
SSVM : A Simple SVM Algorithm
S.V.N. Vishwanathan, M. Narasimha Murty

{vishy, mnm}@csa.iisc.ernet.in
Dept. of Comp. Sci. and Automation,

Indian Institute of Science,
Bangalore 560 012,

INDIA

Abstract - We present a fast iterative algorithm for identifying
the Support Vectors of a given set of points. Our algorithm works
by maintaining a candidate Support Vector set. It uses a greedy
approach to pick points for inclusion in the candidate set. When
the addition of a point to the candidate set is blocked because
of other points already present in the set we use a backtracking
approach to prune away such points. To speed up convergence
we initialize our algorithm with the nearest pair of points from
opposite classes. We then use an optimization based approach
to increment or prune the candidate Support Vector set. The al-
gorithm makes repeated passes over the data to satisfy the KKT
constraints. The memory requirements of our algorithm scale as
O(lSlz) in the average case, where IS1 is the size of the Support
Vector set. We show that the algorithm is extremely competitive
as compared to other conventional iterative algorithms like SMO
and the NPA. We present results on a variety of real life datasets
to validate our claims.

I. Introduction

Support Vector Machines (SVM) have recently gained
prominence in the field of machine learning and pattern clas-
sification [8]. Classification is achieved by realizing a linear
or non-linear separation surface in the input space.

In Support Vector classification, the separating function can
be expressed as a linear combination of kernels associated
with the Support Vectors as

Xj ES

where z i denotes the training patterns, y i E {+l, -1) de-
notes the corresponding class labels and S denotes the set of
Support Vectors [8].

The dual formulation yields

1
min W = - c a i Q i j a j - c ai + b c yia i (1)

i , j i i
o<ai<c

where a i are the corresponding coefficients, b is the offset,

matrix and C is the parameter used to penalize error points in
Q . . t3 - - y i y j K (z i , z j) is a symmetric positive definite kernel

Corresponding author - M. Narasimha Murty

the inseparable case [8]. The Karush-Kuhn-Tucker (KKT)
conditions for the dual can be expressed as

dW
d a i ;

9' I - - - = C Q i j a j + yib - 1 = y i f (~ i) - 1 (2)

and

(3)

This partitions the training set into S the Support Vector set
(O < a i < C , g i = O) , E t h e e r r o r s e t (a i = C , g i < 0)
and R the well classified set (ai = 0, gi > 0) [2].

If the points in error are penalized quadratically with a
penalty factor C', then, it has been shown that the problem
reduces to that of a separable case with C = 00 [3]. The
kernel function is modified as

where 6 i j = 1 if i = j and S i j = 0 otherwise. The advantage
of this formulation is that the SVM problem reduces to that of
a linearly separable case [4].

It can be seen that training the SVM involves solving a
quadratic optimization problem which requires the use of op-
timization routines from numerical libraries. This step is com-
putationally intensive, can be subject to stability problems and
is non-trivial to implement [5]. Attractive iterative algorithms
like the Sequential Minimal Optimization (SMO), Nearest
Point Algorithm (NPA) etc. have been proposed to overcome
this problem [5] , [4]. This paper makes another contribution
in this direction.

0-7803-7278-6/02/$10.00 02002 IEEE 2393

A. DirectSVM and Geometric SVM

The DirectSVM is an intuitively appealing algorithm, which
builds the Support Vector set incrementally [6]. Recently it
has been proved that the closest pair of points of the opposite
class are always Support Vectors [7]. DirectSVM starts off
with this pair of points in the candidate Support Vector set. It
has been conjectured that the maximum violator during each

iteration is a Support Vector [7]. The algorithm finds the max-
imum violator during each iteration and rotates the candidate
Support Plane to make the maximum violator a Support Vec-
tor. In case the dimension of the space is exceeded or all the
data points are used up, without convergence, the algorithm
reinitializes with the next closest pair of points from opposite
classes [6]. The advantage of the DirectSVM algorithm is that
it is geometrically motivated and simple to understand.

The Geometric SVM proposed by us improves the scaling
behavior of the DirectSVM by using an optimization based
approach to add points to the candidate Support Vector set

We observed that neither of the algorithms has a provision
to backtrack, i.e. once they decide to include a point in the can-
didate Support Vector set they cannot discard it. During each
step, both the algorithms spend their maximum effort in find-
ing the maximum violator. If S is the current candidate Sup-
port Vector set, and n the size of the dataset, the algorithms
spend (n - s)(SI kernel evaluations to locate the maximum
violator. Caching schemes have been proposed to increase the
efficiency of this step [9].

