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Stability analysis and observer design for

decentralized TS fuzzy systems

Zs. Lendek R. Babuška B. De Schutter

Abstract—A large class of nonlinear systems can be well
approximated by Takagi-Sugeno (TS) fuzzy models, with linear
or affine consequents. It is well-known that the stability of these
consequent models does not ensure the stability of the overall
fuzzy system. Stability conditions developed for TS fuzzy systems
in general rely on the feasibility of an associated system of linear
matrix inequalities, whose complexity may grow exponentially
with the number of rules. We study distributed systems, where
the subsystems are represented as TS fuzzy models. For such
systems, a centralized analysis is often unfeasible. We analyze
the stability of the overall TS system based on the stability of
the subsystems and the strength of the interconnection terms. For
naturally distributed applications, such as multi-agent systems,
when adding new subsystems “on-line”, the construction and
tuning of a centralized observer is often intractable. Therefore,
we also propose a decentralized approach to observer design.
Applications of such systems include distributed process control,
traffic networks, and economic systems.

I. INTRODUCTION

MANY physical systems, such as power systems, com-

munication networks, economic systems, and traf-

fic networks are composed of interconnections of lower-

dimensional subsystems. In recent years, the decentralized

analysis and control of large-scale interconnected systems

has received much attention. A decentralized control scheme

usually alleviates the computational costs associated with

the centralized control scheme. Also, if new subsystems can

be added online, the control scheme does not have to be

redesigned.

In this paper we consider the stability analysis of a de-

centralized system. This class of systems is very important,

as many systems are naturally distributed (e.g., multi-agent

systems) or cascaded (e.g., hierarchical large-scale systems).

Others, though centralized, may be represented as a collection

consisting of distributed subsystems, that are less complex

than the original system. Earlier works focused on linear

systems [1], [2]. However, most physical systems are non-

linear. For practical applications, the linear analysis/synthesis

is in general applicable to linearized models of large-scale

systems. The disadvantage is that such systems fail to describe

nonlinear systems globally. An accurate approximation of a

nonlinear system can only be expected in the vicinity of an

equilibrium point. Therefore, the analysis is only valid in

a region around the operating point, and the performance

decreases over a larger domain. In the past several years,
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active research has been carried out in controller design based

on universal approximators, such as fuzzy systems and neural

networks.

A large class of nonlinear systems can be represented by

TS fuzzy models [3], which in theory can approximate a

general nonlinear system to an arbitrary degree of accuracy

[4]. The TS fuzzy model consists of a fuzzy rule base. The rule

antecedents partition a given subspace of the model variables

into fuzzy regions. The consequent of each rule is usually

a linear or affine model, valid locally in the corresponding

region.

It is well-known that the stability of these local models does

not ensure the stability of the overall fuzzy model. Stability

conditions have been derived for TS fuzzy systems, most

of them relying on the feasibility of an associated system

of linear matrix inequalities (LMI) [5]–[7]. A comprehensive

survey on the analysis of fuzzy systems can be found in [8].

Recently, much attention has also been paid to the stability of

large-scale fuzzy systems.

While decentralized control has received much attention

[12]–[17] in the context of large-scale processes and dis-

tributed systems, decentralized state estimation has not been

addressed as much as the control problem. For decentralized

state estimation, generally an architecture with several sensor

nodes is assumed, each with its own computing capabilities.

In case of a fully decentralized system, computations are

performed locally and communication takes place between

any two nodes. Each node shares information with other nodes

and computes a local estimate. Several topologies have been

proposed, depending on the particular application. In case

of large-scale processes [18], [19], the network is generally

in a hierarchical form, with several intermediate nodes and

one final fusion node. For distributed systems, such as multi-

agent societies [20], [21], several fusion nodes are used, which

process the data and send the information to the rest of the

nodes. Observers for distributed estimation include, but are

not limited, to the decentralized Kalman and the Extended

Kalman filter [22], the information filter, and several types of

particle filters [23], [24].

