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Abstract—Utilizing high-order passive filters for the
voltage-source converters is becoming attractive in in-
dustrial applications due to the excellent attenuation
performance, smaller size, and lower cost. The LCL, the
multituned traps, and recently the combined LCL with
multituned traps (LCL-mT) are the most popular high-order
filters. However, the increased number of elements and
the inherent resonances complicate both filter parameter
design and current control loop stabilization, especially,
in the presence of parameter uncertainties and wide
variations of the grid inductance. Hence, in this paper
a straightforward and robust design procedure for the
LCL-mT filter is proposed. Compared to the existing
methods, the proposed technique is not iterative and
satisfies the traditional practical limits on filter parameters,
while ensures stability even in the presence of wide grid
inductance variations and filter parameter uncertainties.
The validity and effectiveness of the proposed method are
proved by simulation and experimental results.

Index Terms—Delay-based stabilization, LCL and traps
filters, single-loop control, voltage-source converter.

I. INTRODUCTION

E
VER increasing energy demands along with rising cost

and environmental concerns about conventional energy re-

sources have attracted considerable attention to distributed gen-

eration powered by renewable resources. The generated power

in distributed generation systems is normally injected to the

power grid by voltage-source converters (VSCs) [1], [2]. In

order to attenuate the switching harmonics and generate a high-

quality sinusoidal current waveform, VSCs are connected to

the grid through a low-pass filter. This filter is traditionally a

simple inductance. Compared to the simple L filter, the higher

order filters, such as LCL, multituned traps, and combination

of them, offer better attenuation performance with lower total

inductance, which may considerably reduce the volume and the

total cost of the filter [3]–[6].

However, the inherent resonance of high-order filters chal-

lenges the stability of the current control loop. To tackle the
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instability problem, several methods including passive damp-

ing, active damping, and delay-based stabilization have been

already presented [3]–[22]. Passive damping is the simplest,

which ensures stability by adding a resistor to the filter structure

at the price of reduced efficiency [7], [8]. Several active damping

methods are already proposed to ensure stability, while avoid-

ing the additional losses [9]–[17]. In these methods, damping is

achieved at the price of using extra sensors [9]–[14] or digital fil-

ters [15], [16]. Also, the control is more complicated, especially

when considering the digital implementation delays [12]–[14].

Another interesting active damping technique is just based

on the inherent delay of the digital control systems [18]–[21].

Accordingly, a simple single-loop current controlled VSC is

stable if the resonance frequency, ωres , lies in the range ωs/6 <
ωres < ωs/2 (for grid current feedback) [18], [19] and ωres <
ωs/6 or ωres > ωs/2 (for converter current feedback) [20]–[22],

in which ωs is the sampling frequency. Evidently, the delay-

based stabilization is sensitive to grid impedance variations and

uncertainties in filter parameters, which may push the resonance

frequency outside its stable range.

To even more reduce the filter volume and cost, the insertion

of multiple LC resonance branches (traps) in parallel with the

capacitor of the LCL filter is recently proposed [5], [6]. In the

LCL filter with multituned traps (LCL-mT), the LCL filter of-

fers the excellent characteristics of –60 dB/dec roll-off at high

frequencies and at the same time the traps provide significant

attenuation around the switching sideband frequencies. This fil-

ter is applicable to converters with low to medium switching

frequencies, where the switching sideband frequencies are rel-

atively close to the fundamental frequency. In this situation,

an effective harmonics filtering by the conventional filters may

affect the fundamental component. The other potential applica-

tion, as recommended by [5], is for the converters with a low

converter side inductor. While the LCL-mT combines the ad-

vantages of both LCL and traps filters, it is a complicated and

difficult task to design the filter parameters and stabilize the cur-

rent control system, especially if the number of traps increases.

In [5], a design procedure for the LCL-mT filter is presented,

in which the filter elements are chosen in accordance to some

practical criteria including the converter current ripple, the filter

reactive power and the grid current harmonics. However, the

capacitors are chosen arbitrary. In [6], a design method for the

LCL-mT filter with one trap, called LCL-LC, is also presented.

The resonance frequency characteristic is approximated, then,

the filter parameters are selected. In both [5] and [6], the passive

damping is used for stability, which introduces extra losses.
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Fig. 1. Grid-connected converter with LCL-mT filter.

In this paper, first the stability conditions, by means of the

delay-based stabilization method, for the traps resonance fre-

quencies are explored, taking into account the folding effect of

the digital system. Then, the resonance frequencies of the LCL-

mT filter without any approximation are determined, which are

used for the filter parameter design. Afterward, a filter design

procedure, simultaneously considering some practical criteria,

such as the limits on the converter current ripple and the grid

current harmonics, and stability conditions of the resonance fre-

quencies, is proposed. The proposed filter design algorithm is

also robust against a wide range of grid inductance variations

and filter elements uncertainties. The theoretical achievements

are supported by extensive simulation and practical experiments.