Our observations led us to a greedy algorithm which picks
the next immediately available violating point for inclusion
in the candidate Support Vector set. Some stray non Support
Vectors may be picked up for inclusion in the candidate set
because of this greedy approach. Our algorithm backtracks
later by pruning away such stray points from the candidate
Support Vector Set. In order to satisfl the KKT conditions for
all points it has to make repeated passes though the dataset.

~91.

B. Incremental Algorithm

Recently some work has also been done on incremental SVM
algorithms which can converge to exact solutions and also
efficiently calculate leave one out errors [2]. The algorithm
works by adding a point at a time to the current dataset. It is
shown that the addition of a point converges in a finite num-
ber of steps. The algorithm calculates the change in the KKT
conditions of each one of the current data points in order to
do book keeping. In case the size of the current data set is n
and the number of Support Vectors is (5'1, then, this algorithm
has to perform nlSl kernel operations for addition of the next
point. The authors suggest a practical online variant where
they introduce an 6 margin and concentrate only those points
which are within the 6 margin of the boundary [2]. But, it is
clear that the results may vary by varying the value of 6.

Instead of concentrating on the entire current dataset, which
may be costly, our algorithm focuses its attention only on the
current Support Vector set. It then picks data points greedily
for inclusion in the current Support Vector set. While aug-
menting the current Support Vector set, some already existing
Support Vectors may become well classified because of the

addition of a new Support Vector. We prune away those points
using the Decremental technique described in [2]. It may also
happen that other points in the dataset may become violators
or Support Vectors. The Incremental algorithm handles such
points by doing costly book keeping in the current iteration it-
self and hence does not need to make repeated passes over the
dataset [2]. On the other hand our algorithm does not handle
such points in the current iteration, it makes repeated passes
over the'dataset to identify and satisfy such points.

C. Outline of Our Paper

In this paper we present a fast iterative algorithm which com-
bines the the theoretically motivated foundation of the Incre-
mental algorithm with the speed typical of iterative algorithms
like NPA or the SMO. We borrow the initialization technique
from the DirectSVM algorithm to speed up convergence of
our algorithm. Section I1 talks about our algorithm and pro-
vides proofs. We also talk about the memory requirements
of our algorithm. We present and discuss results obtained on
real life datasets in Section 111. We conclude in Section IV
by pointing out advantages of our algorithm and indicate sit-
uations under which it can perform extremely well. We also
provide pointers to our ongoing and future work.

11. Simple SVM
Our algorithm maintains a candidate Support Vector set. It

initializes the set with the closest pair of points from opposite
classes like the DirectSVM algorithm. As soon as the algo-
rithm finds a violating point in the dataset it greedily adds it
to the candidate set. It may so happen that addition of the vi-
olating point as a Support Vector may be prevented by other
candidate Support Vectors already present in the set. We sim-
ply prune away all such points from the candidate set. To en-
sure that the KKT conditions are satisfied we make repeated
passes through the dataset until no violators can be found. We
use the quadratic penalty formulation to ensure linear separa-
bility of the data points in the kernel space.

A. Finding the Closest Pair of Points

First of all, we observe that, finding the closest pair of points
in kernel space requires n2 kernel computations where n rep-
resents the total number of data points. But, in case we use
a distance preserving kernel like the exponential kernel the
nearest neighbors in the feature space are the same as the near-
est neighbors in the kernel space. Hence we need not perform
any costly kernel evaluations for the initialization step.

B. Adding a Point to the Support Vector Set

Given a set S which contains only Support Vectors, we wish
to add another Support Vector c to S. From Equations 2 and

0-7803-7278-6/02/$10.00 (92002 JEEE

~~

2394

3 we get the change in gi due to addition of a new point c as

Agi = QicAac + C Q i j Aaj + y i A b

0 = ycAac + C y j Aaj

(4)
j € S

and
(5)

j E S

where Aai is the change in the value of ai and Ab is the
change in the value of b. We start off with a, = 0 and update
ac as we go along.

