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Stability Analysis and Stabilization of Systems Presenting
Nested Saturations

S. Tarbouriech, C. Prieur, and J. M. Gomes da Silva, Jr.

Abstract—This note addresses the problems of stability analysis and
stabilization of systems presenting nested saturations. Depending on the
open-loop stability assumption, the global stability analysis and stabiliza-
tion problems are considered. In the (local) analysis problem, the objective
is the determination of estimates of the basin of attraction of the system.
Considering the stabilization problem, the goal is to design a set of gains
in order to enlarge the basin of attraction of the closed-loop system. Based
on the modelling of the system presenting nested saturations as a linear
system with dead-zone nested nonlinearities and the use of a generalized
sector condition, linear matrix inequality (LMI) stability conditions are
formulated. From these conditions, convex optimization strategies are
proposed to solve both problems.

Index Terms—Linear matrix inequality (LMI), nested saturations, sta-
bility regions, stabilization.

I. INTRODUCTION

The stability and stabilization of systems presenting saturations are
problems that have been studied by many authors with different objec-
tives in the last decade. This interest comes mainly from the fact that,
due to physical, safety or technological constraints, control actuators
cannot provide unlimited amplitude signals neither unlimited speed of
reaction. This means that control systems are in general subject to am-
plitude and dynamics actuator saturations. In this case, the negligence
of both amplitude and dynamics actuator limitations in control systems
can be source of undesirable and even catastrophic behaviors, such as
instability [3].

In this context, an important class of systems to be studied consists in
systems presenting nested saturations. In particular, such structure ap-
pears when we deal with nonlinear actuators and sensors. For instance,
it is common in aerospace control systems (e.g., launcher and aircraft
control) that actuators are both limited in amplitude and rate (dynamics)
(see, for example, [1], [8], and [10]). Furthermore, the presence of both
sensor and actuator amplitude limitations can lead to a closed-loop
system presenting nested saturations. This will be the case, for instance,
in linear systems controlled by dynamic output feedback controllers in
the presence saturating sensors and actuators. On the other hand, anal-
ysis and design methodologies for systems presenting nested satura-
tions can be useful to address stability issues of more general classes of
nonlinear systems. For instance, the use of nested saturations becomes
very interesting when one uses forwarding techniques for cascade sys-
tems with linear part [15], [17], [18].

In this note, two complementary problems are addressed: The de-
termination of stability regions and the design of stabilizing gains for
systems presenting nested saturations. The objective in the analysis sta-
bility problem consists in determining an estimate of the basin of attrac-
tion of the system presenting generic nested saturations. Regarding the
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stabilization problem, the objective is then to design a set of gains in
order to maximize the basin of attraction of the closed-loop saturated
system. Based on the modelling of the system presenting generic nested
saturations as a linear system with dead-zone nested nonlinearities and
the use of a generalized sector condition, linear matrix inequality (LMI)
stability conditions are formulated. Although the objectives of the note
are similar to the ones recently proposed in [1], considering the mod-
elling of the saturated systems by a polytopic differential inclusion, it
should be pointed out that we do not consider particular assumptions
on the structure and the dimensions of matrices involved in the descrip-
tion of the system. Furthermore, our results allow also to address global
stability issues, which is not considered in [1]. This note provides there-
fore an alternative solution for the problems formulated and addressed
in [1] and, doing so, provides also some generalizations.

The note is organized as follows. Section II describes the system
under consideration and the problems we intend to address. In Sec-
tion III, theoretical conditions for solving both the analysis of stability
as well as the control design problems are presented. Section IV deals
with convex optimization issues. A discussion concerning the numer-
ical complexity with respect to our results and those proposed in the
literature is quickly presented in the end of this section. Some illustra-
tive examples are presented in Section V. Section VI summarizes the
main contributions of the work and points to some open problems and
future research directions.

Notations: For any vector x 2 <n, x � 0 means that all the com-
ponents of x, denoted x(i), are nonnegative. For two vectors x, y of
<n, the notation x � y means that x(i) � y(i) � 0, 8i = 1; . . . ; n.
1 and 0 denote, respectively, the identity matrix and the null matrix of
appropriate dimensions. The elements of a matrix A 2 <m�n are de-
noted by A(i;j), i = 1; . . . ; m, j = 1; . . . ; n. A(i) denotes the ith row
of matrix A. jAj is the matrix constituted from the absolute value of
each element of A. For two symmetric matrices, A and B, A > B

means that A � B is positive definite. A0 denotes the transpose of A.
Co denotes a convex hull.

II. PROBLEM STATEMENT

This note focuses on the following class of nonlinear systems re-
sulting from nested saturations:

_x = Apx+Bpsatp (Ap�1x +Bp�1satp�1 (Ap�2x

+ � � � (A1x+B1sat1(Cx)) � � �) (1)

where x 2 <n is the state of the system. For all j 2 f1; . . . ; pg, Aj ,
Bj , and C are matrices of appropriate dimensions (eventually having
different dimensions depending on the index j). Furthermore, satj is
a componentwise saturation map <m ! <m defined as follows:

(satj(v))(i) = satj v(i) = sign v(i) min uj(i); v(i) ;

8i = 1; . . . ; mj

where uj(i), denotes the ith bound of the jth saturation function. In
contrast with [1], accordingly to the different mj , more generic ma-
trices Bj , Aj and C can be considered. In particular, note also that the
matrices Bj do not need to be diagonal.

