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1 Introduction

It is well recognized that practical systems are rife with different sources of noises such that these

stochastic systems involve both continuous dynamics and discrete events. It has also been well

recognized that such systems provide more realistic models for many applications in biology, math-

ematical finance, wireless communication, etc. Due to the interaction between continuous dynamics

and discrete events, these systems are often described by SDEs with Markovian switching which

are also called as hybrid SDEs. We refer the reader to [1–8] and references therein for more details

of these systems and their applications.

This paper will consider a hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t), (1.1)

where r(t) is a Markov chain taking values in a finite space S = {1, 2, ..., N}, B(t) is an m-

dimensional Brownian motion, the mappings f : Rn× S ×R+ → Rn and g : Rn× S ×R+ → Rn×m

are Borel measurable. The system (1.1) may be unstable, and the instability of stochastic systems

could be verified by applying the known criteria [5, Theorem 3.23, page82] and [9, Theorem 3.5,

page123] or computer simulations. To make this system become stable, the common method is to

find a feedback control u(x(t), r(t), t) such that the controlled system

dx(t) = [f(x(t), r(t), t) + u(x(t), r(t), t)]dt+ g(x(t), r(t), t)dB(t)

becomes stable. Note that u(x(t), r(t), t) is a continuous-time feedback, which relies on the con-

tinuous observations of the state x(t). This continuous-time feedback control has been discussed

widely (see e.g., Ji and Chizeck [10], Mao and his coauthors [9, 11–14]). However, since states can

be observed only at discrete times 0, τ, 2τ, · · · , it will be more realistic to consider the discrete-time

control. This feedback control problem can be described as the following controlled system

dx(t) = [f(x(t), r(t), t) + u(x([t/τ ]τ), r(t), t)]dt+ g(x(t), r(t), t)dB(t), (1.2)

where τ > 0 is a constant that stands for the duration between two consecutive state observations,

and [t/τ ] denotes the integer part of t/τ .

For a given stochastic system which may be unstable, Mao [15] proved that if the continuous-time

feedback control function can stabilise this unstable system with exponential speed in the sense of

mean square, then the corresponding discrete-time feedback control can also play the same role for

sufficiently small observation time τ and Mao also gave estimation of τ . By using the Lyapunov

functionals method, You et al. [16] investigated the exponential stability, H∞ stability as well as the

asymptotic stability and gave a better estimation for τ . Fei et al. [17] made a significant progress

by showing that a class of highly nonlinear hybrid SDEs can be stabilised by discrete-time feedback

control and they also analysed the H∞ stability and almost sure stability for the controlled system.

The theory of discrete-time feedback control has also been developed widely, for example, [18–21].

For the feedback control based on discrete-time observations, the state needs to be observed

only at discrete times. On the other hand, the classical continuous-time feedback control, the state

needs to be observed continuously for all time. Not mentioning that it is impossible to observe
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state continuously in practice, we see the time spent on the state observations at discrete times is

less than the continuous-time case. This indicates the control cost can be reduced by the feedback

control based on discrete-time observations. Often the system is observable only when it operates

in some modes but not all. [22] examined the effects of different structures in different modes and

derived the boundedness and the stability of the hybrid systems. Motivated by these observations,

this paper considers a class of hybrid SDEs with different structures in different modes. And the

main aim is to design a discrete-time feedback control for only a part of modes to make this hybrid

system become stable in the senses of H∞ stability and almost sure stability. This can also reduce

cost further. Most of the existing papers consider the discrete-time feedback control for all modes.

There are a few papers where some special examples are discussed using the control for a part of

modes (see, e.g., Example 6.2 in [17] and Song et al. [23]), but these special examples have the

same structure in all modes.

The rest of this paper is organised as follows. Section 2 gives the necessary notation and some

assumptions. In section 3, we show the original system has a unique solution and a uniform bound

in qth moment under the assumptions of section 2. We further show in this section that the

controlled system has also a unique solution and preserves the uniform bound in qth moment as

long as the control function satisfies the Lipschitz condition. In section 4, we give some rules on the

control function and prove that the controlled system is H∞ stable, asymptotically stable as well

as exponentially stable under these rules. Finally, an example is given to illustrate these results.

2 Notation and assumptions

Let us introduce some notations and definitions that will be used. Let {Ω,F , (Ft)t≥0,P} be a

complete probability space with a filtration (Ft)t≥0 satisfying the usual conditions (i.e., it is in-

creasing, right continuous and F0 contains all P-null sets). Let B(t) = (B1(t), ..., Bm(t))T be an

m-dimensional Brownian motion defined on this probability space. Let r(t), t ≥ 0, be a continuous

time Markov chain on this probability space taking values in a finite state space S = {1, 2, ..., N}
with the generator Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆), if i 6= j

1 + γij∆ + o(∆), if i = j

where ∆ > 0. Here γij > 0 is the transition rate from i to j if i 6= j, while γii = −
∑

j 6=i γij .

Assume that the Markov chain r(·) is independent of the Brownian motion B(·). Denote by |x|
the Euclidean norm for x ∈ Rn. If A is a nonsingular matrix, its inverse is denoted by A−1. For

a matrix A, denote its trace norm by |A| =
√
trace(ATA). Let R+ = [0,∞) and τ > 0. If both a

and b are real numbers, then a ∧ b := min{a, b} and a ∨ b := max{a, b}. For a vector or matrix A,

A > 0 means all elements of A are positive. Throughout the paper, C denotes a generic positive

constant, whose value may change for different usage. Similarly, Cα denotes the generic positive

constant depending on parameter α. In this paper, the nonsingular M -matrix plays an important

role. We present some conditions equivalent to nonsingular M -matrix, and refer the reader to [24]

for more details on this topic.
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Lemma 2.1. The following statements are equivalent:

(1) A = (aij)N×N is a nonsingular M -matrix,

(2) A−1 exists and its elements are all nonnegative,

(3) There exists x > 0 in RN such that Ax > 0.

Assumption 2.1. Assume for each integer h ≥ 1, there exists a positive constant kh such that

|f(x, i, t)− f(x̄, i, t)| ∨ |g(x, i, t)− g(x̄, i, t)| ≤ kh(x− x̄)

for all x, x̄ ∈ Rn with |x| ∨ |x̄| ≤ h and all (i, t) ∈ S ×R+. Without loss of any generality, assume

that the state space S = S1∪S2 with S1 = {1, ..., N1} and S2 = {N1 +1, ..., N}, where 1 ≤ N1 < N .

Assume there exist positive constants K, q1 > 1, q2 ≥ 1 such that for (x, i, t) ∈ Rn × S1 ×R+

|f(x, i, t)| ≤ K|x|, |g(x, i, t)| ≤ K|x|, (2.1)

and for (x, i, t) ∈ Rn × S2 ×R+,

|f(x, i, t)| ≤ K(|x|+ |x|q1), |g(x, i, t)| ≤ K(|x|+ |x|q2). (2.2)

Remark 2.2. Assumption 2.1 implies that in any S1-mode, the coefficients of the underlying

system (1.1) satisfy the linear growth condition. In any S2-mode, coefficients of the underlying

system (1.1) are highly nonlinear. Conditions (2.1) and (2.2) imply f(0, i, t) ≡ 0 and g(0, i, t) ≡ 0,

which are required for the stability purpose.

Remark 2.3. (2.2) shows that in any S2-mode, the coefficients of the underlying system (1.1)

are controlled by polynomial functions with highest orders q1 and q2. By the Young inequality,

|x|qi , i = 1, 2, together with |x|, yield that f and g can include the forms of
∑n

i=1 x
θi with θi ∈ [1, q1]

and θi ∈ [1, q2] respectively. If the linear term is removed, f and g cannot include the polynomial

with order less than q1 and q2, respectively.