II. MODELING OF LCL-mT FILTER

Fig. 1 shows a single-phase VSC, which is connected to the

grid through an LCL-mT filter. In the LCL-mT filter multiple

Lf Cf traps are connected in parallel with the capacitor branch

of the conventional LCL filter. The LCL-mT filter combines the

advantages of both LCL and tuned trap filters, in which the LCL

filter offers the excellent characteristics of – 60 dB/dec roll-off at

high frequencies and each trap provides significant attenuation

around its tuned frequency. The traps are properly tuned at

multiples of the switching frequency (switching sidebands).

In Fig. 1, (L1 , L2 , C) and (Lf ,i , Cf ,i) are the parameters of

LCL and ith trap, respectively. By neglecting the equivalent se-

ries resistance (ESR) of filter components, the transfer function

of the converter output voltage to the grid current can be written

as

Gi2(s) =
i2(s)

v(s)
=

1

L1L′
2Cs(s2 + ω2

res,0)

n
∏

i=1

(s2 + ω2
f ,i)

(s2 + ω2
res,i)

(1)

where L′
2 = L2 + Lg and Lg represents the equivalent induc-

tance of the grid and ωf ,i is the tuned frequency of the ith trap.

For the single-phase VSC with the unipolar pulse width mod-

ulation (PWM), the sideband harmonics are located at even

multiples of the switching frequency (2ωsw , 4ωsw , . . .). By

adopting the asymmetrical (or double-update) sampling tech-

nique, the sampling frequency is twice the switching frequency

(ωs = 2ωsw ), consequently ωf ,is are selected as ωs , 2ωs , etc.

The ωres ,0 and ωres ,i are the resonance frequencies of the LCL

and traps, respectively. It should be noted that these resonance

frequencies are dependent on parameters of the LCL-mT filter

with complicated relationships [6]. As an example, the Bode

magnitude plot of Gi2(s) with n = 2 is plotted in Fig. 2. As

Fig. 2. Bode magnitude plot of Gi 2 (s).

seen, the resonance frequency associated to each trap is located

at a slightly higher frequency than its tuned frequency of ωf ,i .

III. SINGLE-LOOP CURRENT CONTROL AND STABILITY

ANALYSIS

In digitally controlled systems, the stability analysis must be

directly conducted in the z-domain to provide accurate conclu-

sion. The zero-order hold (ZOH) transform is commonly used

for PWM modeling [19]. The z-domain equivalent of Gi2(s)
with the ZOH transform and the sampling period of Ts = 1/fs

is obtained as

Gi2 (z) = (1 − z−1 )Z

{

Gi2 (s)

s

}

=
(1 − z−1 )

L1L′
2C

Z

{

a

s2
+

n
∑

i=0

ai

s2 + ω2
res , i

}

=
1

L1L′
2C

(

aTs

(z − 1)
+

n
∑

i=0

ai sin(ωres , iTs ) (z − 1)

ωres , i (z2 − 2 cos(ωres , iTs )z + 1)

)

=
N (z)

(z − 1)
∏n

i=0 (z2 − 2 cos(ωres , iTs )z + 1)
(2)

where a and ai are functions of ωf ,i and ωres ,i , and N(z) is

a polynomial of degree 2(n + 1). The 2(n + 1) zeros, denoted

by N(z), are produced by the ZOH transform from the original

poles and zeros of the continuous system. It should be noted that

while Gi2(s) has 2n zeros, Gi2(z) has two extra zeros, which

are produced by the ZOH transform.

Considering one sample time computation delay, the open-

loop transfer function of the grid current controlled converter

can be written as

Gol(z) = z−1Gc(z)Gi2(z) (3)

where, Gc(z) is the controller transfer function in z-domain,

which is a proportional resonant (PR) controller. The PR con-

troller can successfully eliminate the steady-state tracking error

of sinusoidal references. Taking in mind that the resonant part of

the PR controller almost does not affect the frequencies beyond

the fundamental, then the controller can be readily considered

as a simple proportional gain kp . With this assumption, the

open-loop transfer function (3) can be simplified as

Gol(z) ∼= z−1kpGi2(z). (4)

A. Folding Effect

The conjugate pole pairs of Gi2(s), which represent (n + 1)
resonance frequencies of the LCL-mT filter, are mapped on the
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Fig. 3. Folding of conjugate pole pairs with different frequencies (for
clarity only the folded poles in the primary strip are shown).

unit circle through the ZOH transform. For an s-domain pole

with the frequency higher than the Nyquist frequency, the ZOH

folds back that pole into a frequency lower than the Nyquist

frequency [22]. Suppose a system with the s-domain poles at

s = −σ ± jω with ω > ωs/2, through the sampling the folding

occurs and the system behaves like a system which had poles

at s = −σ ± j(ω ± kωs), where k = 1, 2, 3, . . . Thanks to the

low-pass filtering characteristics of the antialiasing filter and

the ZOH, the responses due to the folded poles in the comple-

mentary strips are well attenuated and, consequently, only the

folded poles in the primary strip (−jωs/2 < jω < jωs/2) are

considered here, which are sf = −σ ± jωf [23], [24]. To bet-

ter understand the folding effect, Fig. 3 shows an example for

three conjugate pole pairs with different frequencies, all beyond

the Nyquist frequency. The folded pole pairs in the primary strip

are related to the original ones as
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s1 = −σ1 ± jω1 ωs/2 < ω1 < ωs−−−−−−−−−−−→
sf