For j = 1; . . . p, let us recursively define the nonlinearities as shown
in (2) at the bottom of the next page.
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Define now the following p matrices:

1 =A1 +B1C

2 =A2 +B2(A1 +B1C)

...

p =Ap +Bp (Ap�1 +Bp�1

� (Ap�2 + � � �+B2(A1 +B1C))) : (3)

Thus, from the definitions in (2) and (3), system (1) can be rewritten
as

_x = px +Bp�p(x) +BpBp�1�p�1(x) + � � �

+BpBp�1 � � �B1�1(x) (4)

Note that in the absence of saturation one gets �j(x) = 0,
j = 1; . . . ; p. In this case, the stability of system (1) (or, equiv-
alently, (4)) is directly characterized by the stability of the matrix p.
In the presence of saturation, considering that the exact analytical
determination of the basin of attraction of the system is in general not
possible, we should be concerned with the determination of estimates
of this basin, i.e., regions in the state space in which the asymptotic
stability of system (1) is guaranteed.

Considering system (1) and the definitions in (2) and (3), the two
problems we intend to solve can therefore be summarized as follows.

Problem 1: Given a system where the matrix p is Hurwitz, de-
termine a region of stability E0 for system (1) as large as possible.
Problem 2: Determine the gainsAj , j = 1; . . . ; p�1 andC such
that p is Hurwitz and that lead to a region of stability E0 for
system (1) as large as possible.

The two problems above are complementary. The first one consists
in a stability analysis problem. The idea is to determine an estimate,
as large as possible, of the basin of attraction of the nested saturated
system (1). The second one is a synthesis problem. In this case, the
implicit goal is to design the gainsAj , j = 1; . . . ; p�1 andC in order
to maximize the basin of attraction of system (1). In order to develop
our results concerning these two problems, in the sequel we will use
the equivalent description (4) of system (1).

III. THEORETICAL CONDITIONS

A. Local Asymptotic Stability Analysis

Let us consider the generic nonlinearity '(v) = satv (v)� v, with
'(v) 2 <m and v0(i), i = 1; . . . ;m denoting the bounds of the satu-
ration function satv (v), and define the following associated set:

S(v0) = fv 2 <m;w 2 <m;�v0 � v � w � v0g: (5)

Lemma 1: If v and w are elements of S(v0), then the nonlinearity
'(v) satisfies the following inequality:

'(v)0T ('(v) + w) � 0 (6)

for any diagonal positive–definite matrix T 2 <m�m.
Proof: Assume that v and w are elements of S(v0). In this case,

it follows that v0(i) � v(i) + w(i) � 0 and �v0(i) � v(i) + w(i) � 0.
Consider now the following three cases.

• Case 1: v(i) > v0(i) It follows that '(v(i)) = v0(i) � v(i) < 0
and one gets'(v(i))T(i;i)('(v(i))+w(i))= '(v(i))T(i;i)(v0(i)�
v(i) + w(i)) � 0 provided that T(i;i) > 0.

• Case 2: �v0(i) � v(i) � v0(i) It follows that '(v(i)) = 0 and
'(v(i))T(i;i)('(v(i)) + w(i)) = 0, 8T(i;i).

• Case 3: v(i) < �v0(i) It follows that '(v(i)) = �v0(i)�v(i) > 0
and '(v(i))T(i;i)('(v(i))+w(i))= '(v(i))T(i;i)(�v0(i)�v(i)+
w(i)) � 0 provided that T(i;i) > 0.

Thus, once v and w are elements of S(v0), we can conclude that
'(v(i))T(i;i)('(v(i)) + w(i)) � 0, 8T(i;i) > 0, 8i = 1; . . . ;m,
whence follows (6).

Remark 1: Particular formulations of Lemma 1 can be found in [7]
(concerning the case of systems with a single saturation function, i.e.,
p = 1) and in [16] (concerning systems presenting both amplitude and
dynamics restricted actuators).

It should be pointed out that sector condition (6) is more generic than
the classical one (see, for instance, [9] and [11]) given as

 (v)0T [ (v) + �v] � 0; 0 < � � 1: (7)

Note that in our case we can consider w 6= �v. This fact, differ-
ently from condition (7), allows to formulate conditions directly in LMI
form.

The following proposition provides theoretical sufficient conditions
to solve Problem 1.

Proposition 1: If there exist a symmetric positive definite matrixW ,
matricesZjj , j = 1; . . . ; p, Yjl, j = 2; . . . ; p, l = 1; . . . ; p�1, j 6= l,

�1(x) = sat1(Cx)� Cx

�2(x) = sat2 ((A1 +B1C)x+B1�1(x))� [(A1 +B1C)x+B1�1(x)]

�3(x) = sat3 ((A2 +B2(A1 +B1C))x+B2�2(x) +B2B1�1(x))

� [(A2 +B2(A1 +B1C))x+B2�2(x) +B2B1�1(x)]

...

�p(x) = satp ((Ap�1 +Bp�1 (Ap�2 +Bp�2 (Ap�3 + � � �+B2(A1 +B1C))))x

+Bp�1�p�1(x) +Bp�1Bp�2�p�2(x) + � � �+Bp�1Bp�2 � � �B1�1(x))

� [(Ap�1 +Bp�1 (Ap�2 +Bp�2 (Ap�3 + � � �+B2(A1 +B1C))))x

+Bp�1�p�1(x) +Bp�1Bp�2�p�2(x) + � � �+Bp�1Bp�2 � � �B1�1(x)] (2)
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j > l, and diagonal positive matrices Sj , j = 1; . . . ; p, of appropriate
dimensions satisfying1

W 0

p + pW ? ? � � � ?

S1B
0

1 � � �B
0

p�1B
0

p � Z11 �2S1 ? � � � ?

S02B
0

2 � � �B
0

p�1B
0

p � Z22 �Y21 �2S2 � � � ?

...
...

... � � � ?

