( SMO ), Nearest 
Point Algorithm ( NPA ) etc. have been proposed to overcome 
this problem [ 5 ] ,  [4]. This paper makes another contribution 
in this direction. 
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A. DirectSVM and Geometric SVM 

The DirectSVM is an intuitively appealing algorithm, which 
builds the Support Vector set incrementally [6]. Recently it 
has been proved that the closest pair of points of the opposite 
class are always Support Vectors [7]. DirectSVM starts off 
with this pair of points in the candidate Support Vector set. It 
has been conjectured that the maximum violator during each 



iteration is a Support Vector [7]. The algorithm finds the max- 
imum violator during each iteration and rotates the candidate 
Support Plane to make the maximum violator a Support Vec- 
tor. In case the dimension of the space is exceeded or all the 
data points are used up, without convergence, the algorithm 
reinitializes with the next closest pair of points from opposite 
classes [6]. The advantage of the DirectSVM algorithm is that 
it is geometrically motivated and simple to understand. 

The Geometric SVM proposed by us improves the scaling 
behavior of the DirectSVM by using an optimization based 
approach to add points to the candidate Support Vector set 

We observed that neither of the algorithms has a provision 
to backtrack, i.e. once they decide to include a point in the can- 
didate Support Vector set they cannot discard it. During each 
step, both the algorithms spend their maximum effort in find- 
ing the maximum violator. If S is the current candidate Sup- 
port Vector set, and n the size of the dataset, the algorithms 
spend (n - s)(SI kernel evaluations to locate the maximum 
violator. Caching schemes have been proposed to increase the 
efficiency of this step [9]. 

Our observations led us to a greedy algorithm which picks 
the next immediately available violating point for inclusion 
in the candidate Support Vector set. Some stray non Support 
Vectors may be picked up for inclusion in the candidate set 
because of this greedy approach. Our algorithm backtracks 
later by pruning away such stray points from the candidate 
Support Vector Set. In order to satisfl the KKT conditions for 
all points it has to make repeated passes though the dataset. 

~91. 

B. Incremental Algorithm 

Recently some work has also been done on incremental SVM 
algorithms which can converge to exact solutions and also 
efficiently calculate leave one out errors [2]. The algorithm 
works by adding a point at a time to the current dataset. It is 
shown that the addition of a point converges in a finite num- 
ber of steps. The algorithm calculates the change in the KKT 
conditions of each one of the current data points in order to 
do book keeping. In case the size of the current data set is n 
and the number of Support Vectors is (5'1, then, this algorithm 
has to perform nlSl kernel operations for addition of the next 
point. The authors suggest a practical online variant where 
they introduce an 6 margin and concentrate only those points 
which are within the 6 margin of the boundary [2]. But, it is 
clear that the results may vary by varying the value of 6. 

Instead of concentrating on the entire current dataset, which 
may be costly, our algorithm focuses its attention only on the 
current Support Vector set. It then picks data points greedily 
for inclusion in the current Support Vector set. While aug- 
menting the current Support Vector set, some already existing 
Support Vectors may become well classified because of the 

addition of a new Support Vector. We prune away those points 
using the Decremental technique described in [2]. It may also 
happen that other points in the dataset may become violators 
or Support Vectors. The Incremental algorithm handles such 
points by doing costly book keeping in the current iteration it- 
self and hence does not need to make repeated passes over the 
dataset [2]. On the other hand our algorithm does not handle 
such points in the current iteration, it makes repeated passes 
over the'dataset to identify and satisfy such points. 

C. Outline of Our Paper 

In this paper we present a fast iterative algorithm which com- 
bines the the theoretically motivated foundation of the Incre- 
mental algorithm with the speed typical of iterative algorithms 
like NPA or the SMO. We borrow the initialization technique 
from the DirectSVM algorithm to speed up convergence of 
our algorithm. Section I1 talks about our algorithm and pro- 
vides proofs. We also talk about the memory requirements 
of our algorithm. We present and discuss results obtained on 
real life datasets in Section 111. We conclude in Section IV 
by pointing out advantages of our algorithm and indicate sit- 
uations under which it can perform extremely well. We also 
provide pointers to our ongoing and future work. 

11. Simple SVM 
Our algorithm maintains a candidate Support Vector set. It 

initializes the set with the closest pair of points from opposite 
classes like the DirectSVM algorithm. As soon as the algo- 
rithm finds a violating point in the dataset it greedily adds it 
to the candidate set. It may so happen that addition of the vi- 
olating point as a Support Vector may be prevented by other 
candidate Support Vectors already present in the set. We sim- 
ply prune away all such points from the candidate set. To en- 
sure that the KKT conditions are satisfied we make repeated 
passes through the dataset until no violators can be found. We 
use the quadratic penalty formulation to ensure linear separa- 
bility of the data points in the kernel space. 