Assumption 2.2. Let q, p > 2 with{
q ≥ (p+ q1 − 1) ∨ (2(q1 ∨ q2)),

p ≥ (q1 + 1) ∨ (2q2 − q1 + 1).

Moreover, for each i ∈ S1, there exists constant β̄i ∈ R such that

xT f(x, i, t) +
q + p− 3

2
|g(x, i, t)|2 ≤ β̄i|x|2, (2.3)

and

D := −(q + p− 2)diag(β̄1, ..., β̄N1)− (γij)i,j∈S1 (2.4)

is a nonsingular M-matrix.

For each i ∈ S2, there exist constants α, εi ∈ R+ such that

xT f(x, i, t) +
q − 1

2
|g(x, i, t)|2 ≤ −α|x|p + εi|x|2. (2.5)
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3 Rules for feedback control

To avoid confusion, let z(t) denote the solution to the underlying system (1.1), and x(t) denote the

solution to the controlled system (1.2). Rewrite (1.1) as follows:

dz(t) = f(z(t), r(t), t)dt+ g(z(t), r(t), t)dB(t), z(0) = z0 ∈ Rn. (3.1)

Note that (2.3) and (2.5) implies that (3.1) satisfies the monotonic condition. This, together with

the local Lipschitz condition in Assumption 2.1, guarantees that the underlying system (3.1) has

a unique global solution z(t) and this solution satisfies E|z(t)|q < Ct (see [1, Corollary 3.21, Page

97]). But in the following, we will show this solution z(t) can be bounded uniformly in qth moment

under Assumptions 2.1 and 2.2. For this purpose, we let

(θ1, θ2, ..., θN1)T = D−1(1, ..., 1)T (3.2)

and β̄max = maxi∈S1 β̄i, εmax = maxi∈S2 εi, θmax = maxi∈S1 θi and θmin = mini∈S1 θi.

Theorem 3.1. Under Assumptions 2.1, 2.2, the solution z(t) of the system (3.1) satisfies

sup
0≤t<∞

E|z(t)|q < C. (3.3)

Proof. For any C > 0, define a Lyapunov function U : Rn × S → R+ by

U(z, i) =

|z|q + Cθi|z|q+p−2 if i ∈ S1,

|z|q if i ∈ S2,
(3.4)

and introduce LU : Rn × S ×R+ → R by

LU(z, i, t) = Uz(z, i)f(z, i, t) +
1

2
trace[gT (z, i, t)Uzz(z, i)g(z, i, t)] +

∑
j∈S

γijU(z, j),

where

Uz(z, i) =
(∂U(z, i)

∂z1
, ...,

∂U(z, i)

∂zn

)
and Uzz(z, i) =

[∂2U(z, i)

∂zk∂zl

]
n×n

.

For any given i ∈ S1, we have

LU(z, i, t) = q|z|q−2zT f(z, i, t) +
q

2
|z|q−2|g(z, i, t)|2 +

q(q − 2)

2
|z|q−4|zT g(z, i, t)|2

+(q + p− 2)Cθi|z|q+p−4zT f(z, i, t) +
q + p− 2

2
Cθi|z|q+p−4|g(z, i, t)|2

+
(q + p− 2)(q + p− 4)

2
Cθi|z|q+p−6|zT g(z, i, t)|2 + C

∑
j∈S1

γijθj |z|q+p−2.

Note that |zT g(z, i, t)|2 ≤ |z|2|g(z, i, t)|2. By (2.3), (2.4) and (3.2), we get for i ∈ S1

LU(z, i, t) ≤ q|z|q−2

(
zT f(z, i, t) +

q − 1

2
|g(z, i, t)|2

)
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+C(q + p− 2)θi|z|q+p−4

(
zT f(z, i, t) +

q + p− 3

2
|g(z, i, t)|2

)
+C

∑
j∈S1

γijθj |z|q+p−2

≤ qβ̄i|z|q + (q + p− 2)Cβ̄iθi|z|q+p−2 + C
∑
j∈S1

γijθj |z|q+p−2

= qβ̄i|z|q − C|z|q+p−2

= −
( 1

2θ i

)
(Cθi|z|q+p−2 + |z|q)−

(C
2

)
|z|q+p−2 +

( 1

2θ i
+ qβ̄i

)
|z|q

≤ −
( 1

2θmax

)
U(z, i) + c1, (3.5)

where

c1 := sup
u≥0

{
−
(C

2

)
|u|q+p−2 +

( 1

2θmin
+ qβ̄max

)
|u|q
}
<∞. (3.6)

Similarly, it follows from (2.5) that for i ∈ S2

LU(z, i, t) ≤ q|z|q−2

(
zT f(z, i, t) +

q − 1

2
|g(z, i, t)|2

)
+ C

∑
j∈S1

γijθj |z|q+p−2

≤ q|z|q−2(−α|z|p + εi|z|2) + C
∑
j∈S1

γijθj |z|q+p−2

= −
(
qα− C

∑
j∈S1

γijθj

)
|z|q+p−2 + qεi|z|q.

Since α > 0, we can always choose C sufficiently small such that

α >
C
∑

j∈S1
γijθj

q
, ∀i ∈ S2. (3.7)

This implies that for i ∈ S2

LU(z, i, t) ≤ −
( 1

2θmax

)
|z|q + c2 = −

( 1

2θmax

)
U(z, i) + c2, (3.8)

where

c2 := sup
u≥0

{
−
(
qα− C

∑
j∈S1

γijθj

)
|u|q+p−2 +

(
qεmax +

1

2θmax

)
|u|q
}
<∞.

Combining (3.5) with (3.8), for all i ∈ S we have

LU(z, i, t) ≤ −
( 1

2θmax

)
U(z, i) + c1 ∨ c2.

Recalling the definition of U(z, i), we have |z|q ≤ U(z, i). Therefore, by [1, Theorem 5.2, Page157],

the required result (3.3) follows.

But Eq. (3.1) may be unstable. The main aim of this section is to design a feedback control

u(x([t/τ ]τ), r(t), t), based on discrete-time state observations, such that the controlled system

dx(t) = [f(x(t), r(t), t) + u(x(δt), r(t), t)]dt+ g(x(t), r(t), t)dB(t) (3.9)

is stable, where δt := [t/τ ]τ and the control function u : Rn × S ×R+ → Rn is Borel measurable.
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Rule 3.2. For i ∈ S2, the control function satisfies the Lipschitz condition, i.e.,

|u(x, i, t)− u(y, i, t)| ≤ κ|x− y|

with some κ > 0 and u(x, i, t) = 0 for i ∈ S1. For the stability purpose, assume also that

u(0, i, t) ≡ 0 for all i ∈ S2.

Theorem 3.1 shows that the qth moment of the underlying system (3.1) is bounded uniformly.

The following theorem shows that the controlled system (3.9) preserves this property under Rule

3.2.

Theorem 3.3. Let Assumptions 2.1, 2.2 and Rule 3.2 hold. Then for any initial value x(0) =

x0 ∈ Rn, the controlled system (3.9) has a unique global solution and

sup
0≤t<∞

E|x(t)|q < C. (3.10)

Proof. In fact, the controlled system (3.9) is a hybrid stochastic differential delay equation (SDDE)

with a bounded variable delay. Define a function π : R+ → [0, τ ] by

π(t) = t− kτ for kτ ≤ t < (k + 1)τ, k = 0, 1, 2, · · · .

Rewrite the controlled system (3.9) as

dx(t) = [f(x(t), r(t), t) + u(x(t− π(t)), r(t), t)]dt+ g(x(t), r(t), t)dB(t), t ≥ 0.