S0pB
0

p � Zpp �Yp1 �Yp2 � � � �2Sp

<0 (8)

W WC 0

(i) � Z 0

11(i)

? u21(i)
� 0; i = 1; . . . ;m1 (9)

and (10), as shown at the bottom of the page. Then, the set
E(W�1; 1) = fx 2 <n; x0W�1x � 1g is a region of stability
for (1).

Proof: According to the definition of nonlinearities2 �j , j =
1; . . . ; p, by applying Lemma 1 p-times with adequate vectors v, w
and v0, it follows that:

• First, in the case' = �1, relation (6) and definition (5) apply with

T = T1; v = Cx; w = E11x; v0 = u1:

• Second, in the case ' = �2, relation (6) and definition (5) apply
with

T =T2; v = (A1 +B1C)x+B1�1;

w =E22x+E21�1; v0 = u2:

• . . .
• Finally, in the case ' = �p, relation (6) and definition (5) apply

with

T =Tp

v = (Ap�1 +Bp�1 (Ap�2 +Bp�2

� (Ap�3 + � � �+B2(A1 +B1C))))x

+Bp�1�p�1 +Bp�1Bp�2�p�2

+ � � �+Bp�1Bp�2 � � �B1�1

w =Eppx+ Epp�1�p�1 + � � �+Ep1�1; v0 = up:

Matrices E11, E22, E21; . . .Epp, and Epp�1; . . . ; Ep1 are ma-
trices of appropriate dimensions to be determined and matrices T1,
T2; . . . ; Tp are p diagonal and positive–definite matrices.

Consider now Ejj = ZjjW
�1, j = 1; . . . ; p and Ejl = YjlS

�1
l ,

j = 2; . . . ; p, l 6= j, j > l. The satisfaction of relation (9) implies then

1The symbol ? stands for symmetric blocks.
2For notational simplicity, we denote throughout the proof � (x) by � .

that the set E(W�1; 1), with P = W�1, is included in S(u1) [2].
We prove now, by induction, that relations (9) and (10) imply that set
E(W�1; 1) is included in \p

j=1S(uj). First note that, from Lemma 1,
if E(W�1; 1) � S(u1), it follows that �01T1(�1 + E11x) � 0, 8x 2
E(W�1; 1). Hence, provided that E(W�1; 1) � S(u1), E(W�1; 1)
will be contained in S(u1) \ S(u2) if

x

�1

0

P 0

0 0
�

1

u22(i)

�01(i)
�0

1(i)

�1(i) �1(i)

�
x

�1
� 0

8i = 1; . . . ;m1

8x; �1 such that 2�01T1(�1 + E11x) � 0 (11)

where �1(i) = 1(i) � E22(i) and �1(i) = B1(i) � E21(i). Using
the S-procedure and the Schur’s complement, it follows that (11) is
satisfied if

P ? ?

T1E11 2T1 ?

1(i) �E22(i) B1(i) �E21(i) u22(i)

� 0

8i = 1; . . . ;m1: (12)

Pre- and postmultiplying (12) by the matrix
W 0 0

? S1 0

? ? 1

, with

S1 = T�1
1 it follows that this inequality is equivalent to relation (10)

for j = 2.
Applying recursively the previous reasoning, provided that

E(W�1; 1) � \j�1
k=1S(uk), it follows that E(W�1; 1) will be con-

tained in \j

k=1S(uk) if

x

�1
...

�j�1

0

P 0 . . . 0

? 0 . . . 0

...
...

. . . 0

? ? . . . 0

�
1

u2
j(i)


0


x

�1
...

�j�1

� 0

8i = 1; . . . ;mj (13)

8x, �1; . . . ; �j�1 such that

2�01T1(�1 +E11x) � 0
...
2�0j�1Tj�1(�j�1 +Ej�1j�1x+ Ej�11�1

+ . . . + Ej�1j�2�j�2) � 0

where 
 = [�j�1(i) �1(i) . . . �j�1(i)], �j�1(i) = j�1(i)�Ejj(i),
and �1(i) = Bj�1(i)Bj�2 . . .B1 �Ej1(i); . . . ;�j�1(i)= Bj�1(i) �
Ejj�1(i), whence, using S-procedure, Schur’s complement and con-
sidering Sj = T�1

j , j = 2; . . . ; p, it follows (10). Hence, 8x 2

W Z 0

11 Z 0

22 � � � Z 0

j�1j�1 W 0

j�1(i) � Z 0

jj(i)

? 2S1 Y 0

21 � � � Y 0

j�11 S1B
0

1 � � �B
0

j�2B
0

j�1(i) � Y 0

j1(i)

? ? 2S2 � � � Y 0

j�12 S2B
0

2 � � �B
0

j�2B
0

j�1(i) � Y 0

j2(i)

...
...

...
...

...
...

? ? ? ? 2Sj�1 Sj�1B
0

j�1(i) � Y 0

jj�1(i)

? ? ? ? ? u2j(i)

� 0; i = 1; . . . ; mj ; j = 2; . . . ; p: (10)
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E(W�1; 1), the satisfaction of relations (9) and (10) implies that set
E(W�1; 1) is included in \pj=1S(uj). Hence, the nonlinearities �j ,
j = 1; . . . ; p, associated to the appropriate v andw defined previously,
satisfy sector conditions in the form of (6) for all x 2 E(W�1; 1).