A. Finding the Closest Pair of Points 

First of all, we observe that, finding the closest pair of points 
in kernel space requires n2 kernel computations where n rep- 
resents the total number of data points. But, in case we use 
a distance preserving kernel like the exponential kernel the 
nearest neighbors in the feature space are the same as the near- 
est neighbors in the kernel space. Hence we need not perform 
any costly kernel evaluations for the initialization step. 

B. Adding a Point to the Support Vector Set 

Given a set S which contains only Support Vectors, we wish 
to add another Support Vector c to S. From Equations 2 and 
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3 we get the change in gi due to addition of a new point c as 

Agi = QicAac + C Q i j  Aaj + y i A b  

0 = ycAac + C y j  Aaj 

(4) 
j € S  

and 
( 5 )  

j E S  

where Aai is the change in the value of ai and Ab is the 
change in the value of b. We start off with a, = 0 and update 
ac as we go along. 

Because all the vectors in S are Support Vectors we know 
from Equation 2 that gi = 0 Vi. If none of the current Sup- 
port Vectors blocks the addition of c to S then all the vectors 
in S continue to remain Support Vectors in S U { c} and hence 
we require that Agi = 0 for all vectors in S. It is shown that 
[21 

and 

If we define 

R =  

then 

Ab = pAa, 

Aaj = @jAac 

0 y1 ... Y S  

Y I  Qii - - .  Qis 

(7) 

- 1 

[ : ] = - R [  Qac $1 
We want gc = 0 so that c can become a Support Vector. Some 
algebra yields 

(8 )  
C j E S  Q c j a j  + y c b  - 1 

QCC + Cjes Q c j P j  + Y C P  
Aac = - 

If we define 

~c = Qcc + C Q c j B j  + Y C B  

j E . 5  

From [2] we know that we can expand R as 
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Thus our new a is 

and our new b is b + Ab. 

c. Pruning 

In the discussion above we tacitly assumed that (a + Aa)  > 
0 V p  E S. But, this condition may be violated if any point 
in S blocks c. When we say that a point p E S is blocking 
the addition of c to S what we mean is that ap of that point 
may become negative due to the addition of c to S. What it 
physically implies is that p is making a transition from S to the 
well classified set R. Because of the presence of such points 
we may not be able to update ac by the amount specified by 
Equation 8. In such a case we can prune away p from S by 
using [2] 

e. - R.. - R - ~ & , R  . VR. .  E R 3 - 83 8s 83 v 

We remove the alpha entry corresponding to p from S so that 
all the other points in S continue to remain Support Vectors. 
We now try to add c to this reduced S. We keep pruning points 
from S till c can actually become a Support Vector. 

D. OurAlgorithm 

Using the ideas we discussed above an iterative algorithm can 
be designed which scans through the dataset looking for vi- 
olators. Using ideas presented in Section 11-B the violator 
is made a Support Vector. Blocking points are identified and 
pruned away by using the ideas presented in Section 11-C. The 
algorithm stops when all points are classified within an error 
bound i.e. y i f ( z i )  > 1 - c Vi. The outline of our algorithm 
is presented in Algorithm 1. 

Algorithm 1 Simde SVM 
candidateSV = { closest pair from opposite classes } 
while there are violating points do 

Find a violator 
candidateSV = candidateSV U violator 
if any ap < 0 due to addition of c to S then 

candidateSV = candidateSV \ p 
repeat till all such points are pruned 

end if 
end while 

E. Scaling 

As is clear from the discussion in Section 11-B and 11-C, 
the algorithm needs to store the values of as  corresponding to 
the candidate Support Vector set (S). This occupies at most 
O(lSl) space. Storing the value of b requires O(1) space. It 
also needs to store the R matrix corresponding to the candi- 
date Support Vector set. Since R is a IS( x IS1 matrix its size 
scales up as O(lS12). Thus we can conclude that the mem- 
ory requirements of the algorithm scale up as O([S12) in the 
average case. 

2395 



TABLE I 
NPA VS SIMPLE SVM ON SPIRALS DATASET. KERNEL 

EVALUATIONS ARE x lo6 

We used the WPBC dataset from the UCI Machine Learn- 
ing repository [l]. This dataset consists of 683 data points, 
each having a dimension of 9. We used the Gaussian kernel - I 

with 02 = 4.0 14]’ we vary the 
results in table 11. 