Recalling the definition of U , applying the generalized Itô formula (see [1, Lemma 1.9, page 49])

gives

dU(x(t), r(t)) = L̄U(x(t), x(t− π(t)), r(t), t)dt+ dM(t), t ≥ 0,

where M(t) is a continuous local martingale with M(0) = 0 and the function L̄U : Rn × Rn × S ×
R+ → R is given by

L̄U(x, y, i, t) = Ux(x, i)[f(x, i, t) + u(y, i, t)] +
1

2
trace[gT (x, i, t)Uxx(x, i)g(x, i, t)] +

∑
j∈S

γijU(x, j).

We divide the remaining proof into two steps.

Step 1: existence and uniqueness. For any given i ∈ S1, we have

L̄U(x, y, i, t) = q|x|q−2xT [f(x, i, t) + u(y, i, t)] +
q

2
|x|q−2|g(x, i, t)|2 +

q(q − 2)

2
|x|q−4|xT g(x, i, t)|2

+(q + p− 2)Cθi|x|q+p−4xT [f(x, i, t) + u(y, i, t)] +
q + p− 2

2
Cθi|x|q+p−4|g(x, i, t)|2

+
(q + p− 2)(q + p− 4)

2
Cθi|x|q+p−6|xT g(x, i, t)|2 + C

∑
j∈S1

γijθj |x|q+p−2.

In the same way as (3.5), we can show that for i ∈ S1

L̄U(x, y, i, t) ≤ q|x|q−2
(
xT f(x, i, t) +

q − 1

2
|g(x, i, t)|2

)
7
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+(q + p− 2)Cθi|x|q+p−4
(
xT f(x, i, t) +

q + p− 3

2
|g(x, i, t)|2

)
+ C

∑
j∈S1

γijθj |x|q+p−2

≤ −
( 1

2θmax

)
U(x, i) + c1, (3.11)

where we have used the fact that u(x, i, t) = 0, i ∈ S1 and c1 is from (3.6). Similarly, for each

i ∈ S2, we calculate

L̄U(x, y, i, t) = q|x|q−2xT [f(x, i, t) + u(y, i, t)] +
q

2
|x|q−2|g(x, i, t)|2

+
q(q − 2)

2
|x|q−4|xT g(x, i, t)|2 + C

∑
j∈S1

γijθj |x|q+p−2.

Note that |u(x, i, t)| ≤ κ|x|. By (2.5), we have for i ∈ S2

L̄U(x, y, i, t) ≤ q|x|q−2
(
xT [f(x, i, t) + u(y, i, t)] +

q − 1

2
|g(x, i, t)|2

)
+ C

∑
j∈S1

γijθj |x|q+p−2

≤ −qα|x|q+p−2 + qεi|x|q + C
∑
j∈S1

γijθj |x|q+p−2 + q|x|q−1|u(y, i, t)|

≤
(
− qα+ C

∑
j∈S1

γijθj

)
|x|q+p−2 + qεi|x|q + qκ|x|q−1|y|.

Recalling e(−τ/2θmax) < 1 (θmax is positive), then we can choose ε ∈ (0, 1) sufficiently small such

that

e−
1

2θmax
τ + ετ < 1. (3.12)

By Young’s inequality, it follows from (3.7) that for i ∈ S2,

L̄U(x, y, i, t) ≤ −
(
qα− C

∑
j∈S1

γijθj

)
|x|q+p−2 + qεi|x|q +

(q − 1)(qκ)q/(q−1)

q(qε)1/(q−1)
|x|q + ε|y|q

≤ c3 −
( 1

2θmax

)
U(x, i) + εU(y, i), (3.13)

where

c3 := sup
u≥0

{
−
(
qα− C

∑
j∈S1

γijθj

)
|u|q+p−2 +

( 1

2θmax
+ qεmax +

(q − 1)(qκ)q/(q−1)

q(qε)1/(q−1)

)
|u|q
}
.

Therefore, combining (3.11) with (3.13), we have for i ∈ S

L̄U(x, y, i, t) ≤ c1 ∨ c3 + U1(x) + εU1(y),

where U1(x) = |x|q. Obviously, U1(x) ≤ U(x, i). Consequently, by [1, Theorem 7.13, Page280], we

conclude that the controlled system (3.9) has a unique global solution x(t) with E|x(t)|q < CT for

any t ∈ [0, T ].

Step 2: Uniform bound. Similarly, by virtue of (3.11) and (3.13), we derive for i ∈ S

L̄U(x, y, i, t) ≤ c− aU(x, i) + εU(y, i)1{i∈S2}, (3.14)
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where c := c1 ∨ c3, a := 1/(2θmax). Then, by (3.12), we have

e−aτ + ετ < 1. (3.15)

For any t ≥ 0, there is a unique integer k ≥ 0 such that t ∈ [kτ, (k + 1)τ). Letting tk = kτ for

k = 0, 1, 2, · · · , we have t− πt = tk. By the generalised Itô formula, we derive that for t ∈ [tk, tk+1)

eatEU(x(t), r(t)) = eatkEU(x(tk), r(tk))+E
∫ t

tk

eas[aU(x(s), r(s))+ L̄U(x(s), x(s−π(s)), r(s), s)]ds.

Using (3.14) yields

eatEU(x(t), r(t))

≤ eatkEU(x(tk), r(tk)) + E
∫ t

tk

eas[c+ εU(x(s− π(s)), r(s))]1{r(s)∈S2}]ds

= eatkEU(x(tk), r(tk)) + E
∫ t

tk

eas[c+ εU(x(s− π(s)), r(s− π(s)))]1{r(s−π(s))∈S2}]ds

≤ eatkEU(x(tk), r(tk)) + E
∫ t

tk

eas[c+ εU(x(s− π(s)), r(s− π(s)))]ds

= eatkEU(x(tk), r(tk)) + E
∫ t

tk

eas[c+ εU(x(tk), r(tk))]ds

≤ eatkEU(x(tk), r(tk)) +
(eat − eatk

a

)
[c+ εEU(x(tk), r(tk))]. (3.16)

In particular

eatk+1EU(x(tk+1), r(tk+1)) ≤ eatkEU(x(tk), r(tk)) +
(eatk+1 − eatk

a

)
[c+ εEU(x(tk), r(tk))].

This implies

EU(x(tk+1), r(tk+1)) ≤ e−aτEU(x(tk), r(tk)) +
(1− e−aτ

a

)
[c+ εEU(x(tk), r(tk))]

≤ e−aτEU(x(tk), r(tk)) + τ [c+ εEU(x(tk), r(tk))]

= cτ + (e−aτ + ετ)EU(x(tk), r(tk)).

Consequently, using (3.15) gives

EU(x(tk+1), r(tk+1)) ≤ cτ + (e−aτ + ετ)[cτ + (e−aτ + ετ)EU(x(tk−1), r(tk−1))]

≤ cτ [1 + (e−aτ + ετ) + · · ·+ (e−aτ + ετ)k] + (e−aτ + ετ)k+1U(x(0), r(0))

≤ cτ

1− (e−aτ + ετ)
+ (|x(0)|q + θmax|x(0)|q+p−2). (3.17)

Furthermore, it follows from (3.16) that

sup
tk≤t≤tk+1

[eatEU(x(t), r(t))] ≤ eatkEU(x(tk), r(tk)) +
(eatk+1 − eatk

a

)
[c+ εEU(x(tk), r(tk))].
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This, together with (3.4) and (3.17), implies

sup
tk≤t≤tk+1

E|x(t)|q ≤ sup
tk≤t≤tk+1

EU(x(t), r(t))

≤ EU(x(tk), r(tk)) +
(eaτ − 1

a

)
[c+ εEU(x(tk), r(tk))]

≤ c
(eaτ − 1

a

)
+ [1 +

ε

a
(eaτ − 1)]EU(x(tk), r(tk))

≤ c
(eaτ − 1

a

)
+ [1 +

ε

a
(eaτ − 1)]

( cτ

1− (e−aτ + ετ)
+ |x(0)|q + θmax|x(0)|q+p−2

)
.