1 = −σ1 ∓ j |ω1 − ωs |

s2 = −σ2 ± jω2 ωs < ω2 < 3ωs/2
−−−−−−−−−−−−→

sf
2 = −σ2 ± j |ω2 − ωs | .

s3 = −σ3 ± jω3 3ωs/2 < ω3 < 2ωs−−−−−−−−−−−−−→
sf

3 =−σ3 ∓ j |ω3 − 2ωs |

(5)

In general, for a conjugate pole pair with ωres > ωs/2, the

folded frequency, depending on the original location, is calcu-

lated as
(

n − 1

2

)

ωs < ωres <

(

n +
1

2

)

ωs

⇒ ωf
res = |nωs − ωres | , n = 1, 2, . . . (6)

B. Stability Condition for ωres,0

In the delay-based stabilization method, the LCL filtered VSC

with grid current feedback is stable if the sharp phase change

of the LCL resonance frequency lies in the range (−3π,−π).
Regarding this limit and considering a total of 1.5Ts delay, the

stable range of the resonance frequency is already obtained as

ωs/6 < ωres < ωs/2 [18]. For the case of the LCL-mT filter,

the same condition also holds for the first resonance frequency,

ωres ,0 . Although, this stable range has already been proven in

recent studies, in order to demonstrate the effect of ZOH pro-

duced zeros, it is reexamined here. In the following, the effect

Fig. 4. Trajectory of poles and zeros of Gol (z) with increasing ωres ,0
(solid line: zeros trajectory, dashed line: poles trajectory).

of ZOH transform on the phase and magnitude characteristic as

well as the stability of the system is investigated with Figs. 4

and 5. Fig. 4 shows the trajectory of poles and zeros of (4) with

increasing ωres ,0 (for more clarity, poles and zeros of traps are

not shown). Also, Fig. 5 shows the Bode diagrams of (4) for dif-

ferent values of ωres ,0 . In order to highlight the folding effect,

a comparison between the s-domain open-loop transfer func-

tion Gol(s) = Gc(s)Gi2(s)e
(−1.5Ts s) (solid line) and Gol(z)

(dashed line) is given. The 1.5Ts delay accounts for one and

half sample delays of computations and PWM.

In Fig. 4 and for ωres ,0 < ωs/2, the zeros created by the ZOH

are located at negative side of the real axis (between ©1 and

©2 ) and have negligible effect on the Bode plot of the discrete

system, as evident in Fig. 5(a). In this case, only when the

resonance frequency is very close to ωs/2 the effect of zeros

appears as a small deviation on the magnitude characteristic with

no contribution on the phase, as shown in Fig. 5(b). As already

expected, the system remains stable. With ωres ,0 = ωs/2 both

pole pairs and zeros are placed at z = −1 (at ©2 ) and as shown

in Fig. 5(c) cancel each other. As it can be seen in Fig. 4, by

increasing ωres ,0 above ωs/2, the zeros transform to a pair of

conjugate zeros on the unit circle (between ©2 and ©3 ) with the

frequency always smaller than the folded pole pair frequency,

ωf
res,0 . Consequently, as it can be detected in Fig. 5 (d), the zeros

drive the phase out of the stable range of (−3π,−π) and lead

to instability.

C. Stability Condition for Traps

As shown in Fig. 2, the ith trap produces conjugate pairs

of zeros and poles at and above the ith switching sideband,

respectively. In the discretizing process, the pole pair is folded

to ωf
res,i according to (6). Furthermore, as it can be seen in

Fig. 6, in the vicinity of the folded poles, a pair of zeros is also

produced by the ZOH, which can have a slightly higher or lower

frequency than ωf
res,i . In the following, the combined effect of

the folded pole pair and the produced zero pair on the stability

of the digital control system is investigated by Fig. 6. For the

sake of simplicity, only the first trap is considered in this figure.

As it can be seen in Fig. 2, the first trap resonance frequency is

higher than the first sideband frequency, i.e., ωres ,1 > ωs . Given

the value of resonance frequency, the stability of the closed-loop

system is determined as follows.
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Fig. 5. Bode diagrams of LCL-mT filtered VSC with different values of resonance frequency (dashed line: Gol (z), solid line: Gol (s) =

Gc (s)Gi 2 (s)e(−1 .5T s s) ) (a) ωres ,0 = 0.4ωs , (b) ωres ,0 = 0.49ωs , (c) ωres ,0 = 0.5ωs , (d) ωres ,0 = 0.6ωs .

Fig. 6. Bode diagrams of LCL-mT filtered VSC with different values of resonance frequency (dashed line: Gol (z), solid line: Gol (s) =

Gc (s)Gi 2 (s)e(−1 .5T s s) ) (a) ωres ,1 = 1.14ωs (ωf
res ,1 = 0.14ωs ), (b) ωres ,1 = 1.25ωs (ωf

res ,1 = 0.25ωs ), (c) ωres ,1 = 1.4ωs (ωf
res ,1 = 0.4ωs ), and

(d) ωres ,1 = 1.6ωs (ωf
res ,1 = 0.4ωs ).