A generic method for the design of an observer valid for all

types of nonlinear systems has not yet been developed. For a

general nonlinear system represented by a fuzzy model, well-

established methods and algorithms can be used to design

and to compute fuzzy observers, making the analysis and

design much easier. Several types of observers have been

developed for TS fuzzy systems, among which: fuzzy Thau-

Luenberger observers [5], [9], reduced-order observers [7],

[10], and sliding-mode observers [11]. In general, the design



methods for observers also lead to an LMI feasibility problem.

However, the complexity of the LMI problem grows expo-

nentially with the number of rules and the stability analysis

problem eventually becomes intractable for a large number of

rules.

The contribution of this paper is twofold. First, we consider

the stability analysis of a decentralized system, composed

of several subsystems. Each subsystem is represented by a

TS fuzzy model. The coupling between the subsystems is

realized through their states, i.e., the states of a subsystem

may influence the dynamics of another subsystem. We propose

sequential stability analysis of the overall TS system based

on the stability of the subsystems and the strength of these

interconnection terms. Second, this approach is extended to

observer design. We design stable fuzzy observers sequentially

for the subsystems and analyze the joint stability of these

fuzzy observers. While this approach is still conservative, it

has the benefit that when adding new subsystems, the already

existing observers do not have to be altered.

The structure of the paper is as follows. Section II reviews

some results for cascaded fuzzy systems. Section III presents

the stability conditions for decentralized TS fuzzy systems.

The proposed observer design for decentralized fuzzy systems

is presented in Section IV. An example is given in Section V.

Finally, Section VI concludes the paper.

II. PRELIMINARIES

The stability conditions for TS fuzzy systems generally

depend on the feasibility of an associated LMI problem.

Since our results rely on stability conditions for cascaded TS

systems, some of the relevant stability conditions for this class

of systems are reviewed below. Throughout the paper it is

assumed that the membership functions are normalized.

A. Cascaded Fuzzy Systems

Consider the autonomous fuzzy system expressed as:

ẋ =

m∑

i=1

wi(z)Aix (1)

where Ai, i = 1, 2, . . . , m represents the ith local linear

model, wi is the corresponding normalized membership func-

tion, and z a vector of scheduling variables. System (1) can

also be written as:

ẋ = A(z)x (2)

with A(z) =
∑m

i=1
wi(z)Ai.

For system (1), several stability conditions have been

derived. Among them, a well-known and frequently used

condition is formulated as follows [5].

Theorem 1: System (1) is exponentially stable if there exists

P = PT > 0 so that AT
i P +PAT

i < 0, for i = 1, 2, . . . , m.

In what follows, two subsystems are considered, without

loss of generality. Assume that the system matrices of the

model (1) for each rule i = 1, 2, . . . ,m can be written as:

Ai =

(
A1 0
A21 A2

)

i

=

(
A1i 0
A21i A2i

)

i.e., system (1) can be expressed as a cascade of two fuzzy

systems:

ẋ1 =A1(z1)x1

ẋ2 =A21(z1, z2)x1 +A2(z1, z2)x2

(3)

with normalized membership functions w1i and w2i, x =
[xT

1 , x
T
2 ]

T , z = [zT
1 , z

T
2 ]

T , A1(z1) =
∑m

i=1
wi(z1)A1i,

A2(z) =
∑m

i=1
w2i(z)A2i, etc.

Consider now the subsystems

ẋ1 = A1(z1)x1 (4)

and

ẋ2 = A2(z1, z2)x2 (5)

The following results [25] shows that the stability of the

individual subsystems imply the stability of the cascaded

system.

Theorem 2: If there exist two Lyapunov functions of the

form V1(x1) = x
T
1 P1x1 and V2(x2) = x

T
2 P2x2 so that the

subsystems (4) and (5) are uniformly globally asymptotically

stable, then the cascaded system (3) is also uniformly globally

asymptotically stable.
Moreover, there exists α ∈ R+ so that V = x

TPx, with

P =

(
αP1 0
0 P2

)
is a Lyapunov function for (3).