Of “ and reproduce Fig. 1. Comparison of the Kernel Evaluations performed by Simple 
SVM and the NPA on the Adult-4 Dataset. 
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‘Working code and datasets used for the experiments are available at 
http://wwwl.csa.iisc.ernet.in/-vishy The Adult-7 dataset from the UCI Machine Learning repos- 
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C' I Itr I SV I KernelEval 
1.0 I 11284 I 10035 I 3.07 

SV I KernelEval 
10181 I 11.31 0.6 

1.0 
2.0 

1315 1119 2.83 1118 8.9 
1077 1272 2.73 1077 9.6 
1257 1032 2.77 1032 10.6 

TABLE I11 
NPA VS SIMPLE SVM ON ADULT- 1 DATASET. KERNEL 

EVALUATIONS ARE X lo6 

10 I 10958 I 8833 3.64 I 9343 
50 1 10540 I 7654 3.92 I 8393 

TABLE IV 

EVALUATIONS ARE x lo7 
NPA VS SIMPLE SVM ON ADULT-4 DATASET. KERNEL 

20.53 
5 1.05 

itory is a sparse data set of 16,100 points, each having a 
dimension of 123 [l]. We used the Gaussian kernel with 
u2 = 10.0 [5 ] .  The experiments were conducted on a 800 
MHz PI11 machine with 256 MB RAM, running Windows 
2000. We vary the value of C' and reproduce our results in 
table V. 

I I Simple SVM I NPA 

3.0 
5.0 

1252 996 2.90 996 11.5 
1217 951 2.23 950 11.9 

10 
50 
100 

A. Discussion of the Results 

As can be seen the Simple SVM algorithm outperforms the 
NPA on each one of the datasets tested. For example on the 
Spiral dataset the Simple SVM is an order of magnitude faster 
than the NPA. On the Adult4 dataset with C' = 1000 the 
Simple SVM algorithm is nearly 50 times faster than the NPA. 
On the average the Simple SVM is seen to be around 3 to 5 
times faster than the NPA. 

The kernel computations performed by NPA, SMO and 
other iterative algorithms tend to vary with the value of C' 
and the total number of Support Vectors. On the other hand 
the kernel evaluations of the Simple SVM seem to be a func- 
tion of the dataset only. They are fairly independent of the 
value of C' or the total number of Support Vectors. This is 
illustrated by the graph in Fig 1. 

The difference between the number of iterations and the 
number of final Support Vectors indicates the number of times 
the algorithm had to backtrack. It can be seen that the Sim- 
ple SVM algorithm needs to backtrack only around 20% of 
the times and hence the penalty incurred due to a greedy ap- 
proach is not very significant. This validates the observation 
that a greedy approach taken by SMO like algorithms pro- 
duces faster convergence. 

The number of Support Vectors found by our algorithm and 
the NPA is different in the case of Adult-7 dataset. One possi- 
ble explanation for this observation is that the stopping crite- 
rion employed by the two algorithms are different. Round off 
errors due to differences in the precisions used for the compu- 
tations may further aggravate the problem. 

IV. Conclusion and Future Work 

We have presented a new algorithm that is efficient, intu- 
itive and fast. We show that the algorithm significantly outper- 

1191 898 2.88 898 14.1 
1176 776 2.82 776 26.2 
1188 735 3.18 734 33.7 
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1200 687 3.08 687 56.9 
1224 677 3.20 677 66.0 



forms other iterative algorithms like the NPA in terms of the 
number of kernel computations. Because of the approach used 
to build the Support Vector, set our algorithm does not suffer 
from numerical instabilities and round off errors that plague 
other numerical algorithms for the SVM problem. Our algo- 
rithm currently does not use any kind of kernel cache to reuse 
kernel computations. We are currently investigating meth- 
ods to speed up the algorithm using some efficient caching 
scheme. 

We also observe that the memory utilization of the algo- 
rithm is governed by the R matrix which scales as O(lS12). 
Hence, our algorithm does not scale well for those problems 
where the R matrix cannot be held in main memory. But, this 
is not a serious limitation, for example on a machine with 256 
MB of main memory we can store the R matrix corresponding 
to as many as 10,000 Support Vectors. We are investigating 
methods to store a compact representation of R in order to 
reduce this memory overhead. 

It can be observed that the addition of a vector to the Sup- 
port Vector set is entirely reversible. Using this property Pog- 
gio et. al. [2] have calculated the leave one out error. We pro- 
pose to use similar techniques to calculate the leave one out 
error based on the order in which the data points were added 
to Support Vector set. 
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