1) ωs < ωres,1 < 7ωs/6 (0 < ωf
res,1 < ωs/6): As it can be

seen in Fig. 6(a), the sharp phase change of the folded

resonance frequency occurs out of the stable range of

(−3π,−π) and the closed-loop system will be unstable.

2) 7 ωs/6 < ωres,1 < 3ωs/ 2 (ωs/ 6 < ωf
res,1 < ωs/2): The

Bode diagrams for this case are shown in Fig. 6(b) and

(c). Regardless of the ratio between ωf
res,1 and ωres ,0 ,

the sharp phase change remains inside (−3π,−π) and

the closed-loop system is stable.

3) 3ωs/2 < ωres,1 (ωs/2 > ωf
res,1): By increasing ωres ,1 ,

once it goes beyond 3ωs/2, ωf
res,1 begins to decrease

and as shown in Fig. 6 (d), the sharp phase change of

the folded resonance frequency crosses –3π and conse-

quently the closed-loop system will be unstable.

The same analysis can be performed for other traps. As a

general conclusion, the stable range for the ωres ,i (including

ωres ,0) can be written as

(

i +
1

6

)

ωs < ωres,i <

(

i +
1

2

)

ωs , i = 0, 1, . . . , n. (7)

IV. ROBUST DESIGN OF LCL-mT FILTER

In order to ensure closed-loop stability with no extra resistors,

sensors, and complexity the delay-based stabilization method is

utilized here. Hence, all resonance frequencies must lie inside

the stable region, already defined by (7). However, the most

serious problem is the uncertainties due to component tolerances

and drifts and also the grid inductance variations, which can
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Fig. 7. Simplified circuit of (a) grid-connected converter and (b) Lf re-
placed with equivalent capacitor to calculate the resonance frequencies.

lead to considerable deviations of the resonance frequencies

from the design values. Therefore, as a robust filter design, the

filter parameters must be selected in such a way that under all

circumstances, all resonance frequencies remain in the stable

range.

As already discussed, the filter resonance frequencies deter-

mine the stability of the closed-loop system. In the following,

the resonance frequencies of the LCL-mT filter are derived as a

function of the filter parameters.

The resonance frequencies of a circuit are independent of

the sources and are only determined by the passive elements

and their arrangement in the circuit. Hence, for the sake of

simplicity all sources are omitted from the circuit. The LCL-

mT filtered VSC of Fig. 1, without the sources, simplifies to

Fig. 7(a), where L = L1 ||L′
2 . By replacing each Lf with the

equivalent capacitor (with an equal impedance

jωLf = 1/(jωC ′
f ) : C ′

f = −1/(Lf ω2)), the equivalent cir-

cuit even more simplifies to Fig. 7(b). The equivalent capacitor

of this circuit can be calculated as (8) and consequently an

equation for the resonance frequencies can be derived as (9)

Ceq = C +

n
∑

j=1

Cf jC
′
f j

Cf j + C ′
f j

= C +

n
∑

j=1

Cf j

1 − Lf jCf jω2
(8)

ω2
res =

1

L

⎛

⎝C +

n
∑

j=1

Cf j

1 − Lf jCf jω2
res

⎞

⎠

−1

. (9)

This result is very useful in the filter design stage.

A. Effect of Grid Inductance Variations

Grid inductance variations from 0 to ∞ lead to the resonance

frequency change between the values defined by the following

equations:

ω2
res ,m ax =

ω2
res

∣

∣

L g =0
=

1

(L1 ||L2 )

(

C +
n

∑

j=1

Cf j

1 − Lf j Cf j ω2
res ,m ax

)−1

(10)

ω2
res ,m in = ω2

res

∣

∣

L g =∞ =
1

L1

(

C +
n

∑

j=1

Cf j

1 − Lf j Cf j ω2
res ,m in

)−1

.

(11)

The minimum and the maximum values of the resonance

frequency occur for the maximum and the minimum values of

Lg , respectively. The perfect robustness against grid inductance

variations is achieved, if the extremum values of each resonance

frequency, defined by (10) and (11), remain inside the stable

range of (7).

B. Effect of Filter Parameter Uncertainties

Uncertainties such as tolerances and drifts in the passive ele-

ments also lead to undesired resonance frequency changes. The

actual values of the filter parameters (with subscript “a”) are

assumed to be related to the designed values as La = uLL and

Ca = uC C, where uL and uC are the uncertainty factors for

the inductances and the capacitor, respectively. The elements of

traps should have accurate values with very small tolerances.

Therefore, the uncertainty effect of the traps elements is ne-

glected. Considering uncertainties, the actual value of the reso-

nance frequency can be written as

ω2
res,a =

1

La

⎛

⎝Ca +
n

∑

j=1

Cf j

1 − Lf jCf jω2
res,a

⎞

⎠

−1

=
1

uLL

⎛

⎝uC C +
n

∑

j=1

Cf j

1 − Lf jCf jω2
res,a

⎞

⎠

−1

. (12)

In order to determine the influence of parameter uncertainties

on the resonance frequency, an LCL-mT filter with one trap is

investigated. The resonance frequency of an LCL-mT filter with

one trap can be calculated as [6]

ωres,0&1 =

√

b ∓
√

b2 − 4a

2a
(13)

where a = LCLf 1Cf 1 and b = L(C + Cf 1) + Lf 1Cf 1 .