Consider now the quadratic Lyapunov function V (x) = x0Px, with
P = P 0 > 0. The time-derivative of V (x) along the trajectories of
system (4) reads

_V = x
0 0

pP + P p x+ 2x0PBp�p

+2x0PBpBp�1�p�1 + � � �+ 2x0PBpBp�1 � � �B1�1:

Since (9) and (10) are satisfied, sector conditions (6) hold 8�j , j =
1; . . . ; p, 8x 2 E(W�1; 1). Hence, 8x 2 E(W�1; 1) it follows that

_V � _V � 2�01T1(�1 +E11x)� 2�02T2(�2 +E22x+E21�1)� � � �

�2�0pTp(�p + Eppx+ Epp�1�p�1 + Epp�2�p�2 + . . . +Ep1�1):

Considering � = [x0 �01 �
0
2 . . . �0p]

0, the previous inequality can be
rewritten as _V � �0M� with the equation shown at the bottom of the
page.

By recalling that W = P�1, Sj = T�1
j , j = 1; . . . ; p, and by

pre- and postmultiplying the matrix aforementioned M defined by
W 0 0 0 0

? S1 0 0 0

? ? S2 0 0

...
...

...
...

...
? ? ? ? Sp

, it follows that, if relation (8) is satisfied,

one has _V (x) < 0, 8x 2 E(W�1; 1), x 6= 0. Hence, one can conclude
that E(W�1; 1) is a contractive set along the trajectories of system (1)
and, thus, it is a region where the asymptotic stability of system (1) is
ensured, which concludes the proof.

B. Global Asymptotic Stability Analysis

Proposition 1 presents a local stability condition for the nested sat-
urated system (1). On the other hand, in the case where Ap is Hur-
witz the global asymptotic stability of the system can be checked. In
this case, following the results based on integral quadratic constraints
(IQCs) stated in [4], [12] for systems presenting repeated saturations,3

different nondiagonal multipliers T can be used as follows.
Lemma 2: The nonlinearity '(v) = satv (v)� v satisfies the fol-

lowing inequality:

'(v)0T ('(v) + v) � 0 (14)

3By “repeated” saturations the authors in that papers mean the case
where (sat(v)) = sat(v ) = sign((v )min(v ; jv j) with
v = �u;8i = 1; . . . ;m appear in an additive way. It should be highlighted
that these “repeated” saturations do not appear “nested” as in our case.

for any vector v 2 <m and any matrix T 2 <m�m such that

T(i;i)v0(i) �

m

j=1;i 6=j

v0(j) T(i;j) ; i = 1; . . . ;m: (15)

Proof: Recalling that '(v) = ['(v(1)) . . . '(v(m))]
0 it follows

that

'(v)0T ('(v) + v) =

m

i=1

' v(i) T(i;i) ' v(i) + v(i)

+

m

i6=j;j=1

T(i;j) ' v(j) + v(j) (16)

Consider now the following three cases.
• Case 1: '(v(i)) > 0 In this case, '(v(i)) +
v(i) = �v0(i). Hence if (15) is satisfied one has
[T(i;i)('(v(i)) + v(i)) + m

i6=j;j=1 T(i;j)('(v(j)) +
v(j))]� �v0(i)T(i;i) + m

i6=j;j=1 v0(j)jT(i;j)j � 0
and, therefore '(v(i))[T(i;i)('(v(i)) + v(i)) +

m

i6=j;j=1 T(i;j)('(v(j))+v(j))] � 0.
• Case 2: '(v(i)) < 0 In this case, '(v(i)) +
v(i) = v0(i). Hence if (15) is satisfied one has
[T(i;i)('(v(i)) + v(i)) + m

i6=j;j=1 T(i;j)('(v(j)) +
v(j))]� v0(i)T(i;i) � m

i6=j;j=1 v0(j)jT(i;j)j � 0
and, therefore '(v(i))[T(i;i)('(v(i)) + v(i)) +

m

i6=j;j=1 T(i;j)('(v(j))+v(j))] � 0.
• Case 3: '(v(i)) = 0 One has '(v(i))[T(i;i)('(v(i)) + v(i)) +

m

i6=j;j=1 T(i;j)('(v(j))+v(j))] = 0.
Thus, from the three previous cases and from (16), we can conclude

that '(v)0T ('(v) + v) � 0.
Hence, by using Lemma 2, a condition for the global asymptotic

stability can be stated.
Proposition 2: If there exist a matrix P = P 0 > 0 and matrices

Tk = T 0k > 0, k = 1; . . . ; p, of appropriate dimensions, satisfying
(17) and (18), as shown at the bottom of the next page. Then, the origin
of system (1) is globally asymptotically stable.

Proof: It follows the same steps of Proposition 1, consid-
ering w = v. In this case, we should consider E11 = C ,
E22 = A1+B1C; . . . ; Epp = (Ap�1+Bp�1(Ap�2+Bp�2(Ap�3+
� � � + B2(A1 + B1C)))) = p�1, E21 = B1, Epp�1 =
Bp�1; . . . ; Ep1 = Bp�1Bp�2 . . .B2B1. It follows that the sector
conditions (14), applied p-times to the nonlinearities defined in (2) are
satisfied 8x 2 <n.

Remark 2: If the control bounds are normalized to v0(i) = 1; i =
1; . . . ;m, condition (15) reads T(i;i) �

m

j=1;j 6=i jT(i;j)j, which cor-
responds to the one given in [4] from an IQC approach. Furthermore,
in order to implement (18) in an LMI framework we can consider

M =

0
pP + P p ? ? � � � ?

B0
1 � � �B

0
p�1B

0
pP � T1E11 �2T1 ? � � � ?

B0
2 � � �B

0
p�1B

0
pP � T2E22 �T2E21 �2T2 � � � ?

B0
3 � � �B

0
p�1B

0
pP � T3E33 �T3E31 �T3E32 � � � ?

...
...

... � � � ?