Since k is arbitrary, the required assertion (3.10) holds.

4 Stabilisation

4.1 H∞ stabilisation and asymptotic stabilisation

Let us now make a remark and introduce some constants which will be used in our new Rule 4.2

below.

Remark 4.1. By Assumption 2.2, it is obvious that

xT f(x, i, t) +
p+ q1 − 2

2
|g(x, i, t)|2 ≤ β̄i|x|2

and

B2 := −(p+ q1 − 1)diag(β̄1, ..., β̄N1)− (γij)i,j∈S1 (4.1)

is a nonsingular M-matrix. Similarly, by (2.3), there exist constants βi, β̃i (i ∈ S1) with βi ≤ β̃i ≤ β̄i
such that for all (x, i, t) ∈ Rn × S1 ×R+x

T f(x, i, t) +
1

2
|g(x, i, t)|2 ≤ βi|x|2,

xT f(x, i, t) +
q1

2
|g(x, i, t)|2 ≤ β̃i|x|2.

(4.2)

Recalling u(x, i, t) = 0, i ∈ S1, we hence have for all (x, i, t) ∈ Rn × S1 ×R+
xT [f(x, i, t) + u(x, i, t)] +

1

2
|g(x, i, t)|2 ≤ βi|x|2,

xT [f(x, i, t) + u(x, i, t)] +
q1

2
|g(x, i, t)|2 ≤ β̃i|x|2,

xT [f(x, i, t) + u(x, i, t)] +
p+ q1 − 2

2
|g(x, i, t)|2 ≤ β̄i|x|2.

(4.3)

Rule 4.2. Design a control function u : Rn × S2 × R+ → Rn such that there exist constants

αi, α̃i, βi, β̃i(i ∈ S2) with αi ≥ α̃i ≥ α and βi ≤ β̃i ≤ εi for bothx
T [f(x, i, t) + u(x, i, t)] +

1

2
|g(x, i, t)|2 ≤ −αi|x|p + βi|x|2,

xT [f(x, i, t) + u(x, i, t)] +
q1

2
|g(x, i, t)|2 ≤ −α̃i|x|p + β̃i|x|2

(4.4)
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to hold for all (x, i, t) ∈ Rn × S2 × R+. Moreover, the constants βi, β̃i(i ∈ S2) here along with

βi, β̃i(i ∈ S1) in (4.2) make the following two M-matricesB := −2diag(β1, ..., βN )− (γij)i,j∈S ,

B1 := −(q1 + 1)diag(β̃1, ..., β̃N )− (γij)i,j∈S
(4.5)

nonsingular.

Let us explain that there exist lots of such functions satisfying Rule 4.2 under Assumption 2.2.

For example, take ū(x, i, t) = −Lx for i ∈ S2 and ū(x, i, t) = 0 for i ∈ S1, where L is a positive

constant, then

xT ū(x, i, t) = −L|x|2, ∀ (x, i, t) ∈ Rn × S2 ×R+.

By (2.5), we have for (x, i, t) ∈ Rn × S2 ×R+

xT [f(x, i, t) + ū(x, i, t)] +
1

2
|g(x, i, t)|2 ≤ −α|x|p + (εi − L)|x|2,

xT [f(x, i, t) + ū(x, i, t)] +
q1

2
|g(x, i, t)|2 ≤ −α|x|p + (εi − L)|x|2.

In addition, since D is a nonsingular M-matrix and βi ≤ β̃i ≤ β̄i, there exists a constant L large

enough such that the following matrices

B := −2diag(β1, ..., βN1 , εN1+1 − L, ..., εN − L)− (γij)i,j∈S

B1 := −(q1 + 1)diag(β̃1, ..., β̃N1 , εN1+1 − L, ..., εN − L)− (γij)i,j∈S

are nonsingular M-matrix. That is, the control function ū satisfies Rule 4.2. For convenience, let

b := maxi∈S1 bi, bi be the ith row sum of B−1
2 , and

(η1, η2, ..., ηN )T = B−1(1, · · · , 1)T ,

(η̃1, η̃2, · · · , η̃N )T = B−1
1 (1, · · · , 1)T ,

D =
mini∈S2(q1 + 1)α̃iη̃i

maxi∈S2(
∑

j∈S1
γij)b+ 1

,

(η̄1, η̄2, ..., η̄N1)T = DB−1
2 (1, · · · , 1)T ,

(4.6)

since B, B1 are nonsingular M-matrices, then all ηi, η̃i are positive. Note that α̃i ≥ α > 0 for

i ∈ S2, D > 0. Moreover, B2 is a nonsingular M-matrix, all η̄i are also positive. Define

V (x, i) = ηi|x|2 + η̃i|x|q1+1 + η̄i|x|p+q1−11{i∈S1} (4.7)

and

L1V (x, i, t) = Vx(x, i)[f(x, i, t) + u(x, i, t)] +
1

2
trace[gT (x, i, t)Vxx(x, i)g(x, i, t)] +

∑
j∈S

γijV (x, j).

(4.8)

Lemma 4.3. Let Assumptions 2.1,2.2 and Rules 3.2, 4.2 hold. Then there exist positive constants

ρ0–ρ3 such that for each i ∈ S

L1V (x, i, t) + ρ1(2ηi|x|+ (q1 + 1)η̃i|x|q1)2 + ρ2|f(x, i, t)|2 + ρ3|g(x, i, t)|2 ≤ −ρ0|x|2 − |x|q1+1.
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Proof. Let

W (x, i, t) = L1V (x, i, t) + ρ1(2ηi|x|+ (q1 + 1)η̃i|x|q1)2 + ρ2|f(x, i, t)|2 + ρ3|g(x, i, t)|2. (4.9)

Hence it suffices to prove that

W (x, i, t) ≤ −ρ0|x|2 − |x|q1+1. (4.10)

We divide the following proof into two steps.

Step 1: Estimation of L1V . It is easy to see from (4.8) and (4.7) that

L1V (x, i, t) = 2ηi
[
xT [f(x, i, t) + u(x, i, t)] +

1

2
|g(x, i, t)|2

]
+(q1 + 1)η̃i|x|q1−1xT [f(x, i, t) + u(x, i, t)] +

q1 + 1

2
η̃i|x|q1−1|g(x, i, t)|2

+
(q1 + 1)(q1 − 1)

2
η̃i|x|q1−3|xT g(x, i, t)|2

+
{

(p+ q1 − 1)η̄i|x|p+q1−3xT [f(x, i, t) + u(x, i, t)] +
p+ q1 − 1

2
η̄i|x|p+q1−3|g(x, i, t)|2

+
(p+ q1 − 1)(p+ q1 − 3)

2
η̄i|x|p+q1−5|xT g(x, i, t)|2

}
1{i∈S1}

+
∑
j∈S

γijηj |x|2 +
∑
j∈S

γij η̃j |x|q1+1 +
∑
j∈S1

γij η̄j |x|p+q1−1

≤ 2ηi[x
T [f(x, i, t) + u(x, i, t)] +

1

2
|g(x, i, t)|2]

+(q1 + 1)η̃i|x|q1−1
[
xT [f(x, i, t) + u(x, i, t)] +

q1

2
|g(x, i, t)|2

]
+
{

(p+ q1 − 1)η̄i|x|p+q1−3
[
xT [f(x, i, t) + u(x, i, t)] +

p+ q1 − 2

2
|g(x, i, t)|2

]}
1{i∈S1}

+
∑
j∈S

γijηj |x|2 +
∑
j∈S

γij η̃j |x|q1+1 +
∑
j∈S1

γij η̄j |x|p+q1−1.