Fig. 8(a) and (b) shows the variations of ωres ,0 and ωres ,1 as a

function of uncertainty factors uL and uC by three-dimensional

plots. Both uncertainty factors vary from 0.6 to 1.4. For both

cases, the resonance frequency variation has an inverse relation

to both uncertainty factors, i.e., when both factors are maximum

then the minimum value for the resonance frequencies are ex-

pected and vice versa. Therefore, the system remains stable if

with the worst cases of shifts in the resonance frequencies, they

still remain in the stable range.

C. LCL-mT Filter Design

To achieve a robust filter design against the grid inductance

variations and filter parameter uncertainties, the stable range of

resonance frequency (7) must be met for all resonance frequency

variation range determined in previous sections. Furthermore,

the designed filter should meet some practical limits, such as

the converter current ripple and the grid current harmonics.

In the following, the step-by-step design procedure of the

LCL-mT filter is suggested. For the sake of simplicity, in the de-

sign procedure only one trap for the LCL-mT filter is considered.

System parameters and design constraints are listed in Table I.

In the first step, the minimum value of L1 is determined

according to the maximum allowed converter current ripple
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Fig. 8. Resonance frequency variations with uncertainty factors uL

and uC , (a) ωres ,0/ωs , (b) ωres,1/ωs .

TABLE I
SYSTEM PARAMETERS AND DESIGN CONSTRAINTS

Parameter Symbol Value

VSC rated power S r a t e d 3 kVA

Grid voltage/frequency V rm s /f 220V rm s /50Hz

DC-link voltage Vd c 380 V

Switching frequency fsw 5 kHz

Sampling frequency fs 10 kHz

Maximum converter current ripple ∆ i1 , m a x 0.3IP , r a t e d

Uncertainty factor of L1 and L2 uL 1 ± 0.3

Uncertainty factor of C uC 1 ± 0.2

∆i1,max as [4]

L1 ,m in =
VdcTs

8∆i1 ,m ax

. (14)

With the parameters of Table I, L1,min is calculated as 840µH.

As already discussed, the maximum decrease in the resonance

frequency value occurs with Lg = ∞ and the maximum uncer-

tainty factor umax . The resultant minimum resonance frequency

can be calculated from (12) as

ω2
res ,a

∣

∣

L g =∞
u=u m a x

=
1

uL ,m axL1

(

uC ,m axC +
Cf 1

1 − Lf 1Cf 1ω2
res ,a

)−1

.

(15)

To ensure stability for this case, the resultant minimum reso-

nance frequency must be at least equal to the lower limit of the

stable range of (7), i.e.,

ω2
res,0a

∣

∣

L g =∞
u=um a x

=
(ωs

6

)2

⇒ 1

uL,maxL1

(

uC,maxC +
Cf 1

1 − (1/6)2

)−1

=
(ωs

6

)2

(16)

ω2
res,1a

∣

∣

L g =∞
u=um a x

=

(

7ωs

6

)2

⇒ 1

uL,maxL1

(

uC,maxC +
Cf 1

1 − (7/6)2

)−1

=

(

7ωs

6

)2

(17)

where Lf 1Cf 1 is replaced by 1/ω2
s . By solving this system of

linear equations the filter capacitors are calculated as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

C =
1

uL ,m axuC ,m axL1

(

62

7ωs

)2

Cf 1 =
(

1 − (1/6)2
) (

(7/6)2 − 1
)

uC ,m axC

. (18)

By replacing L1 with L1,min from (14) and using parameters

in Table I, the C and Cf 1 are calculated as 5.11 and 2.15 µF, re-

spectively. The capacitors are finally chosen to be 5 and 2.1 µF.

With the chosen value for Cf 1 , the value of Lf 1 is calculated

as 120µH from Lf 1 = 1/(Cf 1ω
2
s ). It is worth mentioning that,

the reactive power of the capacitors may be another practical

criteria that must be met during the design procedure. This limit

can be considered as a percent (usually x = 5%) of the base

capacitance as (Ctotal = C + Cf 1) ≤ xCbase . After the calcu-

lation of C and Cf 1 from (18), if Ctotal > xCbase , then Ctotal

is limited to xCbase and the new values for the capacitors can

be calculated as directions of Appendix A.

On the other hand, the system must also remain stable with

the maximum increase in the resonance frequency, which occurs

with Lg = 0 and the minimum uncertainty factor umin . The

resultant maximum resonance frequency can be calculated from

(12) as

ω2
res,a

∣

∣

L g =0
u=um in

=
1

uL,min(L1 ||L2)
(

uC,minC +
Cf 1

1 − Lf 1Cf 1ω2
res,a

)−1

. (19)

Therefore, the maximum expected value of the resonance

frequency must be equal to (or lower than) the upper limit of

the stable range of (7), i.e.,

ω2
res ,0a

∣

∣

L g =0
u=u m in

=
(ωs

2

)2

⇒ 1

uL ,m in (L1 ||L2 )

(

uC ,m inC +
Cf 1

1 − (1/2)2

)−1

=
(ωs

2

)2

(20)

ω2
res ,1a

∣

∣

L g =0
u=u m in

=

(

3ωs

2

)2

⇒ 1

uL ,m in (L1 ||L2 )

(

uC ,m inC +
Cf 1

1 − (3/2)2

)−1

=

(

3ωs

2

)2

.

