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Abstract— Active contours are very widely used in computer
vision problems. Their usage has a typical problem, that of
bunching together of curve points. This becomes apparent
especially when we use active contours for tracking leading
to instability in curve evolution. In this paper, we propose a
tangential term to stabilise the evolution while at the same time
ensuring that the curve shape is not changed. The proposed
method is simple and the computational overhead is minimal,
while the results are good.

I. INTRODUCTION

Active contours are very widely used in computer vision

tasks like tracking and segmentation. A flurry of research was

sparked off by the original paper of Kass and Witkin [1] which

still continues. Active contours are simply connected closed

curves which move so as to minimise some energy functionals.

The minimisation yields the curve evolution equations and

depending on the numerical implementation, contours have

been classified as parametric active contour or geometric active

contour. As their name suggests, parametric active contours

are implemented using parametric curves like splines [2] or

finite element method [3] in a Lagrangian framework. On the

other hand, geometric active contours are implemented in an

Eulerian framework using the level set methods [4] [5]. An

interesting paper which links these two approaches is [6].

It is out of scope of this article to review the entire active

contour literature, however we mention a few of the important

works. The initial energy functional defined by Kass et al.

[1] was based on image gradients while Ronfard [7] extended

it to region based energy functionals. Malladi [8] introduced

the level set method into the computer vision community.

Another landmark paper is [9] which converted the initial

gradient problem into that of finding a geodesic path in a

Riemannian space defined by the image. They have used

the level set method for implementation. Some of the other

important works are [10] [11] [12] [13] [14].

The advantages and disadvantages of both these methods are

well documented [15]. Briefly, the level set method representa-

tion allows topological change but has the disadvantage of be-

ing slow; converse is the case with parametric representation.

In applications like tracking, which is our primary interest,

topological changes seldom occur. Therefore we concentrate

on parametric active contours only in this paper. We use a

spline based implementation similar to that of [2].

In the next section, we describe the problem and discuss

a few solutions which have been proposed in literature. After

that, we describe our solution and finally we present the results

and conclusions.

II. NOTATION

We first describe the notation used in this paper. A curve is

denoted by C(p, t), where p is the curve parameter and t is

the artificial time parameter. Thus t parameterises a family of

curves while p parameterises a single member of this family.

The initial curve is C(p, 0) and the family of curves is obtained

by evolving C(p, 0) as per some curve evolution equation.

The local tangent and inward normal are denoted by t and n

respectively. The curvature is denoted by κ and the arc length

parameter by s. The quantity g = |Cp|, is interpreted as the

speed of a particle on the curve. This quantity is a measure

of the parameterisation of the contour.

The force at each point on the curve can be resolved into

two components: along the local tangent and normal denoted

by α and β, respectively. This is written as:

∂C

∂t
= α(p, t)t + β(p, t)n. (1)

Given this equation, g varies as follows [16] [17]:

∂g

∂t
= −gκβ +

∂α

∂p
, (2)

It is seen from the above equation that the curve speed

function depends on both the components. On the other hand,

it has been shown by researchers [17] that only the normal

component of the force β influences the shape of the curve.

The tangential component α reparameterises the curve. Based

on this fact, most works have concentrated on constructing

energy functions and paid attention to the normal term to speed

up the convergence, increase the capture range etc. No specific

efforts were made to give some shape to the tangential term

or at best it got constructed as a side effect. This did not

pose any problems as these works used level set methods.

However, there are some typical problems with the Lagrangian

implementation which is discussed next. We also discuss a few

common solutions as well as some works which had a different

approach.

III. PROBLEMS WITH CURVE EVOLUTION

Difficulties with Discrete curves : A well known problem

with the parametric representation of curves is that during

evolution the points on the curve bunch close together at

certain regions and they space out elsewhere. This increases

error in numerical approximation of curves measures like



tangent and curvature. In a spline implementation, although

the tangents and normals are computed analytically and non

uniform spacing of points is not a problem, in regions where

the points come close together the control points also bunch

together. This may lead to formation of discontinuities in

the curve. Subsequently the normal is ill-defined, leading to

formation of small local loops. These loops blow up in size and

ultimately the curve degenerates. In regions where the points

space out, the segmentation will of course be much poorer.

This problem which is disturbing in segmentation problems,

becomes intolerable in tracking. Therefore our aim in this work

is to maintain a uniform spacing of points.

As an example, we show two frames from a tracking

sequence of a hand. We use the final curve of the previous

frame as the initialisation for the current frame. Figure1(a)

shows the curve just after initialisation. The points on the curve

are nearly equidistant. We use a minor modification of the

region competition model [11] for tracking (this is explained

in the next section). After four frames, as marked in figure

(1(b)), the points accumulated in two regions are marked by

red circles. In the very next frame, in figure (1(c)), we notice

that small loops have formed in these regions. These loops

blow up and the curve becomes unstable. The occurence of

degeneracy depends partly on the motion direction. In the

example shown, as the hand moves from the right to left,

the points accumulate to the right and vice versa. Of course,

the exact number of frames between initialisation and loop

formation depends on different image sequences.