B. Cascaded Fuzzy Observers

Consider now the affine fuzzy system

ẋ =

m∑

i=1

wi(z)(Aix+Biu)

y = Cx

(6)

and an observer of the form

˙̂x =

m∑

i=1

wi(z)(Aix̂+Biu+ Li(y − ŷ))

ŷ = Cx̂.

(7)

For the purpose of analysis, generally two cases are distin-

guished: 1) the scheduling vector z does not depend on the

estimated states and 2) z depends on (some of) the estimated

states, that is z = f(x̂). In this paper, it is considered that the

scheduling vector z does not depend on the estimated states.

Assuming that the system matrices for each rule i =
1, 2, . . . ,m are in cascaded form, observers can be designed

individually for each subsystem and each rule, with the

overall observer gain having the form Li =

(
L1 0
0 L2

)

i

=
(
L1i 0
0 L2i

)
, where i denotes the rule number.

The cascaded error system can be written as:

ė =

m
∑

i=1

wi(z)(Ai − LiC)e

=

m
∑

i=1

wi(z)

(

A1i − L1iC1 0
A21i − L2iC21 A2i − L2iC2

)

e.

(8)

for which the results obtained for cascaded systems can be

directly applied.



III. STABILITY OF DECENTRALIZED FUZZY SYSTEMS

Suppose that a distributed system is composed of a number

of subsystems, each subsystem being represented by a TS

fuzzy model. The subsystems are coupled through their states.

For the ease of notation and without loss of generality, only

two subsystems are considered. The subsystems are therefore

expressed as:

ẋ1 =

m∑

i=1

wi(z)(A1ix1 +A12ix2)

ẋ2 =

m∑

i=1

wi(z)(A2ix2 +A21ix1)

(9)

The structure of such a system is presented in Figure 1.

S1 C1

C2S2

x

u

x

x

x

y

y2

1
1

2

1

2

Fig. 1. Two subsystems coupled through their states.

For such a system, the following stability conditions can be

formulated:

Theorem 3: The decentralized system (9) is exponentially

stable, if there exist P1 = PT
1 > 0, P2 = PT

2 > 0, Q1 =
QT

1 > 0, Q2 = QT
2 > 0, so that

A1
T
i P1 + P1A1i < −2Q1 i = 1, 2, . . . , m

A2
T
i P2 + P2A2i < −2Q2 i = 1, 2, . . . , m

λmin(Q1(≥ max
i

‖P1A12i‖

λmin(A1
T
i P1 + P1A1i + 2Q1)

maxi ‖P1A12i‖
>

maxi ‖A21
T
i P2‖

2

λmin(Q2)λmin(A2
T
i P2 + P2A2i + 2Q2)

where λmin(.) is the eigenvalue with the smallest absolute

magnitude and ‖ · ‖ denotes the Euclidean norm.

Remark: If A12i = 0 for i = 1, 2, . . . , m or if A21i = 0
for i = 1, 2, . . . , m then based on Theorem 2, the system (9)

is stable if the individual subsystems are stable, and the last

two conditions are not needed.

Proof: Consider first the following part of the system (9):

ẋ1 =

m∑

i=1

wi(z)(A1ix1)

ẋ2 =
m∑

i=1

wi(z)(A2ix2 +A21ix1)

(10)

This is a cascaded system and it is exponentially stable, if

there exist P1 = PT
1 > 0, P2 = PT

2 > 0, Q1 = QT
1 > 0,

Q2 = QT
2 > 0 so that

A1
T
i P1 + P1A1i < −2Q1 i = 1, 2, . . . , m

A2
T
i P2 + P2A2i < −2Q2 i = 1, 2, . . . , m

Then, there exists α ∈ R+ so that Vr = x
Tdiag(αP1, P2)x

is a Lyapunov function for (10) and V̇r < −2xTQx, with
Q = diag(αQ1, Q2):