(21)
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TABLE II
COMPARISON OF DESIGNED LCL-mT FILTER AND LCL FILTER

Filter type L1 L2 Lf 1 C Cf 1 LI 2
P C t o t a l

ω r e s , 0
ω s

ω r e s , 1
ω s

(Peak rating)

LCL-mT 840 µH(23.5 A) 280 µH(19.5 A) 120 µH(5 A) 5 µF(311 V) 2.1 µF(311 V) 0.57 3.7% 0.4 1.22

LCL 840 µH(23.5 A) 1.5 mH(19.5 A) – 6.9 µF(311 V) – 1.03 3.5% 0.26 –

In above equations, all quantities are defined, except L2 . So,

by solving (20) and (21) for L2 , it is calculated as 280 and 75 µH,

respectively. On the other hand, it can be observed from Fig. 8

that the higher value for L2 leads to the lower resonance fre-

quency, therefore, one must choose L2 = 280 µH which leads

to ωres ,0a = ωs/2 and ωres ,1a < 3ωs/2.

There are important limits on the magnitude of harmonic

components of the grid current. The IEEE1547.2 2008 stan-

dard [25] limits all harmonics higher than 35th to 0.3% of

the fundamental component. Considering the high-frequency

characteristic of the filter as Gi2,HF(s) = 1/(L1L2Cs3) [8],

the value of L2 , which satisfies the current harmonic

limit at the second sideband frequency, ωsb 2 = 2ωs , can be

calculated as

isb2,max = Vsb2,max

∣

∣

∣

∣

1

L1L2Cs3

∣

∣

∣

∣

s=jω s b 2

< 0.003IP,rated

⇒ L2 >
Vsb2,max

0.003IP,ratedL1C(2ωs)
3 (22)

where Vsb 2,max and isb 2,max are the maximum values of con-

verter voltage and grid current at the second sideband frequency

and IP,rated is the peak value of the rated converter current.

Vsb 2,max for the modulation index of 0.8 is approximately equal

to 0.12 Vdc [26]. Evaluating (22) results in L2 > 95 µH. The

maximum value calculated from (20) to (22) is selected as the

final value of L2 , which in our case is 280 µH.

The final values of the filter parameters and the peak ratings

are listed in Table II. The total value of capacitance is 3.7%,

which is lower than the common limit of 5% [4]. A comparison

between the LCL-mT filter and the LCL filter with the same

design constraints (i.e., 30% converter current ripple, 0.3% high-

frequency component of the grid current and the same stability

constraints) is shown in Table II. The grid side inductance for

the LCL-mT filter is 280 µH (0.5%), which is much smaller

than 1.5 mH (2.9%) of the LCL filter. The LI2
P factor, which is

proportional to the volume of the magnetic cores [8], is almost

twice for the LCL filter, which shows the bigger size of the filter

inductors. With the chosen values for the

LCL-mT filter parameters the resonance frequencies are

ωres ,0d = 0.4ωs and ωres ,1d = 1.22ωs . To demonstrate the ro-

bustness of the proposed design procedure, the expected varia-

tion range of the resonance frequencies, along with the stable

range defined by (7), are shown in Fig. 9.

For the general case of a LCL-mT filter with n traps the

same design procedure can be followed, which is presented in

Appendix B.

Fig. 9. Resonance frequency variations with Lg and u changes.

V. CURRENT CONTROLER DESIGN CONSIDERING GRID

INDUCTANCE VARIATIONS

A. Current Controller Design

In order to eliminate the steady-state tracking error of the

sinusoidal reference and also compensate the grid voltage back-

ground harmonics, the PR controller with a harmonic compen-

sation (HC) network is used as the current controller. Then, the

transfer function of the current controller in the s-domain is

Gc(s) = kp + ki

∑

n=1,3,5,...

s

s2 + (nω1)
2 . (23)

The gains of the current controller are designed assuming that

Lg = 0 as kp = ωgc(L1 + L2) and ki = 0.02kpωgc , where ωgc

is the desired gain crossover frequency [19]. In order to compen-

sate the grid voltage background harmonics, the resonant terms

of the HC are tuned at 3rd-, 5th-, 7th-, 9th-, and 11th-order har-

monics. The gain crossover frequency of the current controller

is usually selected based on the desired phase margin, speed of

dynamic response and the highest HC tuned frequency. Here,

the ωgc is selected as ωs/16, which is upper than the highest

HC tuned frequency and results in a phase margin of about π/4.

The Bode diagrams of open-loop transfer function (3) with cur-

rent controller (23) for different grid inductances are shown in

Fig. 10. The impulse invariant method is used to discretize the

PR controller and the HC network [27].