Few Solutions : In this section, we present a few possible

approaches described in the literature to tackle this problem

and discuss their limitations.

1) Reinitialisation of curve can be done either after a

fixed number of frames or when the distance between

successive control points falls below a certain threshold.

As proposed in [2], this can be done by minimising the

least squared distance between the current curve and

the new curve while penalising the distance between the

control points. However, this is not a very good solution

because the shape of the curve would change during the

re-positioning of the control points. The computation is

also increased in checking the distances in each frame

after every iteration.

2) Another ad-hoc solution is inserting or deleting points

from the curve when the distance between them exceeds

or falls below a certain threshold. This again is not a very

good solution; the thresholds have to be set manually

and in general is a naive procedure.

3) In a spline based implementation; we could also con-

trol the curve by deleting or inserting control points.

Although algorithms exist for such a procedure; this

solution is not natural, is specific to splines and is

computationally expensive. Also, if we were to use

the control points to represent the shape space, these

operations would change the dimensions of the feature

space.

The above methods are rather ad-hoc in the sense that

they are methods to adjust Euclidean distance between points

after they space out and do not actually try to prevent this

phenomenon from occuring. Some better methods to obtain a

more uniform point spacing have been proposed in [15] [16]

[18]. We however postpone the discussion of these methods to

the next section. This would enable us to compare immediately

our method with these approaches.

IV. PROPOSED METHOD

We first qualitatively describe the cause for the bunch-

ing of the points on the curve and the control points. As

mentioned previously, β controls the shape while α controls

the parameterisation. It might be thought that if we set the

tangential component α to zero; the curve would retain its

parameterisation and be well behaved. As seen from equation

(2), g depends on both the components. Therefore, while

reconstructing the curve with a discrete set of points the

spacing between the points varies in an unpredictable manner.

In our approach we ensure curve stability by using an ODE

to control g. It is a well known fact that the arc length

is the desired parameterisation to describe the curve. This

is an intrinsic description of the curve. Also, we note that

when the curve is parameterised by its arc length, the curve

speed function quantity g becomes equal to 1. We make

use of this simple fact to control the curve. Though arc

length parameterisation is most desirable; it cannot always

be achieved in practice. This is because of the representation

used. For example, when we use closed periodic B Splines

to represent a curve, the parameter range is Nb, the number

of basis functions. Obviously, it cannot be guaranteed that the

length of the curve would always be equal to this or even close

to this. Therefore, the next practical compromise would be to

have g to be a constant K.

It is then natural to use equation (2) to force the curve

towards the parameterisation which would make g = K. The

left hand side of this equation predicts how g changes given

β and α. We know the normal component β; this is obtained

from minimising the energy function defined on the curve.

Equation 2 can be rewritten as:

∂α

∂p
=

∂g

∂t
+ gκβ, (3)

Let us set:
∂g

∂t
= K − g. (4)

Qualitatively, at each point we try to find α by pushing g at that

point to the constant K. We can set K by simply averaging it

over the curve in the first frame. We obtain α by substituting

equation (4) in equation (3) and then numerically solving the

resulting ODE:

∂α

∂p
=

∂g

∂t
= K − g + gκβ (5)

After solving for α(p, t), we use the values in equation(1).

This simple term gives very good stabilisation of the curve as

we shall see in the next section on results.



(a) Frame 26 (b) Frame 30 (c) Frame 31

Fig. 1: Illustration of curve degeneration:1(a) Initial curve (in red). Convergence to target(in green). 1(b) Bunching of points(in

red) starts due to target motion leading to 1(c) loop formation.

It is interesting to compare the proposed energy term with

that proposed in [15], [16] and [18]. In [15] the tangential

energy term (for maintaining uniform parameterisation) is

shown to be α = ∂g
∂p

.

When the normal force component β has a smaller mag-

nitude compared to the tangential part; the above force is

equivalent to the diffusion of g along the curve as time

progresses. The above assumption may not be strictly valid

in regions of high curvature. The term proposed in this paper

is better because it directly addresses the issue at hand. We

do not make any assumptions in our work. In fact, we use β

while computing α at each point.

In [16], the authors have proposed two terms for calculating

α. In the first term, which is a non local term, α is obtained

by solving the following ODE:

∂α

∂s
= κβ− < κβ > +(

L

g
− 1)ω

where < . > denotes averaging over the curve and ω =
k1 + k2 < κβ >, k1 and k2 are constants. The authors

have shown that this term leads asymptotically to a uniform

parameterisation. Note that there are two parameters to be

fixed here.

