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abstRact Effective data sharing is key to accelerating research to improve diagnostic  

precision, treatment efficacy, and long-term survival in pediatric cancer and other 

childhood catastrophic diseases. We present St. Jude Cloud (https://www.stjude.cloud), a cloud-based 

data-sharing ecosystem for accessing, analyzing, and visualizing genomic data from >10,000 pediatric 

patients with cancer and long-term survivors, and >800 pediatric sickle cell patients. Harmonized 

genomic data totaling 1.25 petabytes are freely available, including 12,104 whole genomes, 7,697 

whole exomes, and 2,202 transcriptomes. The resource is expanding rapidly, with regular data uploads 

from St. Jude’s prospective clinical genomics programs. Three interconnected apps within the ecosys-

tem—Genomics Platform, Pediatric Cancer Knowledgebase, and Visualization Community—enable 

simultaneously performing advanced data analysis in the cloud and enhancing the Pediatric Cancer 

knowledgebase. We demonstrate the value of the ecosystem through use cases that classify 135 pedi-

atric cancer subtypes by gene expression profiling and map mutational signatures across 35 pediatric 

cancer subtypes.

SIGNIFICANCE: To advance research and treatment of pediatric cancer, we developed St. Jude Cloud, 

a data-sharing ecosystem for accessing >1.2 petabytes of raw genomic data from >10,000 pediatric 

patients and survivors, innovative analysis workflows, integrative multiomics visualizations, and a 

knowledgebase of published data contributed by the global pediatric cancer community.
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intRoduction

Cancer is the number-one cause of death by disease among 
children, with more than 15,000 new diagnoses within the 
United States alone each year (1). The advent of high-throughput  
genomic profiling technology such as massively parallel 
sequencing has enabled mapping of the entire 3 billion bases of 
genetic code for individual human genomes, including those 
of pediatric cancer. Major pediatric cancer genome research 
initiatives such as the St. Jude/Washington University Pediatric 
Cancer Genome Project (PCGP; ref. 2) and NCI’s Therapeutically 
Applicable Research to Generate Effective Treatments (TARGET, 
https://ocg.cancer.gov/programs/target) have profiled thou-
sands of pediatric cancer genomes. The resulting data, made 
accessible through public data repositories such as the database 
of Genotypes and Phenotypes (dbGaP) or European Genome-
phenome Archive (EGA), have been used to generate new insights 
into the mechanisms of cancer initiation and progression (3–7), 
to discover novel targets including those for immunotherapy 
(8–10), and to build comprehensive genomic landscape maps  
for the development of precision therapy (11–16).

Data sharing, a prerequisite for genomic research for 
almost 30 years, is especially important for pediatric cancer, a 

rare disease with many subtypes driven by diverse and distinct 
genetic alterations. Based on the annual cancer diagnoses 
collected from NCI’s Surveillance, Epidemiology and End 
Results (SEER) program for the period from 1990 to 2016 
(https://seer.cancer.gov), more than 50% of the pediatric can-
cer subtypes are rare cancers with an annual incidence of 
<200 cases in the United States. Therefore, samples acquired 
by a single institute, a single research initiative, or, in some 
instances, even a single nation may lack sufficient power 
for genomic discovery and clinical correlative analysis. In 
addition, the discovery of structural variations and noncod-
ing variants, which are important classes of driver variants 
in pediatric cancer (15, 17–19), requires the use of whole-
genome sequencing (WGS) to interrogate noncoding regions, 
which constitute more than 98% of the human genome. 
This imposes another challenge in sharing pediatric cancer 
genome data, as the size of WGS data is approximately 10 
times larger than that of whole-exome sequencing (WES) 
data, which profile only the coding regions.

To share pediatric cancer genome data using the estab-
lished public repository model requires major investments 
in time, professional support, and computing resources from 
users and data providers alike. Under this model (Fig. 1A, left), 
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Figure 1.  Overview of St. Jude Cloud. A, 
Comparison of data sharing via the estab-
lished centralized data repository model 
versus St. Jude Cloud. The established 
model requires replication of data and 
local computing infrastructure, whereas 
cloud-based data sharing enables a user 
to perform custom analysis by upload-
ing tools/analysis code onto the shared 
cloud-computing infrastructure without 
replication. B, Overview of ingress, harmo-
nization, and deposition of high-throughput 
sequencing datasets into the St. Jude Cloud 
ecosystem. Raw genomic data, collected 
from both retrospective research and 
prospective clinical studies, were harmo-
nized and curated for access by the broad 
research community via the three apps 
on the St. Jude Cloud: Genomics Platform, 
PeCan Knowledgebase, and Visualization 
Community.
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genomic data become available for download after submis-
sion to a public repository by a computational professional. 
To use the data, a researcher needs to (i) prepare and submit 
a request for data access and wait for approval; (ii) download 
data from the public repository to a local computing infra-
structure; (iii) reprocess for data harmonization and annota-
tion using the current reference knowledgebase; (iv) perform 
new analysis or integrative analysis by incorporating custom 
data; and often (v) submit the new data or the results back to 
the public repository. With continued expansion of the pub-
lic data repository and user data, integrating public and local 
data is an iterative process requiring continued upscaling of 
local computational resources. Cloud-based technology can 
establish a shared computing infrastructure for data access 
and computing for all users, which can improve the efficiency 
of data analysis by removing the barriers on computational 
infrastructure required for data transfer and hosting so that 
computing resources can be dedicated to innovative data 
analysis and novel methods development (Fig. 1A, right).

To accelerate research on pediatric cancer and other child-
hood catastrophic diseases, we developed St. Jude Cloud 
(https://www.stjude.cloud), a data-sharing ecosystem fea-
turing both open and controlled access to genomic data 
of >10,000 pediatric cancers generated from retrospective 
research projects as well as prospective clinical genomics pro-
grams (Fig. 1B) at St. Jude Children’s Research Hospital (St. 
Jude). St. Jude Cloud was built by St. Jude in partnership with 
DNAnexus and Microsoft to leverage our combined expertise 
in pediatric cancer genomic research (2, 5, 20, 21), secure 
genomic data hosting on the cloud, and Azure cloud com-
puting. St. Jude Cloud is comprised of three interconnected 
applications: (i) A Genomics Platform that enables controlled 
access to harmonized raw genomic data as well as end-to-end 
analysis workflows powered by the innovative algorithms that 
we developed, tested, and validated on data generated from 
pediatric patient samples; (ii) Open access to a knowledgebase 
portal, PeCan (Pediatric Cancer), that enables exploration of 
curated somatic variants of >5,000 pediatric cancer genomes 
from published literature contributed by St. Jude and other 
institutions; and (iii) A Visualization Community that ena-
bles the scientific community to explore published pediatric 
cancer landscape maps and integrative views of genomic data, 
epigenetic data, and clinical information on pediatric cancers 
(Fig. 1B, bottom). We demonstrate the power of the St. Jude 
Cloud ecosystem in unveiling important genomic features of 
pediatric cancer through two use cases: (i) classification of 
135 subtypes of pediatric cancer using 1,565 RNA-sequencing  
(RNA-seq) samples using a workflow that also supports user 
data integration; and (2) characterization of mutational bur-
den and signatures using WGS data generated from 35 
subtypes of pediatric cancer using a workflow that can also 
perform custom data analysis and comparison of mutational 
signatures across different cancer cohorts.