By (4.3) and (4.4), we have

L1V (x, i, t) ≤ 2ηi[(βi|x|2)1{i∈S1} + (βi|x|2 − αi|x|p)1{i∈S2}]

+
{

(q1 + 1)η̃i|x|q1−1
[
(β̃i|x|2)1{i∈S1} + (−α̃i|x|p + β̃i|x|2)1{i∈S2}

]}
+
{

(p+ q1 − 1)η̄i|x|p+q1−3
[
β̄i|x|2]

}
1{i∈S1}

+
∑
j∈S

γijηj |x|2 +
∑
j∈S

γij η̃j |x|q1+1 +
∑
j∈S1

γij η̄j |x|p+q1−1

=
{

2ηiβi|x|2 +
∑
j∈S

γijηj |x|2 + (q1 + 1)η̃iβ̃i|x|q1+1 +
∑
j∈S

γij η̃j |x|q1+1

+(p+ q1 − 1)η̄iβ̄i|x|p+q1−1 +
∑
j∈S1

γij η̄j |x|p+q1−1
}

1{i∈S1}

+
{

2ηiβi|x|2 +
∑
j∈S

γijηj |x|2 − 2αiηi|x|p − (q1 + 1)α̃iη̃i|x|p+q1−1
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+(q1 + 1)η̃iβ̃i|x|q1+1 +
∑
j∈S

γij η̃j |x|q1+1 +
∑
j∈S1

γij η̄j |x|p+q1−1
}

1{i∈S2}.

By virtue of (4.1), (4.5) and (4.6), we obtain

2ηiβi +
∑
j∈S

γijηj = −1 for i ∈ S,

(q1 + 1)η̃iβ̃i +
∑
j∈S

γij η̃j = −1 for i ∈ S,

(p+ q1 − 1)η̄iβ̄i +
∑
j∈S1

γij η̄j = −D for i ∈ S1.

We hence have

L1V (x, i, t) ≤
{
− |x|2 − |x|q1+1 −D|x|p+q1−1

}
1{i∈S1}

+
{∑
j∈S1

γij η̄j |x|p+q1−1 − |x|2 − 2αiηi|x|p − (q1 + 1)α̃iη̃i|x|p+q1−1 − |x|q1+1
}

1{i∈S2}.

By (4.6), we have

α̃i ≥
(b∑j∈S1

γij + 1

(q1 + 1)η̃i

)
D ∀ i ∈ S2.

Noting that η̄i ≤ Db for i ∈ S1, then

α̃i ≥
∑

j∈S1
γij η̄j +D

(q1 + 1)η̃i
∀ i ∈ S2,

which implies

−(q1 + 1)α̃iη̃i +
∑
j∈S1

γij η̄j ≤ −D ∀ i ∈ S2.

Therefore, we have

L1V (x, i, t) ≤
{
− |x|2 − |x|q1+1 −D|x|p+q1−1

}
1{i∈S1}

+
{
− |x|2 − 2αiηi|x|p − |x|q1+1 −D|x|p+q1−1

}
1{i∈S2}

≤ −|x|2 − |x|q1+1 −D|x|p+q1−1. (4.11)

Step 2: Proof of W (x, i, t) ≤ −ρ0|x|2 − |x|q1+1. Substituting (4.11) into (4.9) gives

W (x, i, t) ≤ −|x|2−|x|q1+1−D|x|p+q1−1 +ρ1(2ηi|x|+(q1 +1)η̃i|x|q1)2 +ρ2|f(x, i, t)|2 +ρ3|g(x, i, t)|2.

By Assumption 2.1, we have for i ∈ S

|f(x, i, t)| ≤ K(|x|+ |x|q1) and |g(x, i, t)| ≤ K(|x|+ |x|q2).

By (a+ b)2 ≤ 2(a2 + b2), we arrive at

W (x, i, t) ≤ −|x|2 − |x|q1+1 −D|x|p+q1−1 + ρ1(8η2
i |x|2 + 2(q1 + 1)2η̃2

i |x|2q1)
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+2ρ2K
2(|x|2 + |x|2q1) + 2ρ3K

2(|x|2 + |x|2q2).

In addition, by Assumption 2.2, we have 2(q1 ∨ q2) ≤ p + q1 − 1, and hence (|x|2q1 ∨ |x|2q2) ≤
|x|2 + |x|p+q1−1. Therefore, we have

W (x, i, t) ≤ −
[
1− (8ρ1η

2
i + 2ρ1(q1 + 1)2η̃2

i + 4ρ2K
2 + 4ρ3K

2)
]
|x|2 − |x|q1+1

−
[
D − (2ρ1(q1 + 1)2η̃2

i + 2ρ2K
2 + 2ρ3K

2)
]
|x|p+q1−1.

we can choose appropriate positive constants ρj(1 ≤ j ≤ 3) sufficiently small such that

8ρ1 max
i∈S

η2
i + 2ρ1(q1 + 1)2 max

i∈S
η̃2
i + 4(ρ2 + ρ3)K2 ≤ 0.5,

2ρ1(q1 + 1)2 max
i∈S

η̃2
i + 2(ρ2 + ρ3)K2 ≤ D. (4.12)

We then have

W (x, i, t) ≤ −0.5|x|2 − |x|q1+1.

Let ρ0 ∈ (0, 0.5], then (4.10) holds and the proof is complete.

Theorem 4.4. Let conditions of Lemma 4.3 hold. Assume further

τ <

√
ρ0ρ1

2κ2
and τ ≤

√
ρ1ρ2√
2κ
∧ ρ1ρ3

κ2
∧ 1

4κ
, (4.13)

where ρ0-ρ3 come from Lemma 4.3, then the solution of the controlled system (3.9) satisfies∫ ∞
0

E|x(t)|q̄dt < C, ∀ q̄ ∈ [2, q1 + 1], (4.14)

and

lim
t→∞

E|x(t)|q̄ = 0, ∀ q̄ ∈ [2, q). (4.15)

Proof. We divide this proof into three steps.

Step 1: Define two segment processes x̂t = {x(t + s) : −2τ ≤ s ≤ 0} and r̂t = {r(t + s) : −2τ ≤
s ≤ 0} for t ≥ 0. To ensure that x̂t and r̂t are well defined on 0 ≤ t ≤ 2τ , we set x(s) = x(0) and

r(s) = r(0) for s ∈ [−2τ, 0). Let

V̂ (x̂t, r̂t, t) = V (x(t), r(t)) + J(t), t ≥ 0, (4.16)

where V comes from (4.7) and

J(t) := ψ

∫ 0

−τ

∫ t

t+s
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dvds,

where ψ is a positive constant to be determined later. And, we set f(x, i, v) = f(x, i, 0), u(x, i, v) =

u(x, i, 0), g(x, i, v) = g(x, i, 0) for (x, i, v) ∈ Rn × S × [−2τ, 0]. We claim that V̂ (x̂t, r̂t, t) is an Itô

process on t ≥ 0. In fact, by the generalised Itô formula, for t ≥ 0 we have

dV (x(t), r(t)) = LV (x(t), x(δt), r(t), t)dt+ dM(t), (4.17)
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where M(t) is a continuous local martingale with M(0) = 0 and LV : Rn × Rn × S × R+ → R is

defined by

LV (x, y, i, t) = Vx(x, i)[f(x, i, t) + u(y, i, t)] +
1

2
trace[gT (x, i, t)Vxx(x, i)g(x, i, t)] +

∑
j∈S

γijV (x, j).