B0
pP � TpEpp �TpEp1 �TpEp2 � � � �2Tp
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Tk(i;j)
4
= T+

k(i;j) + T�
k(i;j), for i 6= j, with T+

k(j;i) = T+
k(i;j) � 0

and T�
k(i;j) = T�

k(j;i) � 0 and the following constraints [4]

uk(i)Tk(i;i) �

m

j=1;j 6=i

uk(j) T
+
k(i;j) � T

�

k(i;j) ;

k = 1; . . . ; p; i = 1; . . . ;mk:

C. Theoretical Synthesis Conditions

Let us define the following matrices:

j�1 = Gj�1 +Bj�1 (Gj�2 +Bj�2 (Gj�3 + � � �

+B2(G1 +B1G0))) ; j = 2; . . . ; p (19)

The following proposition provides theoretical sufficient conditions
to address Problem 2.

Proposition 3: If there exist a symmetric positive–definite matrix
W , matrices Zjj , j = 1; . . . ; p, Yjl, j = 2; . . . ; p, l = 1; . . . ; p � 1,
j 6= l, j > l,Gk , k = 0; . . . ; p�1, and diagonal positive matrices Sj ,
j = 1; . . . ; p, of appropriate dimensions satisfying

L+ L0 ? ? � � � ?

S1B
0
1 . . .B

0
p�1B

0
p � Z11 �2S1 ? � � � ?

S2B
0
2 . . .B

0
p�1B

0
p � Z22 �Y21 �2S2 � � � ?

...
...

... � � � ?

SpB
0
p � Zpp �Yp1 �Yp2 � � � �2Sp

< 0 (20)

W G00(i) � Z 011(i)
? u21(i)

� 0; i = 1; . . . ; m1 (21)

and (22), as shown at the bottom of the page, holds, with

L = ApW +BpGp�1 + . . . +BpBp�1 . . .B2(G1 +B1G0): (23)

Then, the gains Aj�1 = Gj�1W
�1, j = 2; . . . ; p and C = G0W

�1,
are such that the asymptotic stability of (1) is ensured for all initial con-
ditions belonging to the set E(W�1; 1) = fx 2 <n; x0W�1x � 1g.

Proof: It follows the same lines as those of Proposition 1 by using
the change of variables Aj�1 = Gj�1W

�1, j = 2; . . . ; p and C =
G0W

�1.
The following result allows to address the global stabilizing gains

design.
Corollary 1: If there exist a symmetric positive definite matrix W ,

Gk , k = 0; . . . ; p�1, and diagonal positive matricesSj , j = 1; . . . ; p,
of appropriate dimensions satisfying (24), as shown at the bottom of
the page, where p�1 and L are defined in (19) and (23), respectively,
then (1) with Aj�1 = Gj�1W

�1, j = 2; . . . ; p and C = G0W
�1, is

globally asymptotically stable.
Remark 3: Differently from the analysis case, the multipliers Tj ,

j = 1; . . . ; p cannot be generalized to satisfy (15). Indeed, instead
of matrices Tj , condition (24) is formulated using their inverses Sj .
Hence, considering a generic mj > 2 it is not possible to find a par-
ticular structure for Sj which would ensure that Tj would satisfy (18).
However, note that for mj = 2 this can be ensured if the following
additional constraints are considered:

uj(1)Sj(1;1) >uj(2) Sj(1;2)

uj(2)Sj(2;2) >uj(1) Sj(1;2) = uj(1) Sj(2;1) :

Only in this particular case it is therefore possible to find matrices Tj =
S�1j , j = 1; . . . ; p, satisfying (17) and (18).

0
pP + P p PBpBp�1 . . .B1 � C 0T1 PBpBp�1 . . .B2 � (A1 +B1C)0T2 . . . PBp �

0
p�1Tp

? �2T1 �B01T2 . . . �(Bp�1 . . .B1)
0Tp

? ? �2T2 . . . �(Bp�1 . . .B2)
0Tp

...
...

...
...

...
? ? ? ? �2Tp

< 0 (17)

uk(i)Tk(i;i) �

m

j=1;j 6=i

uk(j) Tk(i;j) ; k = 1; . . . ; p; i = 1; . . . ;mk (18)

W Z 011 Z 022 . . . Z 0j�1j�1
0
j�1(i) � Z 0jj(i)

? 2S1 Y 0
21 . . . Y 0j�11 S1B

0
1 . . .B

0
j�2B

0
j�1(i) � Y 0

j1(i)

? ? 2S2 . . . Y 0j�12 S2B
0
2 . . .B

0
j�2B

0
j�1(i) � Y 0

j2(i)

...
...

...
...

...
...

? ? ? ? 2Sj�1 Sj�1B
0
j�1(i) � Y 0

jj�1(i)

? ? ? ? ? u2j(i)

� 0 i = 1; . . . ;mj ; j = 2; . . . ; p (22)

L+ L0 ? ? � � � ?

S1B
0
1 . . .B

0
p�1B

0
p �G0 �2S1 ? � � � ?

S2B
0
2 . . .B

0
p�1B

0
p � (G1 +B1G0) �B1S1 �2S2 � � � ?

...
...

... � � � ?

SpB
0
p � p�1 �Bp�1 . . .B1S1 �Bp�1 . . .B2S2 � � � �2Sp

< 0 (24)
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Fig. 1. D L for p = 2 in function of n from Proposition 1 (solid line) and from [1, Th. 2.1] (dashed line): For (a) m = 3 and for (b) m = n� 1.

The same problem appears in the local stability and stabilization con-
texts. Note that, in these cases, the conditions are formulated in terms
of matrices Sj , instead of the direct multipliers Tj .

IV. OPTIMIZATION ISSUE

From the result stated in Propositions 1 and 3, we are interested in
one of the following cases.

1) A set of initial states, �0 � <n, for which asymptotic stability
must be ensured, is given.