Results

Pediatric Cancer Data Resource on St. Jude Cloud

St. Jude Cloud hosts 12,104 WGS samples, 7,697 WES 
samples, and 2,202 RNA-seq samples generated from pedi-
atric patients with cancer or long-term survivors of pediatric 

cancer, making it the largest publicly available genomic data 
resource for pediatric cancer (Fig.  2A). Current datasets 
were acquired from research initiatives such as the St. Jude/
Washington University PCGP (2), St. Jude Lifetime Cohort 
Study (SJLIFE; ref. 22), and Childhood Cancer Survivor Study 
(CCSS; ref. 23), as well as from prospective clinical programs 
such as the Genomes for Kids (G4K) clinical research study of 
pediatric patients with cancer (https://clinicaltrials.gov/ct2/
show/NCT02530658) and the Real-time Clinical Genomics 
(RTCG) initiative at St. Jude. Both G4K and RTCG use a three-
platform clinical WGS, WES, and transcriptome sequencing 
of every eligible patient at St. Jude (21). Raw sequence data 
from all studies were mapped to the latest (GRCh38) human 
genome assembly using the same analytic process to ensure 
data harmonization (Methods). In total, 1.25 petabytes (PB) of 
genomics data are readily available for access in St. Jude Cloud 
with more than 90% (1.15 PB) of this being WGS.

When considering only WGS, the collective dataset com-
prises 3,551 paired tumor–normal pediatric cancer samples 
and 7,746 germline-only samples of long-term survivors 
enrolled in SJLIFE or CCSS. Major diagnostic categories of 
the cancer and survivorship genomes, which include pediatric 
leukemia, lymphoma, central nervous system (CNS) tumors, 
and >12 types of non-CNS solid tumors (Fig. 2B), are similar 
except for Hodgkin lymphoma and non-Hodgkin lymphoma. 
The lymphoma samples constitute 18% of the cases in the 
survivorship cohort but are underrepresented in the cancer 
genomes as lymphoma was not selected for pediatric genomic 
landscape mapping initiatives (e.g., PCGP).

Deposition of WGS, WES, and RNA-seq data generated 
from RTCG has become an important avenue for expanding 
the cancer genomic data content on St. Jude Cloud. We have 
developed a robust pipeline for the monthly data deposi-
tion which involves verification of patient consent protocols 
(and active monitoring for revocation of previous consent), 
sample deidentification, remapping to the latest genome 
build, and quality checking, all in accordance with legal and 
ethical guidelines. Basic clinical annotation is retrieved by 
querying databases of electronic medical records (EMR), and 
data are harmonized prior to uploading to St. Jude Cloud for 
public release (Supplementary Fig.  S1). From March 2019 
through July 2020, 1,996 WGS, 2,684 WES, and 1,220 RNA-
seq datasets were uploaded to St. Jude Cloud (Fig. 2C, left). 
 Importantly, these prospective samples include 51 pedi-
atric cancer samples comprising 27 rare subtypes (Fig.  2C, 
right) not represented in the retrospective cancer samples on  
St. Jude Cloud. We anticipate continued expansion of 
genomic data at this pace on St. Jude Cloud in the future.

End-to-End Genomic Analysis Workflows

To enable researchers with little to no formal computa-
tional training to perform sophisticated genomic analysis, 
we have deployed end-to-end analysis workflows designed 
with a point-and-click interface for uploading input files 
and graphically visualizing the results for scientific interpre-
tation (https://platform.stjude.cloud/workflows). Advanced 
computational users can access a command line interface 
for batched job submission and runtime parameter optimi-
zation. Currently, eight production grade workflows, tested 
and used by researchers from St. Jude as well as external 
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Figure 2.  Pediatric cancer genomics data on St. Jude Cloud. A, Summary of high-throughput sequencing datasets on St. Jude Cloud. B, Frequency of 
pediatric cancer types in WGS data generated from paired tumor–normal samples (left) or germline-only pediatric cancer survivors (right). C, Genomic 
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institutions, have been deployed on St. Jude Cloud. Compre-
hensive documentation has been developed for these work-
flows and is updated based on user feedback.

Four of these workflows have integrated cancer genomic 
analysis algorithms developed using pediatric cancer datasets 
such as PCGP, and their performance has been iteratively 
improved by the growing knowledgebase of pediatric can-
cer. They include: (i) Rapid RNA-seq, which predicts gene 
fusions using the CICERO algorithm (24) that has discovered 
targetable fusions in high-risk pediatric leukemia (8), high-
grade glioma (HGG; ref. 5), and melanoma (25); (ii) PeCanPIE 
(26), which classifies germline variant pathogenicity using the 
Medal Ceremony algorithm that was developed to assess germ-
line susceptibility of pediatric cancer (5) and genetic risk for 
subsequent neoplasms among survivors of childhood cancer 
(27); (iii) cis-X, which detects noncoding driver variants and 
has discovered noncoding drivers in pediatric T-lineage leuke-
mia (28); and (iv) SequencErr, which measures and suppresses 
next-generation sequencing errors (29).

In additionally, we optimized several workflows commonly 
used by basic research laboratories. These include (i) the 
chromatin immunoprecipitation sequencing (ChIP-seq) peak 
calling pipeline, which detects narrow peaks using MACS2 
(30) or broad peaks using SICER (31); (ii) the WARDEN pipe-
line, which performs RNA-seq differential expression using 
the R packages VOOM for normalization and LIMMA for 
analysis (32); (iii) the mutational signature pipeline, which 
finds Catalogue of Somatic Mutations in Cancer (COSMIC) 
mutational signatures for a user-provided somatic single-
nucleotide variant (SNV) variant call format (VCF) file(s) 
and compares the summary with a user-selected subtype in 
pediatric cancer (33); and (iv) the RNA-seq expression clas-
sification pipeline which projects user-supplied RNA-seq data 
onto a t-distributed stochastic neighbor embedding (t-SNE) 
plot (34) generated by >1,500 RNA-seq samples.

PeCan Knowledgebase

To integrate pediatric cancer genomic data generated by 
the global research community, we developed PeCan, which 
assembles somatic variants present at diagnosis or relapse, 
germline pathogenic variants, and gene expression from the 
published literature. All data, which are reannotated and 
curated to ensure quality and consistency, can be explored 
dynamically using our visualization tool ProteinPaint (35). 
Currently, PeCan presents data published by PCGP, TARGET, 
The German Cancer Research Center, Shanghai Children’s 
Medical Center, and The University of Texas Southwestern 
Medical Center (Supplementary Table S1). Variant distribu-
tion and expression pattern for a gene of interest can be 
queried and visualized for 5,161 cancer samples. Curated 
pathogenic or likely pathogenic variants can also be queried 
directly and visualized on PeCanPIE’s variant page (26), which 
presents variant allele frequencies from public databases, 
results from in silico prediction and pathogenicity prediction 
algorithms, related literature, and pathogenicity classification 
determined by the St. Jude Clinical Genomics tumor board.

Data Visualization

Data visualization is critical for integrating multidimen-
sional cancer genomics data so that researchers can gain 

insight into the molecular mechanisms that initiate and 
cause the progression of cancer. We developed generalized 
tools such as ProteinPaint (35) and GenomePaint (https://
genomepaint.stjude.cloud) that enable dynamic visualization 
and custom data upload of genomic variants, gene expression, 
and sample information using either protein or genome as the 
primary data axis; the user-curated genomic landscape maps for 
cancer subtypes or pan-cancer studies can also be exported into 
image files to create figures suitable for multiple scientific pub-
lications. In addition, we developed specialized visualizations 
to present (i) genome view of chromatin state and gene expres-
sion using ChIP-seq and RNA-seq data generated from mouse/
human retina (36) or patient-derived xenografts of pediatric 
solid tumors (37); (ii) subgroup clustering using methylation 
data in medulloblastoma (14) or gene expression data in B-cell 
acute lymphoblastic leukemia (B-ALL; ref. 38); and (iii) geno-
type/phenotype correlation for pediatric sickle cell patients and 
long-term survivors and pediatric cancer (27, 39). These expert-
curated genomic and epigenomic landscape maps are not only 
valuable for presenting discoveries in published literature, they 
can also serve as an important resource for dynamic data explo-
ration by the broad research community.