In the second method, α is obtained by letting α = ∂sθ,

where θ = ln( g
L

). The rationale behind this term is that it is

obtained as the tangential component of the solution of the

intrinsic heat equation. The normal component of the solution

is the mean curvature motion. However, it is well known that

mean curvature motion is too slow in practice for convergence

[19]. Therefore researchers speed up convergence by adding a

normal term. Hence, we feel that the term might not perform

so well in practice. One drawback of both these methods stable

numerical implemention requires updation of g, curvature and

tangent angle after α is calculated; only then are the curve

points updated. In our method we can directly apply the

calculated α in equation(1). Finally, in [18], the authors obtain

the internal energy term by minimising the following:

E =

∫ M

0

(g2 − c)2dp (6)

where M depends on the representation used and c is propor-

tional to the length of the curve. However, the above term will

also cause a shrinkage of the curve. This term also does take

into account the different components affecting g as outlined

earlier. Therefore, although there may be a stabilisation of the

curve, there is also a change in the shape of the curve because

of the normal component. This is not at all a desirable side

effect. In our method, there is no feedback term like this and

hence we expect better results. Both the non local terms of

[16] and [18] require calculation of length of the curve or

practically speaking, its numerical approximation. This can

only be done by using a large number of points to approximate

the curve. Therefore, the dimensions of various matrices will

increase resulting in higher computation time. Our proposed

method is free of such constraints.

As mentioned in the beginning of this paper, we have used

the proposed term to stabilise the curve applied to tracking

using the Region Competition model. We describe the tracking

algorithm next. We have also shown the effectiveness of our

algorithm on segmentation examples.

V. TRACKING ALGORITHM

We have used the region competition model [11] for track-

ing. This model was proposed for segmentation of an object

in an image I using the statistical properties of the object. The

idea is to move a point on the curve C in either inward or

outward normal direction depending on the image properties

of the point on the curve I(C). We build histograms of the

target and the background. These are denoted by pT and pB

respectively. An image point lying on the curve is denoted by

I(C). Therefore, the probability of this pixel belonging to the

target and the background is pT (I(C)) and pB(I(C)).
The curve evolution equation then is as follows [11]:

∂C

∂t
= µκn + log

[

pB(I(C)

pT (I(C)

]

n (7)

The interpretation of the above equation is as follows; if the

probability that the curve point belongs to the background is



(a) Frame 31 (b) Frame 40

Fig. 2: Curve stabilisation using the proposed method.Even for rapid motions the curve remains stable.

higher than the probability that it is a part of the target, then the

point moves in the inward direction and vice versa. This means

that the initialisation is such that the curve should at least

partially cover the target. This is a very common assumption in

tracking. In [11] the authors have used parametric distributions

to model regions; we use histograms because they are simple

and fast.

We extend the same model for tracking. We use the con-

verged contour in the previous frame as the initialisation of

the contour in the next image. We use histograms to model the

target and background feature distributions in the RGB colour

space. We generate the target histogram offline manually and

generate the background dynamically in the following manner.

The B Spline curve lies entirely within the convex hull of its

control points and we assume that the target lies mostly within

the region enclosed by the spline curve. however computing

the convex hull is computationally expensive. We therefore

find the biggest rectangular bounding box enclosing the curve

and sample the image randomly outside this box. We can build

a histogram of the whole image excluding the region inside

the curve but in our work we found that about 3500 points

from the image suffice for most purposes.

VI. RESULTS AND DISCUSSION

In this work, we have used B Splines [20] [21] for

implementation. Other representations can also be used as

the method proposed is quite independent of the choice of

representation. We discretised equation(5) simply by using

backward differences.

We observed that in a tracking sequence, an initially smooth

contour degenerates when there is a rapid motion of the target

or there is a rapid shape change or a combination of both. We

first implemented the proposed method on the same sequence

as shown in figure 1 for the purpose of comparison. In this

sequence the shape change is slow but the object moves fast.

Not only at frame 31(figure 2) is the curve stabilised but also

remains so till frame 40, figure(2(b)). In the meantime the

shape of the target has changed considerably.

We next take another sequence where there is a combination

of shape change and motion. Figures 3(a) and 3(b) show one

such sequence. We again note that the curve remains stable

despite this both motion and shape change. Figures 4(a,c) and

4(b,d) show the final contours without and with the stabilising

term, respectively. In both cases, the number of B-Spline

control point is increased to obtain a better segmentation.

The proposed term is extremely effective. Note that the curve

is able to trace out sharp corners. In figures 4(a) and (b),

the region competition algorithm is used for segmentation.

In figures 4(d)(c) and (d), the stabilising term is applied

to the GVF [10] segmentation. This is a boundary based

segmentation algorithm. The proposed term can therefore be

used with any curve evolution equation.

VII. CONCLUSIONS AND FUTURE WORK

Parametric active contours are simpler to implement and

much faster than level set methods; however their stability is

always suspect. In this paper, we presented a simple method

to stabilise parametric active contours. This can be used with

any representation of contours. We are currently working on

the theoretical proof of the controlling ODE.
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