V̇r =

m
∑

i=1

wi(z)x
T

(

α(A1
T

i P1 + P1A1i) A21
T

i P2

P2A21i A2
T

i P2 + P2A2i

)

x

For V̇r < −2xTQx, it is needed that
(

α(A1
T

i P1 + P1A1i) A21
T

i P2

P2A21i A2
T

i P2 + P2A2i

)

< −2

(

αQ1 0
0 Q2

)

or
(

α(A1
T

i P1 + P1A1i + 2Q1) A21
T

i P2

P2A21i A2
T

i P2 + P2A2i + 2Q2

)

< 0

Using the Schur complement, we have

α(A1
T
i P1 + P1A1i + 2Q1)−

(A21
T
i P2)(A2

T
i P2 + P2A2i + 2Q2)

−1P2A21i < 0

which can be satisfied by choosing α such that

α >

maxi ‖A21
T

i P2‖
2

λmin(A1
T

i P1 + P1A1i + 2Q1)λmin(A2
T

i P2 + P2A2i + 2Q2)
(11)

Now, consider the full system (9). By using the above con-
structed Vr as a Lyapunov function for (9), we obtain:

V̇r

=

m
∑

i=1

wi(z)x
T (

(

α(A1
T

i P1 + P1A1i) A21
T

i P2

P2A21i A2
T

i P2 + P2A2i

)

+

(

0 αP1A12i

αA12iP1 0

)

)x

< −2xT

(

αQ1 0
0 Q2

)

x+ 2xT
αmax

i

‖P1A12i‖x

< −2xT









(

α(Q1−
maxi ‖P1A12i‖I)

)

0

0

(

Q2−
αmaxi ‖P1A12i‖I

)









x

which leads to the conditions

λmin(Q1) > maxi ‖P1A12i‖ (12)

λmin(Q2) > αmaxi ‖P1A12i‖ (13)

Combining (11) and (13), we get that such an α exists iff

λmin(Q2)

maxi ‖P1A12i‖
>

maxi ‖A21
T

i P2‖
2

λmin(A1
T

i P1 + P1A1i + 2Q1)λmin(A2
T

i P2 + P2A2i + 2Q2)

or
λmin(A1

T

i P1 + P1A1i + 2Q1)

maxi ‖P1A12i‖
>

maxi ‖A21
T

i P2‖
2

λmin(Q2)λmin(A2
T

i P2 + P2A2i + 2Q2)
�



The last condition of Theorem 3 couples the subsystems,

and therefore the analysis. However, if ck = maxi ‖Aki‖
is known beforehand, the analysis of the subsystems can be

decoupled by imposing for all subsystems the conditions:

λminQk ≥ ck‖Pk‖

λmin(Ak
T
i Pk + PkAki + 2Qk) ≥ βck‖Pk‖

where β > 1 is an arbitrary constant and k is the number of

the subsystem.

IV. DECENTRALIZED OBSERVER DESIGN

Consider now the distributed fuzzy system:

ẋ1 =

m∑

i=1

wi(z)(A1ix1 +B1iu+A12ix2)

y1 = C1x1

ẋ2 =
m∑

i=1

wi(z)(A2ix2 +B2iu+A21ix1)

y2 = C2x2

(14)

for which a decentralized observer has to be designed. It is

assumed that the membership functions are normalized and

the scheduling vector does not depend on the states to be

estimated. The observer considered is of the form:

˙̂x1 =

m∑

i=1

wi(z)(A1ix̂1 +B1iu+A12ix̂2 + L1i(y1 − ŷ1))

ŷ1 = C1x̂1

˙̂x2 =

m∑

i=1

wi(z)(A2ix̂2 +B2iu+A21ix̂1 + L2i(y2 − ŷ2))

ŷ2 = C2x̂2

(15)

The goal is to design the observer gains L1i, L2i, i =
1, 2, . . . , m for each subsystem and rule, so that (15) is a

stable observer. Even though the observer gains are designed

individually for the subsystems, the subsystems are cou-

pled. Contrary to the stabilization problem, when designing

observers for distributed systems it is necessary that the

(estimated) states of a subsystem that influences another are

available to the subsystem that is being influenced. In this

sense the design is not fully decentralized. The observer

structure is depicted in Figure 2.