St. Jude Cloud Ecosystem

Raw and curated genomic data, analysis, and visualization 
tools are structured into the following three independent and 
interconnected applications on St. Jude Cloud to provide a 
secure, web-based ecosystem for integrative analysis of pedi-
atric cancer genome data: (i) Genomics Platform for access-
ing data and analysis workflows, (ii) PeCan for exploring a 
curated knowledgebase of pediatric cancer, and (iii) Visuali-
zation Community for exploring published pediatric cancer 
genomic or epigenomic landscape maps and for visualizing 
user data using ProteinPaint or GenomePaint.

A user may work with the St. Jude Cloud ecosystem via open, 
registered, or controlled access. Although PeCan and Visualiza-
tion Community are accessible in an open and anonymous 
manner, users must set up a St. Jude Cloud account (i.e., regis-
ter) to run the analysis workflows or access RNA-seq expression 
data on the Genomics Platform. In accordance with the com-
munity practice for human genomic data protection, access 
to raw genomic data (e.g., WGS, WES, or RNA-seq) generated 
from patient samples follows a controlled access model, i.e., 
requiring the submission of a signed data access agreement 
that will be subsequently reviewed by a data access committee 
for approval. Since its debut in 2018, there are a total of 1,951 
registered users of St. Jude Cloud Genomics Platform. As of 
July 9, 2020, 210 requests for access to raw genomic data have 
been granted to researchers at 78 institutes across 18 countries 
(Supplementary Fig.  S2), and the median turnaround time 
for data access approval is 7 days. Overall, 18.8% (n = 49) of 
requests for data were rejected. Of these rejections, 67.4% (n =  
33) were due to requests for data that did not fit the users’ 
stated research goals, e.g., a request for germline-only or sickle 
cell datasets from a tumor study. The remaining 32.7% (n = 16) 
were from for-profit entities for which we are still investigat-
ing an appropriate approach for data sharing. There were no 
instances where a dataset was rejected for a scientific reason. 
Today, there are approximately 2,500 unique users per week on 
average accessing the St. Jude Cloud ecosystem.
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Although Genomics Platform, PeCan, and Visualization 
Community are each a valuable resource for pediatric can-
cer research in their own right, working across all three 
within the St. Jude Cloud ecosystem provides a unique user 
experience that can simultaneously enhance data analysis 
and enrich the knowledgebase for pediatric cancer. As illus-
trated in Fig.  3, access to raw genomic data is equivalent 
to building a virtual research cohort on the St. Jude Cloud 
ecosystem, which can be accomplished by querying sample 
features using the data browser of Genomics Platform—

a classic approach—or by selecting samples with specific 
molecular features (e.g., mutations or gene expression level) 
using PeCan. Upon approval, requested data are made avail-
able immediately within a private cloud-based project folder. 
User data can also be uploaded quickly and securely to the 
project folder through our data transfer tools, and pro-
jects can be shared with collaborators using the underlying 
DNAnexus Platform. The user may then analyze the data 
using the workflows on the Genomic Platforms, tools pro-
vided by the DNAnexus Platform, or their own containerized 

Figure 3.  Working across the St. Jude Cloud ecosystem. A virtual cohort can be assembled by querying the data browser on the Genomics Platform 
(top left) or exploring the PeCan Knowledgebase portal (top right). Following approval by the data access committee, the requested data are “vended” 
onto a private cloud workspace in Genomics Platform (middle center) for analysis using the workflows on St. Jude Cloud (“Genomics Platform Analysis 
Tools”), tools available within the DNAnexus Tool Ecosystem, or custom workflows. Alternatively, a user may download the vended genomic data to their 
local computing infrastructure for further in-depth analysis. Following each of these analyses, a user may share custom visualizations (e.g., landscape 
maps or cancer subgroup analyses) with the research community via the Visualization Community (bottom right), and published results can be incorpo-
rated to the PeCan Knowledgebase.
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workflows. Alternatively, data can be downloaded to a user’s 
local computing environment for analysis. Results produced 
by both local infrastructure and the Genomics Platform can 
be explored alongside data presented in the curated PeCan 
knowledgebase using visualization tools such as ProteinPaint 
or GenomePaint within the Visualization Community. The 
resulting data, post publication, can be integrated to PeCan 
to enrich the PeCan knowledgebase, whereas the landscape 
maps as well as graphs of sample subgroups prepared by 
researchers using ProteinPaint or other visualization tools 
can be shared on the Visualization Community for dynamic 
exploration. We present two use cases below to demonstrate 
this process.

Use Case 1: Classify Pediatric Cancers by RNA-seq 
Expression Profiling

Defining cancer subtypes by gene expression has provided 
important insight into the classification of pediatric (40–42) 
and adult cancers (43). To accomplish this on St. Jude Cloud, 

we analyzed gene expression profiles of pediatric brain (n = 
447), solid (n = 302), and blood (n = 816) tumors using RNA-
seq data from fresh-frozen samples which were generated 
by either retrospective research projects [e.g., PCGP and a  
St. Jude pilot clinical study (Clinical Pilot)] or prospective 
clinical genomics programs (e.g., G4K and RTCG). Gene 
expression values (Methods) were imported from the Genom-
ics Platform and separated into the three categories of brain, 
solid, and blood tumors for subtype classification using 
t-SNE analysis (Fig.  4). A t-SNE analysis of the full dataset 
was also performed.

On t-SNE plots generated for blood, brain, and solid 
tumors, major cancer types form distinct clusters as 
expected (Fig.  4A–C). In brain tumor, subtypes known to 
have different developmental origin (44) such as WNT, 
SHH, and group 3/4 subtypes of medulloblastoma show 
clear separation (Fig.  4C). Interestingly, adamantino-
matous craniopharyngioma (ACPG), a rare brain cancer 
derived from pituitary gland embryonic tissue, forms two 