We compute

LV (x, y, i, t) = 2ηi
[
xT [f(x, i, t) + u(y, i, t)] +

1

2
|g(x, i, t)|2

]
+(q1 + 1)η̃i|x|q1−1xT [f(x, i, t) + u(y, i, t)] +

q1 + 1

2
η̃i|x|q1−1|g(x, i, t)|2

+
(q1 + 1)(q1 − 1)

2
η̃i|x|q1−3|xT g(x, i, t)|2

+
{

(p+ q1 − 1)η̄i|x|p+q1−3xT [f(x, i, t) + u(y, i, t)]

+
p+ q1 − 1

2
η̄i|x|p+q1−3|g(x, i, t)|2

+
(p+ q1 − 1)(p+ q1 − 3)

2
η̄i|x|p+q1−5|xT g(x, i, t)|2

}
1{i∈S1}

+
∑
j∈S

γijηj |x|2 +
∑
j∈S

γij η̃j |x|q1+1 +
∑
j∈S1

γij η̄j |x|q1+p−1. (4.18)

On the other hand, it is easy to see that

d
(
ψ

∫ 0

−τ

∫ t

t+s
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dvds

)
= ψτ [τ |f(x(t), r(t), t) + u(x(δt), r(t), t)|2 + |g(x(t), r(t), t)|2]

−ψ
∫ t

t−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv. (4.19)

Substituting (4.17) and (4.19) into (4.16) yields

dV̂ (x̂t, r̂t, t) ≤ LV (x(t), x(δt), r(t), t)dt+ dM(t)

+ψτ [τ |f(x(t), r(t), t) + u(x(δt), r(t), t)|2 + |g(x(t), r(t), t)|2]

−ψ
∫ t

t−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv. (4.20)

Furthermore, recalling u(x, i, t) = 0, i ∈ S1, it follows from (4.18) and (4.8) that

LV (x, y, i, t) ≤ L1V (x, i, t) +
{

(2ηi + (q1 + 1)η̃i|x|q1−1)xT [u(y, i, t)− u(x, i, t)]
}

1{i∈S2}.

This, together with (4.20), implies that

dV̂ (x̂t, r̂t, t) ≤ LV̂ (x̂t, r̂t, t) + dM(t), (4.21)

where

LV̂ (x̂t, r̂t, t) = L1V (x(t), r(t), t)
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+
{

(2ηr(t) + (q1 + 1)η̃r(t)|x(t)|q1−1)xT (t)[u(x(δt), r(t), t)− u(x(t), r(t), t)]
}

1{r(t)∈S2}

+ψτ [τ |f(x(t), r(t), t) + u(x(δt), r(t), t)|2 + |g(x(t), r(t), t)|2]

−ψ
∫ t

t−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv. (4.22)

Then by virtue of Theorem 3.3, Assumption 2.1, 2.2 and Rule 3.2, we have

sup
0≤t<∞

E|LV̂ (x̂t, r̂t, t)| < C. (4.23)

Step 2: Let us now estimate LV̂ (x̂t, r̂t, t). Choose ψ = κ2/ρ1. Recalling |u(x, i, t)| ≤ κ|x|, i ∈ S2,

we obtain {
(2ηr(t) + (q1 + 1)η̃r(t)|x(t)|q1−1)xT (t)[u(x(δt), r(t), t)− u(x(t), r(t), t)]

}
1{r(t)∈S2}

≤
{

(2ηr(t)|x(t)|+ (q1 + 1)η̃r(t)|x(t)|q1)κ|x(δt)− x(t)|
}

1{r(t)∈S2}

≤
{
ρ1(2ηr(t)|x(t)|+ (q1 + 1)η̃r(t)|x(t)|q1)2 +

κ2

4ρ1
|x(δt)− x(t)|2

}
1{r(t)∈S2}.

From (4.13), we see that 2ψτ 2 ≤ ρ2 and ψτ ≤ ρ3. Noting that u(x, i, t) = 0 for i ∈ S1 and

|u(x, i, t)| ≤ κ|x| for i ∈ S2, it follows from Lemma 4.3 and (4.22) that

LV̂ (x̂t, r̂t, t)

≤ L1V (x(t), r(t), t) +
{
ρ1(2ηr(t)|x(t)|+ (q1 + 1)η̃r(t)|x(t)|q1)2 +

κ2

4ρ1
|x(δt)− x(t)|2

}
1{r(t)∈S2}

+ρ2|f(x(t), r(t), t)|2 +
{

2ψτ2κ2|x(δt)|2
}

1{r(t)∈S2} + ρ3|g(x(t), r(t), t)|2

−κ
2

ρ1

∫ t

t−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv

≤ −ρ0|x(t)|2 − |x(t)|q1+1 +
{ κ2

4ρ1
|x(δt)− x(t)|2 +

2τ2κ4

ρ1
|x(δt)|2

}
1{r(t)∈S2}

−κ
2

ρ1

∫ t

t−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv.

In light of (4.13), we have

2τ2κ4

ρ1
|x(δt)|2 ≤

4τ2κ4

ρ1
|x(t)|2 +

κ2

4ρ1
|x(δt)− x(t)|2.

We therefore have

LV̂ (x̂t, r̂t, t) ≤ −ρ0|x(t)|2 − |x(t)|q1+1 +
{ κ2

2ρ1
|x(δt)− x(t)|2 +

4τ2κ4

ρ1
|x(t)|2

}
1{r(t)∈S2}

−κ
2

ρ1

∫ t

t−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv

≤ −(ρ0 −
4τ2κ4

ρ1
)|x(t)|2 − |x(t)|q1+1 +

{ κ2

2ρ1
|x(δt)− x(t)|2

}
1{r(t)∈S2}
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−κ
2

ρ1

∫ t

t−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv. (4.24)

Step 3: For any initial value x0, choose l0 large enough such that |x0| ≤ l0. For each integer l ≥ l0,

define a stopping time

ζl = inf{t ≥ 0 : |x(t)| ≥ l},

where we use the convention that inf ∅ =∞. Theorem 3.3 indicates that ζl is increasing to infinity

with probability 1 as l→∞. By the generalized Itô formula, it follows from (4.21) that

EV̂ (x̂t∧ζl , r̂t∧ζl , t ∧ ζl) ≤ V̂ (x̂0, r̂0, 0) + E
∫ t∧ζl

0
LV̂ (x̂s, r̂s, s)ds, t ≥ 0.

By virtue of (4.23), the dominated convergence theorem and the Fubini theorem, letting l → ∞
yields

EV̂ (x̂t, r̂t, t) ≤ V̂ (x̂0, r̂0, 0) +

∫ t

0
ELV̂ (x̂s, r̂s, s)ds. (4.25)

By (4.24), we have

ELV̂ (x̂s, r̂s, s) ≤ −(ρ0 −
4τ2κ4

ρ1
)E|x(s)|2 − E|x(s)|q1+1 +

κ2

2ρ1
E
{
|x(δs)− x(s)|21{r(s)∈S2}

}
−κ

2

ρ1
E
∫ s

s−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv. (4.26)

On the other hand, by (3.9), we have

E
{
|x(δs)− x(s)|21{r(s)∈S2}

}
≤ E|x(δs)− x(s)|2

= E|
∫ s

δs

[f(x(v), r(v), v) + u(x(δv), r(v), v)]dv +

∫ s

δs

g(x(v), r(v), v)dB(v)|2

≤ 2E
∫ s

δs

[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv

≤ 2E
∫ s

s−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv. (4.27)

Substituting (4.26) into (4.25) yields

EV̂ (x̂t, r̂t, t)) ≤ V̂ (x̂0, r̂0, 0)−
∫ t

0
(ρ0 −

4τ2κ4

ρ1
)E|x(s)|2ds−

∫ t

0
E|x(s)|q1+1ds.

By virtue of (4.13), ρ0 > 4τ2κ4/ρ1, we have∫ t

0
E|x(s)|2ds < V̂ (x̂0, r̂0, 0)

(ρ0 − 4τ2κ4

ρ1
)
,

∫ t

0
E|x(s)|q1+1ds <

V̂ (x̂0, r̂0, 0)

(ρ0 − 4τ2κ4

ρ1
)
.