2) We aim to maximize the estimate of the basin of attraction associ-
ated to (1). In other words, we want to compute the set E(W�1; 1)
as large as possible considering some size criterion.

Both cases can be addressed if we consider a set �0 with a given
shape and a scaling factor �. For example, let �0 be defined as a poly-
hedral set described by its vertices: �0 = Cofvr; r = 1; . . . ; nr; vr 2
<ng. We want then to satisfy ��0 � E(W�1; 1). In case 1), this
problem reduces to a feasibility problem with � = 1. In case 2), the
goal consists in maximizing �, which corresponds to define through �0

the directions in which we want to maximize E(W�1; 1).
The problem of maximizing � can be accomplished by solving the

following convex optimization problem:

min�

subject to relations (8),(9),(10) (in the analysis context)

subject to relations (20),(21),(22)

(in the synthesis context)
� v0r
vr W

� 0; r = 1; . . . ; nr: (25)

Considering � = 1=
p
�, the minimization of � implies the maximiza-

tion of �. Note that other criteria associated to the size of E(W�1; 1)
(e.g., the volume or the size of the minor axis) can be adopted in order
to maximize the stability region.

Remark 4: In a practical problem, the designer can also be requested
to specify (or to choose) the actuators and/or sensors that better fit the
design objectives for the system, under constraints on cost, size, energy
consummation, mass, etc. In particular, the specification of the actuator
or sensor can be done by its saturation amplitude bound uj . The idea is
therefore to consider uj , j = 1; . . . ; p also as decision variables. This

can be accomplished in the same LMI framework by replacing u2j(i)
by �j(i), i = 1; . . . ;mj , j = 1; . . . ; p, in (21) and (22). In this case,
considering a given set �0 for which the stability should be ensured,
an interesting optimization problem could be to consider a linear cost
criterion on �j(i), i = 1; . . . ;mj , j = 1; . . . ; p.

A. Computational Burden Analysis

The conditions of Proposition 1 are under LMI form in the deci-
sion variables. This fact is due to the use of model (4) with Lemma 1.
The use of polytopic model as that one described in [1] also leads to
LMI conditions. Let us now compare the number of variables and the
number of lines in the LMIs to be solved considering our Proposition
1 and the LMIs considered in [1, Th. 2.1].

Consider m1 = � � � = mp = m, where m is a fixed integer and
assume that all matrices Bj , for 1 � j � p� 1 are diagonal such that
the results of [1] apply.

In Proposition 1, we have to consider LMI conditions with
• n+mp+(n+1)m+ p

j=2m(n+m(j�1)+1)= n+m[p+
p(n + 1) +m(p(p� 1)=2)] lines;

• (n(n+1)=2)+pmn+(p(p�1)=2)m2+mp decision variables
(for W , Zjj , Yjl and Sj , respectively).

On the other hand, in [1, Th. 2.1], to solve the analysis problem we
need to consider LMI conditions with

• n(p + 1)m + (n + 1)mp lines;
• mnp + (n(n + 1)=2) decision variables.
For small values of n, m, and p, the number of variables and lines

do not slightly differ, and LMI problems to be considered in Proposi-
tion 1 and in [1, Th. 2.1] are numerically similar. However, when the
complexity analysis of the numerical method is addressed, the numbers
of lines and of variables of the considered LMIs play a crucial role.
Indeed, the computation gets more complex when these numbers be-
come larger: see, for example the complexity analysis of interior-point
method [6], or the complexity analysis for a primal method [5, Th. 5.1]
or for a dual method [5, Th, 5.2]. LMI conditions can be solved in
polynomial time for instance by specialized algorithms as in [6], with
complexity proportional to D3L (where D is the number of decision
variables and L is the number of lines). Of course, other LMI solvers
may perform differently. When we study this quantity (like in Fig. 1),
one can observe that for high dimensions, the numerical complexity
associated to our conditions increases slower than that one associated
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to [1, Th.2.1], due in particular to the fact that the number of lines in
[1, Th.2.1] depends on a term (p + 1)m.

Note that the same type of computational burden analysis as devel-
oped before can be done for the synthesis case.

V. ILLUSTRATIVE EXAMPLES

Example 1: Consider the numerical example borrowed from [1], in
which system (1) with p = 2, m2 = m1 = 1 and n = 2, is described
by the following data:

A2 =
0 �0:5

1 1:5
B2 =

0

�1
B1 = 0:1 u2 = u1 = 1:

By considering the same conditions as in Example 2.2, [1, Case 4], and
by applying Proposition 3 one obtains

A1 = [0:4878 203:4825] C = [�0:0057 0:0284]

P =
2:2809 �0:0010

�0:0010 2:6232
:

The obtained ellipsoid E(W�1; 1) is the same than that one provided
in [1].

Example 2: Consider the longitudinal dynamics of the F-8 aircraft
borrowed from [19]. System (1), in the case p = 3, m3 = m2 = 2,
m1 = 1 and n = 4, is described by the following data:

A3 =

�0:8 �0:006 �12 0

0 �0:014 �16:64 �32:2

1 �0:0001 �1:5 0

1 0 0 0

B3 =

�19 �3

�0:66 �0:5

�0:16 �0:5

0 0

B2 =
1 �1

0 1
B1=

0:1

0:1
u3=u2=

15

15
u1=15

:

Let us consider �0 as the unit ball in <4 for the usual norm l1. Note
that, since m3, m2 6= m1, the approach of [1] does not seem ap-
plicable. By applying Proposition 3 and by considering an additional
pole placement constraint [8] such as Re(�i(A3+B3(A2+B2(A1+
B1C))) � �0:5, one obtains

A2 =
0:0185 �0:0018 �0:0937 0:1152

�0:0185 0:0018 0:0937 �0:1152

A1 =
0:0185 �0:0018 �0:0937 0:1152

0:0180 �0:0017 �0:0917 0:1125

C = [0:0086 � 0:0008 � 0:0442 0:0542]

� =435:8886

with eig(A3 + B3(A2 + B2(A1 + B1C)))= f�1:1596 �
j3:4520;�0:5002� j0:2904g.