Because all the vectors in S are Support Vectors we know
from Equation 2 that gi = 0 Vi. If none of the current Sup-
port Vectors blocks the addition of c to S then all the vectors
in S continue to remain Support Vectors in S U { c} and hence
we require that Agi = 0 for all vectors in S. It is shown that
[21

and

If we define

R =

then

Ab = pAa,

Aaj = @jAac

0 y1 ... Y S

Y I Qii - - . Qis

(7)

- 1

[:] = - R [Qac $1
We want gc = 0 so that c can become a Support Vector. Some
algebra yields

(8)
C j E S Q c j a j + y c b - 1

QCC + Cjes Q c j P j + Y C P
Aac = -

If we define

~c = Qcc + C Q c j B j + Y C B

j E . 5

From [2] we know that we can expand R as

O-7803-7278-6/02/%10.00 Q2002 IEEE

B s 1 3 (9)

Thus our new a is

and our new b is b + Ab.

c. Pruning

In the discussion above we tacitly assumed that (a + Aa) >
0 V p E S. But, this condition may be violated if any point
in S blocks c. When we say that a point p E S is blocking
the addition of c to S what we mean is that ap of that point
may become negative due to the addition of c to S. What it
physically implies is that p is making a transition from S to the
well classified set R. Because of the presence of such points
we may not be able to update ac by the amount specified by
Equation 8. In such a case we can prune away p from S by
using [2]

e. - R.. - R - ~ & , R . VR. . E R 3 - 83 8s 83 v

We remove the alpha entry corresponding to p from S so that
all the other points in S continue to remain Support Vectors.
We now try to add c to this reduced S. We keep pruning points
from S till c can actually become a Support Vector.

D. OurAlgorithm

Using the ideas we discussed above an iterative algorithm can
be designed which scans through the dataset looking for vi-
olators. Using ideas presented in Section 11-B the violator
is made a Support Vector. Blocking points are identified and
pruned away by using the ideas presented in Section 11-C. The
algorithm stops when all points are classified within an error
bound i.e. y i f (z i) > 1 - c Vi. The outline of our algorithm
is presented in Algorithm 1.

Algorithm 1 Simde SVM
candidateSV = { closest pair from opposite classes }
while there are violating points do

Find a violator
candidateSV = candidateSV U violator
if any ap < 0 due to addition of c to S then

candidateSV = candidateSV \ p
repeat till all such points are pruned

end if
end while

E. Scaling

As is clear from the discussion in Section 11-B and 11-C,
the algorithm needs to store the values of as corresponding to
the candidate Support Vector set (S). This occupies at most
O(lSl) space. Storing the value of b requires O(1) space. It
also needs to store the R matrix corresponding to the candi-
date Support Vector set. Since R is a IS(x IS1 matrix its size
scales up as O(lS12). Thus we can conclude that the mem-
ory requirements of the algorithm scale up as O([S12) in the
average case.

2395

TABLE I
NPA VS SIMPLE SVM ON SPIRALS DATASET. KERNEL

EVALUATIONS ARE x lo6

We used the WPBC dataset from the UCI Machine Learn-
ing repository [l]. This dataset consists of 683 data points,
each having a dimension of 9. We used the Gaussian kernel - I

with 02 = 4.0 14]’ we vary the
results in table 11.

Of “ and reproduce Fig. 1. Comparison of the Kernel Evaluations performed by Simple
SVM and the NPA on the Adult-4 Dataset.

12

11 -
SrnpleSVM - -

NPA x
I? 1 0 -

c
0
2 8 -

B ‘3 7 - x x

Q

; 5 -

< 9 -

6 i x

E
2 4 -

3 -
\ : :

2
0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5

C’ ->

‘Working code and datasets used for the experiments are available at
http://wwwl.csa.iisc.ernet.in/-vishy The Adult-7 dataset from the UCI Machine Learning repos-

0-7803-7278-6/02/$10.00 02002 lEEE 2396

C' I Itr I SV I KernelEval
1.0 I 11284 I 10035 I 3.07

SV I KernelEval
10181 I 11.31 0.6

1.0
2.0

1315 1119 2.83 1118 8.9
1077 1272 2.73 1077 9.6
1257 1032 2.77 1032 10.6

TABLE I11
NPA VS SIMPLE SVM ON ADULT- 1 DATASET. KERNEL

EVALUATIONS ARE X lo6

10 I 10958 I 8833 3.64 I 9343
50 1 10540 I 7654 3.92 I 8393

TABLE IV

EVALUATIONS ARE x lo7
NPA VS SIMPLE SVM ON ADULT-4 DATASET. KERNEL

20.53
5 1.05

itory is a sparse data set of 16,100 points, each having a
dimension of 123 [l]. We used the Gaussian kernel with
u2 = 10.0 [5] . The experiments were conducted on a 800
MHz PI11 machine with 256 MB RAM, running Windows
2000. We vary the value of C' and reproduce our results in
table V.