This, together with E|x(s)|q̄ ≤ E|x(s)|2 + E|x(s)|q1+1 for any q̄ ∈ [2, q1 + 1], yields that∫ ∞
0

E|x(s)|q̄ds < C,

which is the desired assertion (4.14). Furthermore, following the line to derive the Theorem 4.5

in [17], we can derive the required conclusion (4.15).
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4.2 Exponential stabilisation

In this section, we will show that the controlled system (3.9) is stable in the sense of both Lq̄ (q̄ ∈
[2, q)) and almost sure exponential stability for proper control function u and sufficient small τ .

For this purpose, let us present a lemma and introduce some constants which will be used in the

Theorem 4.6 below.

Lemma 4.5. Let Assumptions 2.1,2.2 and Rules 3.2, 4.2 hold. There exist positive constants ρ̄0–ρ̄5

with ρ̄j ≤ ρj(j = 0, 1, 2, 3) and function H satisfying ρ̄4|x|p+q1−1 ≤ H(x) ≤ ρ̄5(1 + |x|p+q1−1) such

that for each i ∈ S

L1V (x, i, t) + ρ̄1(2ηi|x|+ (q1 + 1)η̃i|x|q1)2 + ρ̄2|f(x, i, t)|2 + ρ̄3|g(x, i, t)|2 ≤ −ρ̄0|x|2 −H(x).

Proof. Let

W̄ (x, i, t) = L1V (x, i, t) + ρ̄1(2ηi|x|+ (q1 + 1)η̃i|x|q1)2 + ρ̄2|f(x, i, t)|2 + ρ̄3|g(x, i, t)|2.

Following the line to prove Lemma 4.3 and similar to (4.12), we choose appropriate positive con-

stants ρ̄j with ρ̄j ≤ ρj(1 ≤ j ≤ 3) such that

8ρ̄1 max
i∈S

η2
i + 2ρ̄1(q1 + 1)2 max

i∈S
η̃2
i + 4(ρ̄2 + ρ̄3)K2 ≤ 0.5,

2ρ̄1(q1 + 1)2 max
i∈S

η̃2
i + 2(ρ̄2 + ρ̄3)K2 ≤ 0.5D.

We then have

W̄ (x, i, t) ≤ −0.5|x|2 − |x|q1+1 − 0.5D|x|p+q1−1.

Let H(x) = |x|q1+1 + 0.5D|x|p+q1−1, ρ̄4 ∈ (0, 0.5D], ρ̄5 ∈ [0.5D + 1,∞). Recalling (q1 + 1) ≤
(p+ q1 − 1), we have

ρ̄4|x|p+q1−1 ≤ H(x) ≤ ρ̄5(1 + |x|p+q1−1).

Let ρ̄0 = ρ0, Lemma 4.3 shows W̄ (x, i, t) ≤ −ρ̄0|x|2 −H(x) and the desired assertion follows.

Theorem 4.6. Let the conditions of Lemma 4.5 hold. Assume further

τ <

√
ρ̄0ρ̄1

2κ2
and τ ≤

√
ρ̄1ρ̄2√
2κ
∧ ρ̄1ρ̄3

κ2
∧ 1

4
√

2κ
, (4.28)

where ρ̄0–ρ̄3 come from Lemma 4.5. then the solution of the controlled system (3.9) satisfies

lim sup
t→∞

1

t
log(E|x(t)|q̄) < 0, ∀ q̄ ∈ [2, q) (4.29)

and

lim sup
t→∞

1

t
log(|x(t)|) < 0, a.s.. (4.30)
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Proof. Let V̂ (x̂t, r̂t, t) be given by (4.16) with the ψ = κ2/ρ̄1. Similar to (4.25), we have

eεtEV̂ (x̂t, r̂t, t) ≤ V̂ (x̂0, r̂0, 0) +

∫ t

0
eεsE

(
εV̂ (x̂s, r̂s, s) + LV̂ (x̂s, r̂s, s)

)
ds,

where ε is a sufficiently small positive number to be determined later. Let

a1 = min
i∈S

ηi, a2 = max
i∈S

ηi, a3 = max
i∈S1

η̄i, a4 = max
i∈S

η̃i.

We then obtain that

a1e
εtE|x(t)|2 ≤ V̂ (x̂0, r̂0, 0) +

εκ2

ρ̄1
Φ1(t) +

∫ t

0
eεs
(
a2εE|x(s)|2

+a3εE|x(s)|p+q1−1 + a4εE|x(s)|q1+1 + ELV̂ (x̂s, r̂s, s)
)
ds,

where

Φ1(t) = E
∫ t

0
eεs
∫ 0

−τ

∫ s

s+u
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dvduds.

Noting that |x(s)|q1+1 ≤ |x(s)|2 + |x(s)|p+q1−1, we have

a1e
εtE|x(t)|2 ≤ V̂ (x̂0, r̂0, 0) +

εκ2

ρ̄1
Φ1(t) +

∫ t

0
eεs
(

(a2 + a4)εE|x(s)|2

+(a3 + a4)εE|x(s)|p+q1−1 + ELV̂ (x̂s, r̂s, s)
)
ds. (4.31)

Applying Lemma 4.5 and a similar argument to derive (4.24) yields

LV̂ (x̂s, r̂s, s) ≤ −ρ̄0|x(s)|2 −H(x(s)) +
{3κ2

8ρ̄1
|x(δs)− x(s)|2 +

4τ2κ4

ρ̄1
|x(s)|2

}
1{r(s)∈S2}

−κ
2

ρ̄1

∫ s

s−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv

≤ −(ρ̄0 −
4τ2κ4

ρ̄1
)|x(s)|2 −H(x(s)) +

{3κ2

8ρ̄1
|x(δs)− x(s)|2

}
1{r(s)∈S2}

−κ
2

ρ̄1

∫ s

s−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv.

By virtue of (4.27), we have

ELV̂ (x̂s, r̂s, s) ≤ −(ρ̄0 −
4τ2κ4

ρ̄1
)E|x(s)|2 − EH(x(s))− κ2

4ρ̄1
E
∫ s

s−τ
[τ |f(x(v), r(v), v)

+u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dv.

This, together with (4.31), implies that

a1e
εtE|x(t)|2 ≤ V̂ (x̂0, r̂0, 0) +

εκ2

ρ̄1
Φ1(t)− κ2

4ρ̄1
Φ11(t)

+

∫ t

0
eεs
(
− (ρ̄0 −

4τ2κ4

ρ̄1
− (a2 + a4)ε)E|x(s)|2
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+(a3 + a4)εE|x(s)|p+q1−1 − EH(x(s))
)
ds,

where

Φ11(t) = E
∫ t

0
eεs
∫ s

s−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dvds.

It can be easily observed that

Φ1(t) ≤ E
∫ t

0
eεsτ

∫ s

s−τ
[τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2]dvds

= τΦ11(t).

Moreover, Lemma 4.5 gives ρ̄4|x|p+q1−1 ≤ H(x), and hence |x(s)|p+q1−1 ≤ ρ̄−1
4 H(x(s)). This implies

a1e
εtE|x(t)|2 ≤ V̂ (x̂0, r̂0, 0) + (ετ − 1

4
)
κ2

ρ̄1
Φ11(t) +

∫ t

0
eεs
(
− [ρ̄0 −

4τ2κ4

ρ̄1

−(a2 + a4)ε]E|x(s)|2 − (1− (a3 + a4)ε

ρ̄4
)EH(x(s))

)
ds. (4.32)

We can choose a sufficiently small ε > 0 such that

ετ ≤ 1

4
, (a2 + a4)ε ≤ ρ̄0 −

4τ2κ4

ρ̄1
,

(a3 + a4)ε

ρ̄4
≤ 1.