Figure 4.  Classification of pediatric cancers by RNA-seq expression profiling. RNA-seq t-SNE plot of 816 blood cancers (A), 302 solid tumors (B), and 
447 brain tumors (C). The circle in B represents four metastatic osteosarcoma samples. Analysis of a user-supplied AML RNA-seq BAM file on the St. Jude 
Cloud by importing data to Genomics Platform (D), performing fusion detection using Rapid RNA-seq workflow which identified a ZBTB7A–NUTM1 fusion 
(E), and performing “RNA-Seq Expression Classification” analysis (F) which has shown that it groups with other AML samples and is distinct from other 
blood cancers (B-ALL) that also harbor NUTM1 fusions (labeled). In F, the reference t-SNE map was constructed using all RNA-seq data and the boundaries 
of brain, solid, B-ALL, T-ALL, and AML are marked by dotted lines. B-ALL subtypes include ETV6-RUNX1 (ETV6), KMT2A-rearranged (KMT2A), DUX4-
rearranged (DUX4), ZNF384-rearranged (ZNF384), MEF2D-rearranged (MEF2D), BCR–ABL1 (Ph), BCR–ABL1-like (Ph-like), hyperdiploid, hypodiploid, intra-
chromosomal amplification of chromosome 21 (iAMP21), NUTM1-rearranged (NUTM1), PAX5 p.Pro80Arg mutation (PAX5 P80R), and PAX5 alterations 
(PAX5alt); acute leukemia of ambiguous lineage (ALAL); T-cell acute lymphoblastic leukemia (T-ALL); acute myeloid leukemia (AML); acute megakaryoblas-
tic leukemia (AMKL), acute promyelocytic leukemia (APML); anaplastic large cell lymphoma (ALCL); hepatocellular carcinoma and hepatoblastoma (Liver); 
thyroid papillary tumor (thyroid); embryonal/alveolar/botryoid rhabdomyosarcoma (RMS); desmoplastic small round cell tumor (DSRCT); medulloblastoma 
[SHH, WNT, and group 3/4 (G3/4) subtypes]; choroid plexus carcinoma (CPC); atypical teratoid/rhabdoid tumor (ATRT); and high-grade neuroepithelial 
tumor (HGNET). For a complete list of subtypes included in this analysis, please see Supplementary Table S3.
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distinct groups (denoted ACPG groups 1 and 2 on Fig. 4C) 
which cannot entirely be attributed to differences in tumor 
purity based on our examination of mutant allele fraction 
of CTNNB1, differential expression signature, and tumor 
section slides (Supplementary Table S2A–S2C; Supplemen-
tary Fig. S3A–S3E). Solid tumors show tight clusters reflect-
ing the disease tissue type (Fig.  4B). Interestingly, a small 
number of metastatic osteosarcomas are separated from 
primary tumors (Fig.  4B, indicated by a circle); contami-
nation of the tumor biopsy with lung tissue at the site of 
metastasis likely contributed to this expression difference 
(Supplementary Fig. S4; Supplementary Table S2D). Nota-
bly, Wilms tumors also cluster into two distinct groups, 
one of which is comprised entirely of samples from bilateral 
cases (Fig.  4B). This may reflect that divergence in gene 
transcription is caused by different genetic causes of Wilms 
bilateral versus unilateral cases, likely owing to germline 
mutations present in the bilateral cases (45). Blood cancers 
can be differentiated by their lineage with substructures 
recapitulating the subgroups defined by cytogenetic fea-
tures or gene fusions/somatic mutations reported previ-
ously (ref. 38; Fig.  4A). Notably, examination of KMT2A  
(also known as MLL) rearranged leukemias (a subset of 
which is known to be mixed phenotype acute leukemia) 
reveals they cluster by their cellular lineage (i.e., B cell, T 
cell, or myeloid; Supplementary Fig. S5A and S5B), indicat-
ing their primary lineage has a greater influence than the 
KMT2A fusion on global gene expression profile.

These t-SNE plots can be explored interactively on the 
Visualization Community of St. Jude Cloud with options 
for highlighting one or multiple cancer subtypes or samples 
of interest defined by a user. Mouseover for an individual 
sample shows additional information such as age of onset, 
clinical diagnosis, and molecular driver of the cancer subtype 
(Supplementary Fig.  S5B). They can also serve as reference 
maps for classifying user-provided patient samples—an appli-
cation supported by our “RNA-Seq Expression Classifica-
tion pipeline” on the Genomics Platform (Supplementary 
Fig.  S5A). To demonstrate this utility, we used RNA-seq 
data of PAWNXH, an unclassified acute myeloid leukemia 
(AML) sample from Children’s Oncology Group. By upload-
ing the aligned RNA-seq BAM file of PAWNXH to St. Jude 
Cloud (Fig.  4D), a user can run “Rapid RNA-Seq” to per-
form fusion detection, which identifies a novel gene fusion, 
ZBTB7A–NUTM1 (Fig. 4E). Notably, NUTM1 fusion oncopro-
tein is on the FDA’s Relevant Pediatric Molecular Target List 
(https://www.fda.gov/about-fda/oncology-center-excellence/
pediatric-oncology) and has also been reported previously in 

pediatric ALL (38). Analysis by “RNA-Seq Expression Clas-
sification” shows that this sample clusters with AML instead 
of the two ALLs that harbor NUTM1 fusions (Fig. 4F; Supple-
mentary Fig. S5B) in our cohort. This pattern is reminiscent 
of the KMT2A fusion–positive AMLs and ALLs which cluster 
primarily by their cellular lineage.

Use Case 2: Mutation Rates and Signatures across 
Pediatric Blood, Solid, and Brain Cancers

Investigation of mutational burden and signatures can 
unveil the mutational processes shaping the genomic land-
scape of pediatric cancer (15, 16, 33) at diagnosis or relapse. 
To examine mutational burden, we analyzed validated or 
curated coding and noncoding somatic variants from 
paired tumor and normal WGS data available for 958 sam-
ples of pediatric patients with cancer comprising more than 
35 major subtypes of blood, solid, or brain cancers profiled 
by PCGP, Clinical Pilot, or G4K studies (Fig.  5A, left), 10 
of which were not analyzed by previous pan-cancer studies 
(refs. 15, 16; Methods). Among blood cancers, the median 
genome-wide somatic mutation rates were 0.21, 0.28, and 
0.33 per million bases (Mb) in AML (including AMKL), 
B-ALL, and T-cell acute lymphoblastic leukemia (T-ALL), 
respectively. The mutation rate of solid tumors was highly 
variable by subtype: retinoblastoma had the lowest muta-
tion rate with 0.06 per Mb, whereas osteosarcoma and 
melanoma had the highest rates with 1.0 and 6.86 per Mb, 
respectively. Among the brain tumors, craniopharyngioma 
exhibited the lowest mutation rate with 0.02 per Mb in con-
trast to HGGs with 0.45 per Mb. Two hypermutators with 
extremely high mutation burdens were observed among the 
HGGs owing to mutations in MSH2 or POLE.

We detected 22 of the 60 published COSMIC mutational 
signatures (33) in addition to 2 recently identified therapy-
induced signatures (20) in relapsed B-ALL samples (Fig. 5A, 
right). As expected, age-related signatures (i.e., COSMIC sig-
natures 1 and 5) were present in nearly all pediatric cancers. 
APOBEC signatures (i.e., COSMIC signatures 2 and 13) were 
identified in ETV6–RUNX1 B-ALL, osteosarcoma, adrenocor-
tical carcinoma, and thyroid cancer, as previously reported (7, 
46–48). Both APOBEC signatures are present in an acute meg-
akaryoblastic leukemia (Supplementary Fig. S6A), which was 
not reported in previous studies of AML (49, 50). As expected, 
UV light–induced signature 7 was detected in melanoma and 
a subset of B-ALLs (Supplementary Fig.  S6B) and, interest-
ingly, in a single case of anaplastic large cell lymphoma (a rare 
subtype of non-Hodgkin lymphoma). This sample was also 
positive for signature 15, which is associated with defective 

Figure 5.  Analysis of mutational signature on St. Jude Cloud. A, Somatic mutation rate (left) and COSMIC mutational signatures (right) in pediatric 
cancer subtypes analyzed by WGS. The number of samples examined is indicated in parentheses. Mutation rate is shown at a log-scale, with the median 
indicated by a red line and samples within two SD, between two and three SD, and greater than three SD within the subtype marked by black, orange, and 
red dots, respectively. Note the outlier osteosarcoma samples with low mutation burden (marked orange and red) have <20% and <10% tumor purity, 
respectively. The orange and red outlier HGG samples are hypermutators with biallelic loss of either MSH2 or POLE, respectively. Heat map of COSMIC 
mutational signatures with therapy-related signatures indicated with an asterisk. The scale represents the proportion of somatic mutations contributing 
to each signature in each sample averaged by subtype. B, Analysis of mutational signature of adult AML samples on St. Jude Cloud. The results are com-
pared with those of the pediatric AMLs in the summary tab, while the mutational signatures of each adult AML sample are shown below. Cancer subtype 
abbreviations follow the same style as Fig. 4. For a complete list of subtypes included in this analysis, please see Supplementary Table S3.
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DNA mismatch repair. Further, the reactive oxygen species 
(ROS)–associated signature 18 was found in multiple cancer 
types including neuroblastoma, rhabdomyosarcoma, T-ALL, 
Ewing sarcoma, and several subtypes of B-ALL.