I I Simple SVM I NPA

3.0
5.0

1252 996 2.90 996 11.5
1217 951 2.23 950 11.9

10
50
100

A. Discussion of the Results

As can be seen the Simple SVM algorithm outperforms the
NPA on each one of the datasets tested. For example on the
Spiral dataset the Simple SVM is an order of magnitude faster
than the NPA. On the Adult4 dataset with C' = 1000 the
Simple SVM algorithm is nearly 50 times faster than the NPA.
On the average the Simple SVM is seen to be around 3 to 5
times faster than the NPA.

The kernel computations performed by NPA, SMO and
other iterative algorithms tend to vary with the value of C'
and the total number of Support Vectors. On the other hand
the kernel evaluations of the Simple SVM seem to be a func-
tion of the dataset only. They are fairly independent of the
value of C' or the total number of Support Vectors. This is
illustrated by the graph in Fig 1.

The difference between the number of iterations and the
number of final Support Vectors indicates the number of times
the algorithm had to backtrack. It can be seen that the Sim-
ple SVM algorithm needs to backtrack only around 20% of
the times and hence the penalty incurred due to a greedy ap-
proach is not very significant. This validates the observation
that a greedy approach taken by SMO like algorithms pro-
duces faster convergence.

The number of Support Vectors found by our algorithm and
the NPA is different in the case of Adult-7 dataset. One possi-
ble explanation for this observation is that the stopping crite-
rion employed by the two algorithms are different. Round off
errors due to differences in the precisions used for the compu-
tations may further aggravate the problem.

IV. Conclusion and Future Work

We have presented a new algorithm that is efficient, intu-
itive and fast. We show that the algorithm significantly outper-

1191 898 2.88 898 14.1
1176 776 2.82 776 26.2
1188 735 3.18 734 33.7

0-7803-7278-6/02/~10.00 02002 IEEE

500
1000

2397

1200 687 3.08 687 56.9
1224 677 3.20 677 66.0

forms other iterative algorithms like the NPA in terms of the
number of kernel computations. Because of the approach used
to build the Support Vector, set our algorithm does not suffer
from numerical instabilities and round off errors that plague
other numerical algorithms for the SVM problem. Our algo-
rithm currently does not use any kind of kernel cache to reuse
kernel computations. We are currently investigating meth-
ods to speed up the algorithm using some efficient caching
scheme.

We also observe that the memory utilization of the algo-
rithm is governed by the R matrix which scales as O(lS12).
Hence, our algorithm does not scale well for those problems
where the R matrix cannot be held in main memory. But, this
is not a serious limitation, for example on a machine with 256
MB of main memory we can store the R matrix corresponding
to as many as 10,000 Support Vectors. We are investigating
methods to store a compact representation of R in order to
reduce this memory overhead.

It can be observed that the addition of a vector to the Sup-
port Vector set is entirely reversible. Using this property Pog-
gio et. al. [2] have calculated the leave one out error. We pro-
pose to use similar techniques to calculate the leave one out
error based on the order in which the data points were added
to Support Vector set.

References
[I] C.L. Blake and C.J. Men. UCI repository of machine learning databases,

1998.
[2] Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental

support vector machine learning. In Advances in Neural Information
Processing Svstem, (NrPS*2000), volume 13. NIPS, Cambridge MA:
MIT Press, 2001.

[3] T. Friess, N. Cristianini, and C. Campbell. The kernel adatron algo-
rittun: a fast and simple learning procedure for support vector machine.
In Proceedings of ISth International Conference on Machine Learning.
Morgan Kaufinan, 1998. ,

[4] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, andK. R. K. Murthy. A
fast iterative nearest point algorithm for support vector machine classifier
design. IEEE Transactions on Neural Networks, 11(1):124-136,2000.

[5] J. C. Platt. Fast training of support vector machines using sequential
minimal optimization. In B. Scholkopf, C. Burges, and A. Smola, editors,
Advances in Kernel Methods: Support Vector Machines. Cambridge MA:
MIT Press, December 1998.

[6] Danny Roobaert. DirectSVM: A fast and simple support vector machine
perceptron. In Proceedings of IEEE International Workshop on Neural
Networks for Signal Processing, Sydney, Australia, December 2000.

[7] Danny Roobaert. DirectSVM: A simple support vector machine percep-
tron. Journal of VLSISignal Processing Systems, 2001. To appear.

[8] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, 2"d edition, 2000.

[9] S. V. N. Vishwanathan and M. Narasimha Murty. Geometric SVM: A
fast and intuitive SVM algorithm. Technical Report IISC-CSA-2001-14,
Dept. of CSA, Indian Institute of Science, Bangalore, India, November
2001. Submitted to ICPR 2002.

0-7803-7278-6/02/$10.00 02002 lEEE 2398