Observer 1

Observer 2
x2

x1

y1

u

y2

^

^

Fig. 2. Decentralized observers for two subsystems.

The error systems can be expressed as:

ė1 =

m∑

i=1

wi(z)[A1ie1 − L1iC1e1 +A12ie2]

ey1 = C1e1

ė2 =

m∑

i=1

wi(z)[A2ie2 − L2iC2e2 +A21ie1]

ey2 = C2e2

(16)

or

ė =

m∑

i=1

wi(z)

[
A1 − L1C1 A12

A21 A2 − L2C2

]

i

e (17)

Using the results from Section III, it can be stated that:

Corollary 1: The error system (17) is exponentially stable,

if there exist L1i, L2i, i = 1, 2, . . . , m, P1 = PT
1 > 0,

P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, so that

G1
T
i P1 + P1G1i < −2Q1 i = 1, 2, . . . , m

G2
T
i P2 + P2G2i < −2Q2 i = 1, 2, . . . , m

λmin(Q1) ≥ max
i

‖P1A12i‖

λmin(G1
T
i P1 + P1G1i + 2Q1)

maxi ‖P1A12i‖
>

maxi ‖A21
T
i P2‖

2

λmin(Q2)λmin(G2
T
i P2 + P2G2i + 2Q2)

where G1i = (A1 − L1C)i and G2i = (A2 − L2C)i.

Remark: If A12i, i = 1, 2, . . . , m or A21i, i =
1, 2, . . . , m are zero, then again the last two conditions are

not needed.

Applying Corollary 1 to a practical problem may become

tedious, as the observers for the subsystems need to be

designed sequentially. For instance, for two subsystems, first

L2i, i = 1, 2, . . . , m, P2 = PT
2 > 0, Q2 = QT

2 > 0, need to

be determined and afterwards L1i, i = 1, 2, . . . , m, so that

the conditions of Corollary 1 are satisfied. However, when

new subsystems are added, such a sequential design is an

advantage as the observers for the already existing subsystems

do not need to be redesigned.

For two subsystems, the design can be decoupled by ana-

lyzing the last condition of Corollary 1. Since λmin(Q2) can

vary between 0 and λmin(G2
T
i P2+P2G2i)/2, the expression

λminQ2λmin(G2
T
i P2 + P2G2i)

is maximized at λmin(Q
∗

2) = λmin(G2
T
i P2 + P2G2i)/4 and

if there exists such a Q∗

2, we obtain

maxi ‖A21
T
i P2‖

2

λmin(Q∗

2)λmin(G2
T
i P2 + P2G2i + 2Q∗

2)
≤

maxi ‖A21
T
i P2‖

2

2λ2
min

(Q∗

2)
.

Second, if λmin(G1
T
i P1 + P1G1i) < (2 + γ)λmin(Q1) for

some γ > 0, then

λmin(G1
T
i P1 + P1G1i + 2Q1)

maxi ‖P1A12i‖
> γ.



By choosing γ = 1/2, conservativeness is introduced, and

the condition λmin(Q2) > maxi ‖A21
T
i P2‖ is obtained. To

have the same design for each subsystem, the first condition

Corollary 1 should be restricted to G1
T
i P1+P1G1i < −4Q1.

Then, the stability conditions can be summarized as follows:

Corollary 2: The error system (17) is exponentially stable,

if there exist Lki, i = 1, 2, . . . , m, Pk = PT
k > 0, Qk =

QT
k > 0 so that

Gk
T
i Pk + PkGki < −4Qk i = 1, 2, . . . , m

λmin(Qk) ≥ max
i

‖PkAki‖

where Gki = (Ak−LkC)i and k is the index of the subsystem.