Therapy-related signatures were detected in several 
samples collected after treatment. The first was signa-
ture 22, found in a single hepatoblastoma tumor of an 
Asian patient that had a mutation rate >10 times higher 
than the other hepatoblastoma tumors (Supplementary 
Fig.  S7A). Interestingly, signature 22 is associated with 
exposure to aristolochic acid, found in a Chinese medicinal 
herb (Aristolochia fangchi) that is known to be carcinogenic 
(51). Notably, the relapsed tumor from this patient had 
increased mutational burden accompanied by acquisition 
of COSMIC signature 35, which is known to be associ-
ated with exposure to cisplatin (Supplementary Fig. S7B), 
a chemotherapy drug used as part of the standard of 
care for hepatoblastoma (52). Signatures 35 and 31, also 
associated with exposure to platinum complexes (53) cis-
platin and carboplatin, were found in osteosarcoma and 
ependymomas as previously reported (54), as well as in 
retinoblastoma, all of which use cisplatin or carboplatin 
for treatment. Signature 35 was also detected in one Ewing 
sarcoma from a patient who had a prior malignancy of 
ganglioneuroblastoma which was treated with carboplatin. 
It is notable that two signatures (currently designated as 
COSMIC signatures 86 and 87) proposed to be induced by 
ALL treatment were also detected exclusively in relapsed 
B-ALL samples (Supplementary Fig. S8A and S8B).

The mutational signatures assembled from our cohort 
can also be compared with mutational signatures in a cohort 
analyzed by the user, a function supported by the St. Jude 
Cloud Mutational Signatures tool (Supplementary Fig. S9). 
For example, we downloaded nine adult AML somatic muta-
tion datasets profiled by WGS from the International Can-
cer Genome Consortium, performed mutational signature 
analysis on Genomics Platform, and selected pediatric AML 
for comparison. The results (Fig. 5B) showed that the ubiq-
uitous and age-related signatures 1 and 5, as well as signa-
ture 18 (ROS-associated) were present in both cohorts (33).  
The adult AML also had signature 31 (cisplatin/carboplatin- 
induced), contributed by a single sample that also has the 
highest mutation burden. More than 80% of mutations in 
this outlier sample are contributed by signature 31, indicat-
ing it is likely a therapy-related AML. The two additional 
signatures present in the pediatric cohort, signatures 36 
and 40, are similar to the ROS and age-related signature, 
respectively.

discussion

Pediatric cancer is a disease comprised of many rare sub-
types. Effective sharing of genomic data and a community 
effort to elucidate etiology are therefore critical to developing 
effective therapeutic strategies. St. Jude Cloud is designed to 
provide a data analysis ecosystem that supports multidiscipli-
nary research on pediatric cancer by empowering laboratory 
scientists, clinical researchers, clinicians, and bioinformatics 
scientists. The PeCan portal enables navigation of a PeCan 
knowledgebase assembled from published literature, whereas 

the Visualization Community enables dynamic exploration 
of harmonized and curated data in the forms of landscape 
maps, cancer subgroups, and integrated views of the genome, 
transcriptome, and epigenome from the same cancer sample. 
Both apps are designed to be accessible openly by researchers 
without any formal computational training. Common use 
cases, such as assessing recurrence of a rare genomic variant 
or expression status of a gene of interest, are directly ena-
bled by these two St. Jude Cloud apps, obviating the need to 
download data and perform a custom analysis. If a subset of 
samples identified through the initial data exploration war-
rants in-depth investigation, a comprehensive reanalysis can 
be performed either on the Genomics Platform app or on a 
user’s local computing infrastructure. The complementarity 
among the three apps within the St. Jude Cloud ecosystem 
enables the optimal use of computational resources so that 
researchers can focus on innovative analyses leading to new 
insights.

User feedback has been critical to informing the trajectory 
of St. Jude Cloud development. To improve data querying, 
we developed a data browser within the Genomics Platform, 
which allows a user to select datasets by study, disease sub-
type, disease stage (e.g., diagnosis, relapse, or metastasis), 
sequencing type, and data type. Most recently, RNA-seq fea-
ture count data have been made available on the Genomics 
Platform, as these are commonly used for many downstream 
analyses. We envision an evolving expansion of our current 
data offerings to include epigenetic and three-dimensional 
genome data, new facets of our PeCan knowledgebase, non-
genomics data, and a variety of additional visualization 
tools. A new app has been designed for better integration of 
orthotopic patient-derived xenograft models that are avail-
able on the Childhood Solid Tumor Network (ref. 37; raw 
genomic data accessible on the Genomics Platform) and 
Pediatric Brain Tumor Portal (55). Moving forward, the 
rich data resources on St. Jude Cloud may attract external 
methods developers to use pediatric cancer data—genomic 
or other data types—as the primary source for development, 
further expanding the analytic capability of St. Jude Cloud 
ecosystem and broadening the user base to researchers spe-
cializing in other diseases.

A key consideration of our data-sharing strategy is to 
provide access to the pediatric cancer research community as 
soon as possible, rather than holding data back for publica-
tion (which may take months or years). This is accomplished 
through the development of the RTCG deposition pipeline, a 
complex workflow involving verification of patient consent, 
deidentification, data harmonization, and quality checking. 
To our knowledge, this is the first instance of an institutional 
deposition of prospective clinical genomics data—WGS, WES, 
and RNA-seq—to the scientific research community. The 
RTCG workflow may serve as a model for other institutions 
envisioning similar initiatives on sharing data generated from 
clinical genomics programs with the external community. 
Currently, the two prospective sequencing projects, RTCG 
and G4K, have contributed >50% of the raw cancer WGS data 
on St. Jude Cloud. As of July 9, 2020, these datasets have been 
made accessible to 78 investigators from 53 institutions who 
applied for data access prior to publications of RTCG and 
G4K. RTCG data have expanded substantially from March 
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to July 2020, at the height of the COVID-19 pandemic in the 
United States (Fig.  2C, left). We anticipate adding approxi-
mately 500 additional cases profiled by prospective clinical 
genomics per year at regular intervals. Data generated from 
RTCG and G4K are particularly enriched for rare pediatric 
cancer subtypes (Fig. 2C, right) enabling future research on 
new therapies that may be incorporated into patient care. 
New research has already benefited from comparing user data 
with data hosted on St. Jude Cloud. For example, Keenan and 
colleagues (56) gained new insight into a rare C11orf95 fusion 
in ependymoma by uploading and analyzing their RNA-seq 
samples using the RNA Classification workflow on St. Jude 
Cloud.