By (4.28), we have ρ̄0 > 4τ2κ4/ρ̄1. Then it follows from (4.32) that

E|x(t)|2 ≤ (V̂ (x̂0, r̂0, 0)/a1)e−εt, ∀t ≥ 0. (4.33)

For any q̄ ∈ (2, q), applying the Hölder inequality gives

E|x(t)|q̄ ≤ [E(|x(t)|2)](q−q̄)/(q−2)[E|x(t)|q])(q̄−2)/(q−2)

≤ C(q̄−2)/(q−2)(E(|x(t)|2)(q−q̄)/(q−2), (4.34)

where in the last inequality we used the result (3.10). Substituting (4.33) into (4.34) yields

E|x(t)|q̄ ≤ C(q̄−2)/(q−2)(V̂ (x̂0, r̂0, 0)/a1)e−εt(q−q̄)/(q−2).

Then the desired result (4.29) follows. Finally, by a similar approach to derive the Theorem 5.4

in [17], we can obtain the assertion (4.30). This proof is completed.

5 Example

The following example will illustrate our idea.

Example 5.1. Consider a scalar hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t), (5.1)
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where f and g are defined as follows:

f(x, i, t) =



0.5x, if i = 1

0.2x, if i = 2

x− x3, if i = 3

2x− 2x3, if i = 4

and g(x, i, t) =



0.2x, if i = 1

0.3x, if i = 2

0.1|x|3/2, if i = 3

0.3|x|3/2, if i = 4,

B(t) is a scalar Brownian motion, and r(t) is a Markov chain with the state space S = {1, 2, 3, 4}
and the generator

Γ =


−8 1 4 3

1 −6 2 3

1 1 −3 1

1 1 0 −2


Let S1 = {1, 2}, S2 = {3, 4}. It is straightforward to show that the Assumptions 2.1, 2.2 are satisfied

for

p = 4, q = 6, q1 = 3, q2 = 1.5, β̄1 = 0.64, β̄2 = 0.515, α = 0.9875, ε1 = 1.0125, ε2 = 2.1125, (5.2)

and

D =

(
2.88 −1

−1 −1.88

)
, D−1 =

(
0.4259 0.2265

0.2265 0.6524

)
.

By Lemma 2.1 and (3.2), D is a nonsingular M-matrix and (θ1, θ2) = (0.6524, 0.8789). Theorem

3.1 shows the underlying system (3.1) obeys sup0≤t<∞ E|x(t)|6 < C. However, the simulation with

initial value x(0) = 1 and r(0) = 1 (Figure 1(a)) shows that this hybrid SDE (5.1) is not stable.

Assume that the system is observable when it operates in mode S2. We design a feedback control

relying only on mode S2. Accordingly, we take the control function u : R×S×R+ → R as follows:

u(x, i, t) = 0, i ∈ S1 and u(x, i, t) = −3x, i ∈ S2. (5.3)

Obviously, Rule 3.2 is satisfied with κ = 3. By Theorem 3.3, the controlled system

dx(t) = [f(x(t), r(t), t) + u(x(δt), r(t), t)]dt+ g(x(t), r(t), t)dB(t) (5.4)

has a unique global solution with sup0≤t<∞ E|x(t)|6 < C.

We compute for i ∈ S1,

xT [f(x, i, t) + u(x, i, t)] +
1

2
|g(x, i, t)|2 =

0.52x2 if i = 1,

0.245x2 if i = 2,

xT [f(x, i, t) + u(x, i, t)] +
q1

2
|g(x, i, t)|2 =

0.56x2 if i = 1,

0.335x2 if i = 2,
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and for i ∈ S2,

xT [f(x, i, t) + u(x, i, t)] +
1

2
|g(x, i, t)|2 =

−2x2 − x4 + 0.5× 0.01|x|3 if i = 3,

−x2 − 2x4 + 0.5× 0.09|x|3 if i = 4.

Noting that |x|3 ≤ 0.5x2 + 0.5x4, hence for i ∈ S2, we have

xT [f(x, i, t) + u(x, i, t)] +
1

2
|g(x, i, t)|2 =

−1.9975x2 − 0.9975x4 if i = 3,

−0.9775x2 − 1.9775x4 if i = 4.

Similarly,

xT [f(x, i, t) + u(x, i, t)] +
q1

2
|g(x, i, t)|2 =

−1.9925x2 − 0.9925x4 if i = 3,

−0.9325x2 − 1.9325x4 if i = 4.

Hence, (4.3) and (4.4) hold for

β1 = 0.52, β2 = 0.245, β3 = −1.9975, β4 = −0.9775,

β̃1 = 0.56, β̃2 = 0.335, β̃3 = −1.9925, β̃4 = −0.9325,

α3 = 0.9975, α4 = 1.9775, α̃3 = 0.9925, α̃4 = 1.9325.

Then we have

B =


6.96 −1 −4 −3

−1 5.51 −2 −3

−1 −1 6.995 −1

−1 −1 0 3.955

 and B1 =


5.76 −1 −4 −3

−1 4.66 −2 −3

−1 −1 10.97 −1

−1 −1 0 5.73

 .

Note that

B−1 =


0.233 0.1312 0.1707 0.3194

0.1122 0.2909 0.1473 0.3430

0.0618 0.0756 0.1999 0.1548

0.0873 0.1067 0.0804 0.4203

 and B−1
1 =


0.2536 0.1262 0.1155 0.2190

0.1123 0.3109 0.0976 0.2386

0.0392 0.0468 0.1140 0.0649

0.0639 0.0763 0.0372 0.2544

 .

By (5.2), we have β̄1 = 0.64, β̄2 = 0.515. Then we obtain

B2 =

(
4.16 −1

−1 2.91

)
and B−1

2 =

(
0.262 0.09

0.09 0.3746

)
.

By Lemma 2.1, B,B1 and B2 are all nonsingular M-matrix. Then it follows from (4.6) that

(η1, η2, η3, η4) = (0.8543, 0.8934, 0.4921, 0.6947),

(η̃1, η̃2, η̃3, η̃4) = (0.7134, 0.7594, 0.2649, 0.4318),

D = 0.5451,
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(η̄1, η̄2)T = (0.1919, 0.2533).

By (4.11), L1V (x, i, t) ≤ −x2 − x4 − 0.5451x6. Moreover, we have

(2ηi|x|+ (q1 + 1)η̃i|x|q1)2 ≤ 3.1927x2 + 10.8552x4 + 9.227x6,

|f(x, i, t)|2 ≤ 4x2 + 8x4 + 4x6,

|g(x, i, t)|2 ≤ 0.2025x2 + 0.0675x4.

Take ρ̄1 = 0.05, ρ̄2 = 0.01, ρ̄3 = 1. Then we obtain

L1V (x, i, t) + ρ̄1(2ηi|x|+ (q1 + 1)η̃i|x|q1)2 + ρ̄2|f(x, i, t)|2 + ρ̄3|g(x, i, t)|2 ≤ −0.5979x2 −H(x),

where H(x) = 0.3097x4 + 0.0437x6. That is, Lemma 4.5 is satisfied with 0 < ρ̄0 ≤ 0.5979,

0 < ρ̄4 ≤ 0.0437, ρ̄5 ≥ 0.3534. Consequently, the condition (4.28) becomes τ < 0.0053. By

Theorems 4.6, the controlled system (5.4) with the control function (5.3) is not only exponentially

stable in Lq̄ for q̄ ∈ [2, 6), but also almost surely provided τ < 0.0053. To illustrate the stability

of controlled system (5.4), we perform a simulation with τ = 0.005 and initial data x(0) = 1 and

r(0) = 1 to support our theoretical results, which is shown in Figure 1(b).
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(a) The computer simulation of the sample paths of the Markov

chain and the solution of the Eq.(5.1) using the Euler-Maruyama

method with step size 10−4.
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(b) The computer simulation of the sample paths of the Markov

chain and the solution of the Eq.(5.4) using the Euler-Maruyama

method with step size 10−4.

Figure 1: simulation
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