V. EXAMPLE

Here we give a numerical example to illustrate the de-

centralized observer design. Consider a decentralized system,

composed of two subsystems, as follows:

1) Subsystem 1:

Rule 1: If z1 is small then

ẋ1 =

(
−2 3
1.5 −2.2

)
x1 +

(
0.08 0.05
0.08 0.05

)
x2 +

(
1
2

)
u

y1 = (1 0)x1

Rule 2: If z1 is big then

ẋ1 =

(
−3 1
5 −3

)
x1 +

(
0.1 0.06
0.09 0.2

)
x2 +

(
1
2

)
u

y1 = (1 0)x1

2) Subsystem 2:

Rule 1: If z2 is small then

ẋ2 =

(
−3 1
5 −3

)
x2 +

(
0.2 0.12
0.2 0.12

)
x1 +

(
3
4

)
u

y2 = (1 0)x2

Rule 2: If z2 is big then

ẋ2 =

(
−2 1
3 −0.3

)
x2 +

(
0.1 0.36
0.06 0.36

)
x1 +

(
3
4

)
u

y2 = (1 0)x2

The scheduling vectors z1 and z2 are independent, but with

the same membership functions (see Figure 3). The observers

0 0.5 1 1.5 2
0

0.5

1

z
1

(z
1
)

bigsmall

µ

Fig. 3. Membership function of z1.

were designed independently, using the conditions of Corol-

lary 2, and based on the assumption that for each subsystem

the maximum of the norm of the interconnection terms is

known beforehand:

c1 = max

{∥∥∥∥
(
0.08 0.05
0.08 0.05

)∥∥∥∥ ,
∥∥∥∥
(
0.1 0.06
0.09 0.2

)∥∥∥∥
}

= 0.24

c2 = max

{∥∥∥∥
(
0.2 0.12
0.2 0.12

)∥∥∥∥ ,
∥∥∥∥
(
0.1 0.36
0.06 0.36

)∥∥∥∥
}

= 0.52

Then, the LMIs

GT
kiPk + PkGki < −4Qk(
4(Qk − c2k) Pk

Pk I

)
< 0

k = 1, 2, i = 1, 2 are solved, obtaining L11 =

(
4.89
5.75

)
, L12 =

(
2.89
7.25

)
, L21 =

(
8.89
48.34

)
, and L22 =

(
9.54
41.89

)
.

A typical error trajectory can be seen in Figure 4. For

simulation purposes, the system was discretized using the

Euler method and a sampling period of T = 0.05 s. This

particular trajectory was computed for a randomly generated

input and scheduling vector, with the true initial state being

[0.1 1 3 0]T and the estimated initial state being [1 0.2 0 6]T .

As expected, the error converges asymptotically to zero.

A centralized system was obtained by taking all possible

0.5 1 1.5 2 2.5
−2

0

2

Time [s]

11

x
12

0.5 1 1.5 2 2.5
−10

−5

0

5

Time [s]

x
21

x
22

x

x
2

x
1

Fig. 4. Error for the two subsystems with decentralized design.

combinations of the subsystems and an observer has been

designed for this centralized system. This means that both

the number of rules and the dimension of the LMI problem

to be solved increases. In the presented case, only 4 LMIs of

dimension 4 needs to be solved. However, the number of rules

of the centralized system may increase exponentially with the

number of subsystems, and therefore the analysis can easily

become unfeasible.

The error trajectory, obtained by using the same simulation

conditions as for the decentralized system can be seen in

Figure 5.
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VI. CONCLUSIONS

Many physical systems, such as power systems, communi-

cation networks, economic systems and traffic networks are

composed of interconnections of lower-dimensional subsys-

tems. In this paper, the stability of such decentralized systems

was studied for the case when the subsystems are represented

as TS fuzzy systems. The proposed approach reduces the

dimension of the problem to be solved, by analyzing the

stability of the overall system based on the individual subsys-

tems and the strength of the interconnection terms. We have

also extended this setting to state estimation. Observers can

be designed for the individual subsystems sequentially. This

partitioning of a process and observer leads to an increased

modularity and a reduced complexity of the problem. The

benefits of the proposed approach have been demonstrated on

a simulation example.
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