Example 3: Consider system (1), in the case p = 2, m1 = m2 = 1
and n = 2, described by the following data:

A2 =
0 1

�1 �2
B2 =

0

�1
B1 = 1u1 = u2 = 1:

By applying Corollary 1, it follows that this systems can be globally
asymptotically stabilized with

A1 = [�0:0264 � 0:3423] C = [�0:1422 � 0:5441]:

VI. CONCLUSION

An LMI-based methodology to address the problems of stability and
stabilization of systems presenting nested saturations has been pro-
posed. This methodology is based on the modelling of the system as
a linear system with nested deadzone nonlinearities and on the use of
a generalized sector condition. In particular, differently from [1], the
proposed approach allows to consider more general nested saturation
structures and to address the global stability and global stabilization
problems. On the other hand, in the case where the global asymptotic
stability of the system can be checked, the results concerning the use
of more generic multipliers, stated in [4], and [12] for systems pre-
senting repeated saturations, are adapted to the present case of nested
saturations. Some examples borrowed from the literature highlighted
the application of the results.

The present study opens several perspectives for future works. In
particular, given a general linear system _x = Ax, the complete syn-
thesis problem i.e. the problem of the design of all gains (namely all
matricesAj andBj in (1)) is still open. Existence of such a global stabi-
lizing saturation control is proved in [17] for multiple integrators and is
used in [13] for feedforward systems with delayed inputs. In this note,
only a part of this set of gains (namely, the matrices Aj = GjW

�1,
j = 1; . . . ; p and C = G0W

�1 in Corollary 1) have been designed.
Note that it is also possible to design the bound of the saturation func-
tion uj since the LMI condition stated in Corollary 1 is linear in u2j(i).
However, the design of the other gains (i.e., the matrices Bj ) is a more
challenging problem and is currently under investigation. Other per-
spectives regard the use of such nested saturations for the global stabi-
lization of cascade systems with linear part (see [15], [17], and [18])
and the study of different nonlinearities than the nested saturation (see,
e.g., the hysteresis in [11]).

REFERENCES

[1] A. Bateman and Z. Lin, “An analysis and design method for linear
systems under nested saturation,” Syst. Control Lett., vol. 48, pp. 41–52,
2003.

[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory. Philadelphia, PA: SIAM.

[3] P. J. Campo and M. Morari, “Robust control of processes subject to
saturations nonlinearities,” Comput. Chem. Eng., vol. 14, no. 4–5, pp.
343–358, 1990.

[4] F. J. D’Amato, M. A. Rotea, A. V. Megretski, and U. T. Jönsson,
“New results for analysis of systems with repeated nonlinearities,” Au-
tomatica, vol. 37, no. 5, pp. 739–747, 2001.

[5] E. de Klerk, Aspects of Semidefinite Programming. Interior Point
Algorithms and Selected Applications. Dordrecht, The Netherlands:
Kluwer, 2002.

[6] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control
Toolbox User’s Guide. Natick, MA: The MathWorks, Inc., 1995.

[7] J. M. Gomes da Silva, Jr. and S. Tarbouriech, “Anti-windup design with
guaranteed region of stability: An LMI-based approach,” IEEE Trans.
Autom. Control, vol. 50, no. 1, pp. 106–111, Jan. 2005.

[8] J. M. Gomes da Silva, Jr., S. Tarbouriech, and G. Garcia, “Local sta-
bilization of linear systems under amplitude and rate saturating actu-
ators,” IEEE Trans. Autom. Control, vol. 48, no. 5, pp. 842–847, May
2003.

[9] H. Hindi and S. Boyd, “Analysis of linear systems with saturation using
convex optimization,” in Proc. IEEE Conf. Decision and Control, San
Diego, CA, Dec. 1998, pp. 903–908.

[10] V. Kapila and K. M. Grigoriadis, Eds., Actuator Saturation Control.
New York: Marcel Dekker, 2002.

[11] H. K. Khalil, Nonlinear Systems, 2nd ed. London, U.K.: Prentice-
Hall, 1996.

[12] V. V. Kulkarni and M. G. Safonov, “All multipliers for repeated mono-
tone nonlinearities,” in Proc. Amer. Control Conf., Arlington, VA, Jun.
2001.

[13] F. Mazenc, S. Mondié, and R. Francisco, “Global asymptotic stabi-
lization of feedforward systems with delay in the input,” IEEE Trans.
Autom. Control, vol. 49, no. 5, pp. 844–850, May 2004.

Authorized licensed use limited to: LAAS. Downloaded on June 14,2010 at 09:32:17 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 8, AUGUST 2006 1371

[14] T. Nguyen and F. Jabbari, “Output feedback controllers for disturbance
attenuation with actuator amplitude and rate saturation,” Automatica,
vol. 36, pp. 1339–1346, 2000.

[15] R. Sepulchre, M. Jankovic, and P. Kokotovic, Constructive Nonlinear
Control. London, U.K.: Springer-Verlag, 1997.

[16] S. Tarbouriech, I. Queinnec, and G. Garcia, “Stability region enlarge-
ment through anti-windup strategy for linear systems with dynamics
restricted actuator,” Int. J. Syst. Sci., vol. 37, no. 2, pp. 79–90, 2006.