Although St. Jude Cloud currently hosts genomic data 
generated by St. Jude studies, we envision it will serve as 
a collaborative research platform for the broader pediatric 
cancer community in the future. User-uploaded data can 
be analyzed and explored alongside the wealth of curated 
and raw pediatric genomic data on St. Jude Cloud, and 
deposition of user data into St. Jude Cloud requires minimal 
effort. In this regard, St. Jude Cloud represents a commu-
nity resource, framework, and significant contribution to  
the pediatric genomic sequencing data-sharing landscape. 
We also recognize that contemporary data-sharing models  
are shifting from centralized to distributed resources that serve 
specific communities. Such distributed repositories are cur-
rently not well connected, and considerable effort is required 
to move data or tools from one platform to another. The 
ultimate solution is likely to consist of a federated system for 
data aggregation, which has also been identified as a prior-
ity by participants in the first symposium of The Childhood 
Cancer Data Initiative (https://www.cancer.gov/news-events/
cancer-currents-blog/2019/lowy-ccdi-symposium-childhood-
cancer). This is particularly important for rare subtypes of 
pediatric cancer as illustrated in our use cases that analyzed 
subgroup classification in craniopharyngioma and muta-
tional signatures in hepatoblastoma. An important aspect of 
future work will be the development of a coordinated effort 
for data federation across other pediatric genomic resources 
to enable proper study of these rare tumors.

Within the federated data-sharing paradigm, we envision a 
phased implementation approach. The first phase will likely 
be geared toward deploying analysis tools within the various 
genomic cloud platforms by “bringing the tools to the data.” 
The reasons for this initial approach are 2-fold: (i) data are 
typically much costlier to move around or duplicate than 
tools, a pressing problem within the genomic data-sharing 
paradigm at present; and (ii) legal and ethical constraints 
may hinder the movement of data but, generally speaking, 
rarely apply to analysis tools. We anticipate that the initial 
focus will involve deploying genomic analysis workflows in 
one of the various workflow languages like the Common 
Workflow Language and Workflow Description Language. 
In parallel, much work is needed by the providers of various 
cloud-based genomics platforms to robustly support the full 
specifications of these workflow languages and to optimize 
the process of compiling and execution of these workflows on 
their platform. The second phase of development will involve 
the development and support of common application pro-
gramming interfaces (API) to exchange information within 

the federated data ecosystem. The implementation of these 
APIs will lay the foundation upon which applications can be 
built to enable sophisticated exploration of cancer data, but this 
development will not come without challenges. Specifically, per-
mitted data use is not homogeneous across all datasets (e.g., the 
TARGET data access guidelines do not permit use of their data 
for methods development, whereas St. Jude Cloud does permit 
this), and verifying accessibility across multiple platforms for a 
specific application can be technically challenging to implement. 
These topics should be addressed by working groups pursuing a 
federated data ecosystem sooner rather than later.

In summary, St. Jude Cloud offers the largest cloud-based 
genomic data resource for pediatric cancer. With continued 
expansion of data content, development of new applications, 
and exploration of federated data sharing on this data-sharing  
ecosystem, we anticipate that it will serve as a key community 
infrastructure to accelerate research that will improve the 
precision of diagnoses, efficacy of treatments, and long-term 
survival of pediatric cancer and other childhood catastrophic 
diseases.

Methods

St. Jude Cloud Genomics Platform

St. Jude Cloud Genomics Platform is a web application for que-

rying, selecting, and accessing raw and curated genomic datasets 

through a custom-built data browser. Genomic data storage is pro-

vided by Microsoft Azure which is accredited to comply with major 

global security and privacy standards, such as ISO 27001, and has 

the security and provenance standards required for Health Insurance 

Portability and Accountability Act (HIPAA)–compliant operation. By 

leveraging Microsoft Azure, DNAnexus provides an open, flexible, 

and secure cloud platform for St. Jude Cloud to support operational 

requirements such as the storage and vending of pediatric genomics 

data to users, along with an environment supportive of genomics 

analysis tools. DNAnexus supports a security framework compliant 

with all of the major data privacy standards [HIPAA, Clinical Labo-

ratory Improvement Amendments (CLIA), Good Clinical Practices 

(GCP), 21 Code of Federal Regulations (CFR) Parts 22, 58, 493, and 

European data privacy laws and regulations] and interfaces with the 

St. Jude Cloud Genomics Platform. Application for data access can 

be made using our streamlined electronic process via Docusign (for 

requests made within the United States) or a manual process that 

requires downloading, filling out, signing, and uploading the data 

access agreement. Upon approval of a data access request by the rel-

evant data access committee(s), St. Jude Cloud Genomics Platform 

coordinates the provision of a free copy of the requested data to the 

user via the DNAnexus API into a secure, private workspace within the 

DNAnexus platform which can also be used for custom data upload.

As of July 9, 2020, the Tools section of St. Jude Cloud Genomics 

Platform provides access to eight end-to-end St. Jude Cloud work-

flows optimized for the DNAnexus environment. When a user wishes 

to run a St. Jude Cloud workflow, the St. Jude Cloud Genomics Plat-

form creates a new project folder and vends a copy of the tool to this 

folder where a user may import St. Jude Cloud genomics data or even 

upload their own datasets. DNAnexus provides both a command 

line option for batch execution of operations and a graphical user 

interface for job submission and execution.

Genomic Sequencing Data

We have received written informed consent from all patients that 

permits hosting of their genomic data and limited clinical infor-

mation for research purposes. Raw genomic data can be requested 
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and accessed on St. Jude as mapped next-generation sequencing 

reads in the BAM (57) file format. The data were generated from 

paired tumor–normal samples of pediatric patients with cancer, 

germline-only samples of long-term survivors of pediatric cancer, and 

germline-only samples of pediatric sickle cell patients as summarized 

in Fig. 2A. Paired tumor–normal datasets include retrospective data 

of 1,610 patients from the St. Jude/Washington University PCGP 

(2), 78 patients from Clinical Pilot (21), prospective data of 309 

patients from the G4K study (https://clinicaltrials.gov/ct2/show/

NCT02530658), and 1,038 patients from our RTCG initiative. The 

germline-only dataset of pediatric cancer survivors includes 4,833 

participants of SJLIFE (22), a study that brings long-term survivors 

back to St. Jude Children’s Research Hospital for extensive clinical 

assessments, and 2,912 participants of the CCSS (23), a 31-institution  

cohort study of long-term survivors. Primary diagnosis of cancer sub-

types for both the pediatric cancer and survivorship cohorts is pro-

vided both as (i) the value provided at data submission time from the 

lab or principal investigator (generally unaltered but updated as we 

receive new information) and as (ii) the harmonized diagnosis value 

matching the closest classification present in OncoTree (oncotree.

mskcc.org). Germline-only data of pediatric sickle cell patients repre-

sent 807 patients from the Sickle Cell Genome Project, an initiative 

that is part of the Sickle Cell Clinical Research and Intervention 

Program (58).

Each of these studies represents an individual data access unit 

within St. Jude Cloud and was approved for data sharing by the 

St. Jude Children’s Research Hospital Institutional Review Board 

(IRB). Further, data are shared only where patient families have 

consented to research data sharing. For each cohort (i.e., pediatric 

cancer, survivor, or sickle cell), a data access committee has been 

formed to assess and subsequently approve or reject data access 

requests.

The samples presented in this article were based on data released 

on St. Jude Cloud as of July 9, 2020. Metadata for these samples were 

updated through November 9, 2020.