B. Effect of Grid Inductance on Controller Performance

As illustrated in Table II, the grid side inductor of the LCL-

mT filter is usually small compared to the grid inductance Lg ,

leading to a variable bandwidth characteristics considering the

wide variations of Lg , which can challenge the dynamics and

even the stability of the current control loop [10]. This situation

is really serious in applications with a HC network in the current

control loop, where the reduced ωgc , as a result of increased

Lg , may become even lower than some HC network resonance

frequencies. As can be easily detected in Fig. 10, the direct
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Fig. 10. Bode diagrams of the open-loop transfer function Gol (z)
(dashed line: Lg = 0, solid line: Lg = 3.7mH).

result is deteriorated stability margins. To alleviate the stability

problem in the presence of a high grid inductance, the phase

compensated PR+HC is already proposed [28], which is also

adopted in this paper as the current controller Gc . The transfer

function of the phase compensated Gc in the s-domain is [27]

Gc(s) = kp + ki

∑

n=1,3,5,...

s cos(ϕn ) − nω1 sin(ϕn )

s2 + (nω1)
2 (24)

where ϕn is the phase lead compensation for each resonant

controller of Gc . Considering the phase compensation, the sharp

phase change of Gc in the vicinity of each tuned frequency (i.e.,

nω1) occurs between –π/2 + ϕn and +π/2 + ϕn . As it can

be seen in Fig. 10 (ϕn = 0), the highest decrease in the phase

of Gol occurs in the vicinity of each tuned frequency of Gc .

In order to have a good stability margin around the Gc tuned

frequencies, the difference between the phase of Gol and –π
must be limited to a safe bound, called ϕlimit , i.e.,

(∡Gol = ∡Gc + ∡Gi2 − 1.5Tsω)|ω=nω1
= −π + ϕlimit

⇒
(

−π

2
+ ϕn

)

+
(

−π

2

)

− 1.5Tsnω1 = −π + ϕlimit

(25)

then, ϕn is calculated as

ϕn = ϕlimit + 1.5Tsnω1 . (26)

While ϕlimit can be in the range of 0 to π/2, a compromise

may be ϕlimit = π/6, which will have a negligible effect on

the loop gain at low frequencies. Bode diagrams of Gol , with

and without the phase compensation of Gc are compared in

Fig. 11. It can be seen that the phase compensated controller

successfully limits the phase of Gol to ϕlimit = π/6. Therefore,

with increasing Lg , the phase margin will never be under π/6 ,

which translates to a proper stability margin.

VI. SIMULATION AND EXPERIMENTAL RESULTS

To exhibit the validity of analytical LCL-mT filter design

procedure, several simulation and experiments have been

Fig. 11. Bode diagram of open-loop transfer function Gol (z) with
Lg = 3.7mH (dashed line: uncompensated Gc , solid line: compensated
Gc ).

Fig. 12. Block diagram of closed-loop system.

conducted. The block diagram of the studied system is shown

in Fig. 12 and the parameters are listed in Table I. The filter

parameters are listed in Table II. The PR controller and the

HC network gains are selected according to Section V-A

recommends, as kp = 4.5 and ki = 350. All resonators are

compensated with ϕlimit = π/6.

Simulations are carried out in PLECS. A 3 kVA laboratory

prototype is developed. A Texas Instruments TMS320F28335

floating point digital signal controller is used for implementing

the control algorithm.

All simulations are conducted under ideal condition without

considering the ESR of filter elements and the resistive part of

grid impedance. Hence, the simulation results account for the

worst case in terms of damping and stability issues, while in the

experimental setup, the presence of ESRs increases the system

damping and improves the stability margins.

The steady-state simulated and experimental results for Lg =
0 and 3.7 mH are presented in Figs. 13 and 14, respectively.

These figures show a good agreement between the results of

simulations and experiments. In both cases, the converter sys-

tem remains stable and maintains the excellent performance

even with a large value for the grid inductance. Figs. 13(c) and

14(c) show the grid current harmonic spectrum (with Lg = 0).

The grid current harmonics around the switching sidebands are

well below the 0.3% limit. Furthermore, the grid current Total

Harmonic Distortion (THD) in experiments for Lg = 0 and 3.7

mH are 2.5% and 2%, respectively, which are far below the 5%

limit recommended by the IEEE1547.2 2008 standard.

The converter current and the total current of capacitor and

trap branches (iC + if ) are shown in Figs. 15–18. The ripple

content of the converter side current is almost the same as the
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Fig. 13. Simulation steady-state results (a) vp cc and i2 waveforms with Lg = 0, (b) vp cc and i2 waveforms with Lg = 3.7 mH, and (c) i2 spectrum.

Fig. 14. Experimental steady-state results (a) vp cc and i2 waveforms with Lg = 0, (b) vp cc and i2 waveforms with Lg = 3.7 mH, and (c) i2
spectrum.

Fig. 15. Simulation waveform of converter current i1 .

Fig. 16. Experimental waveform of converter current i1 .

Fig. 17. Simulation waveform of iC + if .

Fig. 18. Experimental waveform of iC + if .
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Fig. 19. Simulated dynamic response with active power jump from
two-third to rated power (a) Lg = 0 and (b) Lg = 3.7 mH.