[17] A. R. Teel, “Global stabilization and restricted tracking for multiple
integrators with bounded controls,” Syst. Control Lett., vol. 18, pp.
165–171, 1992.

[18] A. R. Teel, “Feedback stabilization: Nonlinear solutions to inherently
nonlinear problems,” Ph.D. dissertation, Univ. California, Berkeley,
CA, 1992.

[19] F. Wu, K. M. Grigoriadis, and A. Packard, “Anti-windup controller
analysis via linear parameter-varying control design methods,” in Proc.
Amer. Control Conf., Philadelphia, PA, Jun. 1998, pp. 343–347.

A Numerical Analysis of the Nash Strategy for Weakly
Coupled Large-Scale Systems

Hiroaki Mukaidani

Abstract—This note discusses the feedback Nash equilibrium of linear
quadratic -player Nash games for infinite-horizon large-scale intercon-
nected systems. The asymptotic structure along with the uniqueness and
positive semidefiniteness of the solutions of the cross-coupled algebraic Ric-
cati equations (CAREs) is newly established via the Newton-Kantorovich
theorem. The main contribution of this study is the proposal of a new al-
gorithm for solving the CAREs. In order to improve the convergence rate
of the algorithm, Newton’s method is combined with a new decoupling al-
gorithm; it is shown that the proposed algorithm attains quadratic conver-
gence. Moreover, it is shown for the first time that solutions to the CAREs
can be obtained by solving the independent algebraic Lyapunov equation
(ALE) by using the reduced-order calculation.

Index Terms—Cross-coupled algebraic Riccati equations (CARE), fixed-
point algorithm, Nash games, Newton’s method, weakly coupled large-scale
systems.

I. INTRODUCTION

The stability analysis and control of large-scale systems has been ex-
tensively investigated (see, e.g., [1]). For example, these control prob-
lems can be illustrated by multiarea power systems [2], [3]. The control
problems of large-scale interconnected systems is parameterized by a
small weak coupling parameter ". This has been extensively studied in
[2], [3], [5].

The linear quadratic Nash games and their applications have been
widely investigated in many literatures (see, e.g., [9], [24] and the refer-
ences therein). In particular, the definition and standard results given in
[24] will be used for reference. There exist two different types of Nash
equilibria: a) open-loop equilibria and b) closed-loop no-memory and
feedback equilibria. The existence of open-loop Nash equilibria has
been studied in [16], [19], and [20] for both continuous and discrete
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time systems. Further, in the case of memoryless perfect-state infor-
mation structure, the asymptotic analysis of the linear feedback Nash
equilibria has also been investigated [21]–[23]. These researches have
focused on the analysis of the existence of Nash equilibria. Although
a numerical algorithm for solving the feedback Nash algebraic Riccati
equations has been presented, only a scalar feedback has been consid-
ered [23].

It is well known that in order to obtain Nash strategies, the cross-
coupled algebraic Riccati equations (CARE) must be solved. In [10],
a Newton-type algorithm for solving the CARE has been applied. A
variant of the classical eigenvector approach for solving the CARE of
the open-loop Nash games has also been studied in [16]. However, the
computing workspace for these techniques requires very large matrix
dimensions. Therefore, the reduction in the matrix dimensions poses
a crucial problem because the weakly coupled systems include nu-
merous subsystems. In contrast, in [4], the recursive algorithms have
been developed for solving the CARE of the weakly coupled systems.
Recently, an algorithm that is based on the Lyapunov iterations for
solving the CARE has been introduced [6], [7]. Although such algo-
rithms can be computed by using the dimension of each subsystem, the
convergence rate is given by the linear convergence. Moreover, there is
no proof of whether the abovementioned algorithms fail to converge in
the case of strongly coupled systems.

This note investigates the feedback Nash equilibrium of linear
quadratic N -player Nash games for infinite-horizon large-scale
interconnected systems by using Newton’s method. It should be
noted that this study considers the linear feedback strategy [18] with
memoryless perfect-state information structure [21]–[24]. This note
is an extension of [8] in the sense that the convergence criteria for "
is derived for the first time. Such a condition is derived by applying
the Newton–Kantorovich theorem. The Newton–Kantorovich theorem
plays an important role in showing that the uniqueness and positive
semidefiniteness of the convergence solutions are guaranteed in the
neighborhood of the initial conditions. Moreover, the asymptotic
structure of the solutions of the CARE is established without the
implicit function theorem. This note also proposes a new decoupling
algorithm for computing Newton’s iterations as another important
feature. As a result, a reduction in the computation is attained by using
the existing fixed-point algorithm [6], [7].

Notation: The notations used in this note are fairly standard. block
diag denotes the block diagonal matrix. The superscript T denotes the
matrix transpose. In denotes the n�n identity matrix. k�k denotes the
Euclidean norm for a matrix. vecM denotes the column vector of the
matrixM [15]. detM denotes the determinant of the matrixM .
 de-
notes the Kronecker product. �ij denotes the Kronecker delta. Re�M
denotes the real part of the eigenvalue of the matrix M .

II. PROBLEM FORMULATION

Consider weakly coupled large-scale linear systems with N players

_xi(t) = Aiixi(t) +Biiui(t) + "

N

j=1;j 6=i

Aijxj(t)

+"

N

j=1;j 6=i

Bijuj(t) xi(0) = x
0

i ; i = 1; 2; . . . ; N (1)

where xi 2 R
n , i = 1; 2; . . . ; N represent the ith state vectors.

ui 2 R
m , i = 1; 2; . . . ; N represent the ith control inputs. " denotes

a small weak coupling parameter that connects the other subsystems.
Each player attempts to minimize its cost performance subject to (1) by
exploiting the available information in order to take the correct decision
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