Genomic Data Harmonization and Quality Control Check

WGS and WES data were mapped to GRCh38 (GRCh38_no_alt) 

using BWA-MEM (59) followed by variant calling using GATK 4.0 

HaplotypeCaller (60), both reimplemented by Microsoft Genomics 

Service (https://azure.microsoft.com/mediahandler/files/resource-

files/accelerate-precision-medicine-with-microsoft-genomics/

Accelerate_precision_medicine_with_Microsoft_Genomics.pdf) on 

Microsoft Azure, to generate BAM and genomic VCF files for each 

sample. Each type of genomic sequencing data (WGS and WES) is 

evaluated separately after sequencing and mapping. A quality check 

process involves confirmation of sequence file integrity using Sam-

tools (57) quickcheck and Picard ValidateSamFile and evaluation 

of the quality, coverage distribution, and mapping statistics using 

Samtools flagstat, FASTQC (https://www.bioinformatics.babraham.

ac.uk/projects/fastqc), and Qualimap 2 (61) bamqc. The details 

of the process are described in the respective request for comment 

(RFC; https://github.com/stjudecloud/rfcs/blob/rfcs/qc-workflow/

text/0002-quality-check-workflow.md).

RNA-seq data were mapped to GRCh38_no_alt using a customized  

workflow (https://stjudecloud.github.io/rfcs/0001-rnaseq-workflow-

v2.0.0.html). Briefly, RNA-seq reads were aligned using the STAR 

aligner in two-pass mode (62) to the human hg38 genome build using 

gene annotations provided by Gencode v31 gene models (https://

www.gencodegenes.org/human/release_31.html). Subsequently, Pic-

ard (http://broadinstitute.github.io/picard) SortSam was used to 

coordinate sort the BAM file, and Picard ValidateSamFile confirmed 

that the aligned BAM was consistent with the format specification. 

Finally, gene-level counts were generated using HTSeq-count (63) 

using Gencode v31 gene models. For quality control (QC) check, we 

used Qualimap 2 RNA-seq and an in-house “NGSderive stranded-

ness” script (https://github.com/stjudecloud/ngsderive) that infers 

strandedness using GENCODE v31 gene annotations.

RTCG Protocol

Our IRB-approved RTCG protocol (St. Jude IRB #19–0099) com-

prises a series of semiautomated steps that enable the transfer of 

prospective clinical genomics and selected patient clinical data to 

St. Jude Cloud. Transfer of this data to St. Jude Cloud is permitted 

only when patient consent is obtained for clinical genomic testing, 

research use, and St. Jude Cloud data sharing. This process, depicted 

in Supplementary Fig.  S1, begins with patient registration and the 

assignment of Protected Health Information (PHI)/Medical Record 

Number (MRN) and entry to our EMR database (EMR DB) after 

which an initial clinical diagnosis is made by the attending physician. 

Every St. Jude patient has the option of undergoing clinical genomics 

sequencing as part of our St. Jude clinical genomics service. If patient 

consent is obtained, the attending physician places an order with the 

Clinical Genomics team to perform the three-platform sequencing 

of WGS, WES, and transcriptome sequencing in our CLIA-certified,  

College of American Pathologists (CAP)-accredited laboratory (21). 

The resulting sequence data are transferred to an isolated clinical 

computing environment for automated analysis, manual curation, 

and case presentation to our molecular tumor board (MTB), ulti-

mately producing a final case report. Updates to the diagnosis of the 

patient throughout this process are routine, and we regularly update 

records based on the most up-to-date information.

Following the initial MTB sign out of a case report, an embargo 

period of 30 days is maintained to enable updates or corrections of 

files prior to the transfer of deidentified genomic data to the research 

computing environment. Further, clinical information is retrieved 

from the EMR DB and collated within the research computing 

environment. After an additional embargo period of 90 days, patient 

genomic data are transferred to St. Jude Cloud upon verification of 

consent for cloud data sharing. Once within St. Jude Cloud, data har-

monization and QC checks are performed as described above prior to 

public release. Samples are tagged with a rolling publication embargo 

date which must pass before the data can be used in any external 

publication. Importantly, patient consent is periodically rechecked 

as updates may require the removal of patient data from the research 

computing and St. Jude Cloud.

Identification of Rare Pediatric Cancer Samples among 
Prospective Clinical Genomics Cohorts

The annual incidence (number of patients per million) of can-

cer diagnoses (International Classification of Childhood Cancer) 

between the ages of 0 and 17 years in the United States was calcu-

lated using data from the NCI SEER program (https://seer.cancer.

gov/csr/1975_2016) for the period of 1990 to 2016. Of these, only 

International Classification of Disease for Oncology, third edition, 

histology subgroupings with an estimated number of 200 or fewer 

new patients per million per year were considered rare pediatric 

cancer subtypes. These estimates were calculated by multiplying 

the annual incidence per million by 74.2 million, the 2010 census 

estimate of the number of people in the United States between the 

ages of 0 and 17 years. These data were used to determine which of 

the subtypes unique to the prospective clinical genomics (G4K or 

RTCG) datasets represented rare cancer subtypes for the St. Jude 

Cloud platform.

Pediatric Cancer Patient Sample  
Diagnosis Subtype Curation

The diagnosis subtype annotations for samples of pediatric 

patients with cancer were normalized to a consistent nomenclature 

across each of the PCGP, Clinical Pilot, G4K, and RTCG sample 
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collections. For PCGP samples, previous associated publications 

were consulted to ensure accuracy of diagnosis subtype assignment 

within St. Jude Cloud. For patient samples from Clinical Pilot, G4K, 

and RTCG, clinical genomics pathology reports were used to assign 

or verify diagnosis subtype annotations. Upon arriving at a concise 

set of diagnosis subtype annotations across all patient samples on 

St. Jude Cloud, diagnosis subtype abbreviations were assigned (Sup-

plementary Table S3) along with the closest matching OncoTree 

(oncotree.mskcc.org) Identifier.

Expression Analysis of Pediatric Cancer

St. Jude Cloud tumor RNA-seq expression count data were 

generated using HTSeq version 0.11.2 (63) in conjunction with 

GENCODE (release 31) gene annotations based on the August 

2019 release. Of these, only diagnostic, relapse, and metastatic 

samples from fresh-frozen tissue (i.e., excluding formalin-fixed, 

paraffin-embedded samples) were included. We removed samples 

where the associated RNA-seq data involved multiple read lengths 

or the computationally derived strandedness (InferExperiment; 

ref. 64) was unclear (samples sequenced using a stranded protocol 

having less than 80% reverse-oriented stranded read pairs were 

deemed “unclear strandedness”). When patient sample RNA-seq 

data were available in both PCGP and Clinical Pilot studies, we 

only considered the Clinical Pilot data. The analysis only included 

RNA-seq generated from Illumina GAIIX, HiSeq2000, HiSeq2500, 

HiSeq4000, NextSeq, or NovaSeq6000 sequencing platforms. 

These QC steps resulted in a total of 1,574 qualified RNA-seq 

samples which could be queried using the data browser on the 

St. Jude Cloud Genomics Platform. Once selected, HTSeq feature 

count files for each of these samples were imported into the St. 

Jude Cloud “RNA-Seq Expression Classification” tool for analysis. 