Fig. 20. Experimental dynamic response with active power jump from
two-third to rated power (a) Lg = 0 and (b) Lg = 3.7mH.

total current of parallel branches, iC + if . As it can be seen in

these waveforms, the maximum peak current ripple is about

5.8 A, which translates to 30% of the peak rated current,

IP,rated .

In Figs. 19 and 20, a dynamic test is performed with a step

in the reference active power from two-third to the rated power.

Results confirm the excellent transient response with small os-

cillations. As described in Section V-B, with increasing Lg the

value of ωgc and consequently the dynamic response will de-

crease. As it can be seen, by increasing Lg from 0 to 3.7 mH the

settling time of system increased form 0.8 to 2.2 ms.

In order to show the instability when the trap resonance is out-

side the recommended range of (7), simulation and experimental

Fig. 21. Simulation results showing the instability when the trap reso-
nance frequency is outside the stable range.

Fig. 22. Experimental results showing the instability when the trap
resonance frequency is outside the stable range.

tests are performed. For the designed filter, by changing the filter

capacitance (C) from 5 to 1.2 µF and considering Lg = 200 µH,

the normalized resonance frequencies (ωres ,0/ωs and ωres,1/ωs)

move from (0.33 and 1.21) to (0.46 and 1.79). According to (7)

the instability occurs, since the trap resonance frequency, 1.79,

is above the stable limit of (1+1/2 = 1.5). The simulation and

experimental results for this case are shown in Figs. 21 and 22.

VII. CONCLUSION

In this paper, the folding effect of discretizing process, for

all resonance frequencies of the LCL-mT filter has been inves-

tigated and based on the delay-based stabilization method, the

stability condition for them all was determined. As an accu-

rate base for the proposed design procedure, a general equation

for the resonance frequencies of the LCL-mT filter without any

approximations was developed. Then, a straightforward design

algorithm for the LCL-mT filter was proposed, which guaran-

tees robustness against grid inductance variations and parame-

ter uncertainties. Additionally, in the proposed design method,

the practical limits on filter parameters were also successfully

addressed. The proposed design method was validated by sim-

ulation and experimental results.

APPENDIX

A. Capacitor Scaling According to the Reactive Power
Limit

In order to redesign C and Cf 1 without changing the reso-

nance frequencies [i.e., satisfying both (16) and (17)], (18) must
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be modified as
{

Cf 1 =
(

1 − (1/6)2
)(

(7/6)2 − 1
)

uC,maxC

C = xCbase − Cf 1

. (27)

Then L1 is recalculated from (18), as

L1 =
1

uL,maxuC,maxC

(

62

7ωs

)2

. (28)

The rest of the proposed design algorithm remains unchanged.

B. Extending the Design Procedure to the General Case
of LCL-mT Filter With n Traps

At first, choose the minimum value of L1 from (14). Through

the same derivation as (15), considering Lg = ∞ and the max-

imum uncertainty factor umax , the minimum value for the ith
resonance frequency can be calculated from (12) as

ω2
res,ia

∣

∣

L g =∞
u=um a x

=
1

uL,maxL1

⎛

⎝uC,maxC +

n
∑

j=1

Cf j

1 − Lf jCf j ω2
res,ia

∣

∣

L g =∞
u=um a x

⎞

⎠

−1

,

i = 0, 1, . . . , n. (29)

To ensure stability for this case, each minimum resonance

frequency must be at least equal to the lower limit of the stable

range already defined by (7), i.e.,

ω2
res,ia

∣

∣

L g =∞
u=um a x

=

((

i +
1

6

)

ωs

)2

. (30)

Substituting (30) into (29), results in the following set of

n + 1 linear equations

((

i +
1

6

)

ωs

)2

=
1

uL ,m axL1

(

uC ,m axC +
n

∑

j=1

Cf j

1 − ((i + 1/6)/ j)2

)−1

(31)

where Lf jCf j is replaced by 1/(jωs)
2 . By expanding (31) for

i = 0 to n, a system of linear equations with n + 1 unknowns

is achieved. These equations must be simultaneously solved to

give the values of all capacitors in the filter circuit.

With the same approach to derive (19), considering Lg = 0
and the minimum uncertainty factor umin , the maximum value

for the ith resonance frequency can be calculated from (12) as

ω2
res,ia

∣

∣

L g =0
u=um in

=

⎛

⎝uC,minC +
∑n

j=1
Cf j

1−Lf j Cf j ω 2
r e s , i a | L g =0

u=um in

⎞

⎠

−1

uL,min(L1 ||L2)
,

i = 0, 1, . . . , n. (32)

To ensure stability for this case, each maximum resonance

frequency must be equal to (or lower than) the upper limit of

the stable range already defined by (7), i.e.,

ω2
res,ia

∣

∣

L g =0
u=um in

=

((

i +
1

2

)

ωs

)2

. (33)

Substituting (33) into (32) yields the following set of n + 1
linear equations

((

i +
1

2

)

ωs

)2

=

(

uC,minC +
∑n

j=1
Cf j

1−((i+1/2)/ j )2

)−1

uL,min(L1 ||L2)
.

(34)

In above set of equations, all quantities are defined, except

L2 . So, by solving (34) for i = 0 to n, n + 1 values for L2 are

calculated, where the maximum value must be chosen.
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