Briefly, this tool first reads gene features from a GENCODE gene 

model (release 31) and then aggregates the feature counts from the 

HTSeq files into a single matrix for all samples under considera-

tion. Next, covariate information is retrieved from sample meta-

data and added to the matrix. Filters are then applied to remove 

nonprotein coding genes and genes exhibiting low expression (<10 

read count). This tool also enables subgrouping of samples into 

“blood,” “solid,” and “brain” tumor categories (Supplementary 

Table S3) of which there were a total of 816, 302, and 447 sam-

ples, respectively (note the sum difference with above-mentioned 

1,574 is from 9 germ cell tumors not considered in this analysis). 

Gene expression analysis was performed with R (3.5.2) using the 

DESeq2, Rtsne, and sva packages. Gene expression within each of 

the blood, solid, and brain was normalized using DESeq2’s (65) 

variance stabilizing transformation, and batch effects [read length 

(bp)], library strandedness (stranded forward, stranded reverse, 

and unstranded), RNA selection method (PolyA vs. Total RNA), 

and read pairing (single- vs. paired-end) were removed using Com-

Bat (sva package; ref. 66). The top 1,000 most variably expressed 

genes based on median absolute deviation were then selected from 

each of the three major cancer types after which two-dimensional 

t-SNE was performed according to ref. 42 using a perplexity 

parameter of 20. Two-dimensional plots for each cancer type were 

generated using an interactive t-SNE plot viewer we developed 

(Supplementary Fig. S5A). The gene expression analysis methodol-

ogy described above has been incorporated into the St. Jude Cloud 

RNA-Seq Expression Classification workflow.

Differential gene expression analysis for comparison of both osteo-

sarcoma and craniopharyngioma subgroups was performed using 

the WARDEN pipeline on St. Jude Cloud. Here, aligned BAM files 

were first converted to FASTQ files using bedtools bamtofastq (67). 

FASTQ files were submitted to WARDEN using default parameters. 

ENRICHR (68, 69) was used to perform gene set enrichment analy-

sis using BioGPS Human Gene Atlas, WikiPathways 2019, and GO 

Molecular Function 2018 gene categories. Volcano plots were gener-

ated using STATA/MP 15.1. ACPG sample tissue section slides were 

stained with hematoxylin and eosin and reviewed by a board-certified 

neuropathologist (B.A. Orr).

Somatic Variant data, Mutation Rate, and  
Mutational Signature Analysis

Somatic SNVs and indels were analyzed using paired tumor–normal 

WGS or WES analysis as described previously (21, 70). Somatic copy 

number variations (CNV) were computed using the CONSERTING 

algorithm (71) followed by manual review of coverage and B-allele frac-

tion. The somatic SNVs/indels and CNVs were lifted over to GRCh38 

and uploaded to St. Jude Cloud as VCF and CNV files.

Mutation rate and signature analysis was performed using all 

patient tumor sample VCF files from PCGP, Clinical Pilot, and 

G4K studies. Variants were required to be confirmed valid by cap-

ture validation or determined to be of high confidence based on 

an internal postprocessing pipeline (70). The dataset includes 10 

subtypes (i.e., AMKL, non-Hodgkin lymphoma, kidney cancer, ger-

mline cell tumor, thyroid cancer, nonrhabdomyosarcoma soft-tissue 

sarcoma, craniopharyngioma, low-grade glioma, melanoma, and 

choroid plexus carcinoma) that were not included in previous pan-

cancer studies (15, 16). When a patient tumor sample VCF file was 

available in both PCGP and Clinical Pilot studies, we considered 

only the Clinical Pilot data. The mutation rate was calculated for 

each subgroup and defined as the number of somatic SNVs per MB. 

For this purpose, we included only WGS samples and used somatic 

SNVs in exonic as well as nonexonic, nonrepetitive regions (i.e., 

regions not covered by RepeatMasker tracks, the sum of these two 

regions totaling 1,445 Mb).

To identify mutational signatures in these WGS samples, we 

first determined the trinucleotide context of each somatic SNV 

using an in-house script, and each sample was summarized based 

on the number of mutations in each of the 96 possible mutation 

types (mutation plus trinucleotide context; ref. 48). The presence 

and strength of 65 COSMIC signatures (33, 72) and two therapy-

induced mutational signatures which we discovered previously 

(20) were then analyzed using SigProfilerSingleSample (73) ver-

sion 1.3 using the default parameters. We selected SigProfilerSin-

gleSample, as it requires greater stringency to prevent overfitting 

which can lead to spurious signatures. This was accomplished by 

requiring a cosine increase of 0.05 or above to include a signature, 

and to include ubiquitous signatures 1 and 5 preferentially prior 

to detecting additional signatures. Samples explained by signa-

tures with a cosine similarity of less than 0.85 were excluded. The 

proportion of samples (range, 0–1) within each cancer subtype 

category was then displayed in a heatmap showing patterns in 

different cancer subtypes. Mutational signatures within a sub-

type were only displayed where prevalence exceeds 1%. For the 

detection of signature 22 in SJST030137, we assigned mutations 

into three clusters—diagnosis-specific (present in SJST030137_

D1 sample), relapse-specific (present in SJST030137_R1 sample), 

and shared (present in both samples)—and then performed sig-

nature analysis with SigProfilerSingleSample on each mutation 

cluster. The final diagnosis signature spectrum was achieved 

by summing the signatures in the diagnosis-specific and shared 

mutation clusters, whereas the relapse spectrum was the sum of 

the relapse-specific and shared clusters. This increased sensitivity 

of detection of signature 22, which was otherwise obscured in the 

relapse sample due to an increased mutation burden associated 

with the cisplatin signature.

For mutational signature analysis, samples were segmented 

by mutation burden. Samples with 400 or more mutations (485 

samples) were analyzed for the full set of COSMIC signatures as 

these samples have sufficient number of somatic mutations to 
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ensure a robust analysis. Samples with fewer than 400 mutations 

(583 samples) were analyzed for a core set of 13 signatures (1, 2, 

3, 5, 7a, 7b, 7c, 7d, 8, 13, 18, 36, and 40) which can be reliably 

detected in low mutation burden samples and are common in 

pediatric cancers.

Data and Code Availability

All data are available on St. Jude Cloud (https://www.stjude.

cloud). We have created a permalink (https://pecan.stjude.cloud/

permalink/stjudecloud-paper) within St. Jude Cloud that contains 

updated links to all of the below information, should the location 

of any of these resources be updated after this article’s publication 

date. Interactive t-SNE RNA-seq expression maps are available as a 

collection within the St. Jude Cloud Visualization Community at 

https://viz.stjude.cloud/stjudecloud/collection/stjudecloud-paper.  

RNA-seq–derived HTSeq count data for samples considered in Use 

Case 1: Expression landscape of pediatric cancers, and somatic VCF 

files used for mutation burden and mutational signatures analy-

sis in Use Case 2: Mutation rates and signatures across pediatric blood, 

solid and brain cancers can be accessed through the St. Jude Cloud 

platform data browser at https://platform.stjude.cloud/data/

publications?publication_accession=SJC-PB-1020. The pipeline used  

to generate the RNA-seq expression counts is documented in 

the “RNA-Seq v2” pipeline RFC (https://stjudecloud.github.io/

rfcs) which also allows users to provide feedback. The workflow 

definition is available in our workflows repository (http://github.

com/stjudecloud/workflows). The code for generating the t-SNE 

plot given a set of samples from St. Jude Cloud and a set of zero or more 

user query samples is defined in the “expression-classification” repos-

itory (https://github.com/stjudecloud/expression-classification).  

The code for generating the mutational signatures plot with zero 

or more user query samples is available in the “mtsg” repository 

(https://github.com/stjudecloud/mtsg).
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